RU2751020C1 - Цифровой измеритель сдвига фаз гармонических сигналов - Google Patents

Цифровой измеритель сдвига фаз гармонических сигналов Download PDF

Info

Publication number
RU2751020C1
RU2751020C1 RU2020139100A RU2020139100A RU2751020C1 RU 2751020 C1 RU2751020 C1 RU 2751020C1 RU 2020139100 A RU2020139100 A RU 2020139100A RU 2020139100 A RU2020139100 A RU 2020139100A RU 2751020 C1 RU2751020 C1 RU 2751020C1
Authority
RU
Russia
Prior art keywords
input
output
digital
bno
inputs
Prior art date
Application number
RU2020139100A
Other languages
English (en)
Inventor
Олег Вячеславович Чернояров
Александр Андреевич Макаров
Алексей Николаевич Глушков
Владимир Петрович Литвиненко
Юлия Владимировна Литвиненко
Дмитрий Геннадьевич Пантенков
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ")
Priority to RU2020139100A priority Critical patent/RU2751020C1/ru
Application granted granted Critical
Publication of RU2751020C1 publication Critical patent/RU2751020C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/091Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector using a sampling device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • H04L7/08Speed or phase control by synchronisation signals the synchronisation signals recurring cyclically

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Phase Differences (AREA)

Abstract

Изобретение относится к областям радиотехники и измерительной техники и может быть использовано в устройствах измерения сдвига фаз между двумя гармоническими колебаниями в измерительной и радиотехнической аппаратуре управления и передачи информации. Технический результат - обеспечение измерения сдвига фаз между двумя входными гармоническими сигналами, которое производится во всем возможном диапазоне его изменения, с высокой точностью и максимальной скоростью формирования искомого результата. Цифровой измеритель сдвига фаз содержит аналого-цифровой преобразователь, регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй каналы квадратурной обработки (ККО), каждый ККО содержит каскадно соединенные вычитатель и nблоков накопления отсчетов (БНО), каждый БНО состоит из регистра сдвига многоразрядных кодов и сумматора, нормирующее устройство, цифровой формирователь арктангенса, регистр результата, формирователь тактовых импульсов и распределитель тактовых импульсов. 2 з.п. ф-лы, 11 ил.

Description

Изобретение относится к областям радиотехники и измерительной техники и может быть использовано в устройствах измерения сдвига фаз между двумя гармоническими колебаниями в измерительной и радиотехнической аппаратуре управления и передачи информации.
Известен цифровой измеритель сдвига фаз (Чмых Н.К. Цифровой измеритель сдвига фаз // Авторское свидетельство SU 868625, МПК G01R 25/08 от 30.09.81, Бюл. №36), принцип действия которого основан на перемножении входных гармонических сигналов и выделении низкочастотной составляющей (интегрировании) произведения. Цифровой измеритель сдвига фаз содержит последовательно соединенные блок формирования, блок совпадения и счетчик импульсов, генератор импульсов, блок управления, блок перемножения, сумматор, реверсивный счетчик и блок преобразования кодов.
К его недостаткам следует отнести аналоговую обработку сигналов и приближенно реализуемые нелинейные преобразования, что приводит к погрешностям измерения, а также двузначность результата на интервале значений сдвига фаз от 0 до 2π.
Известен измеритель разности фаз радиосигналов (Перов А.И., Корогодин И.В. Измеритель разности фаз радиосигналов // Патент №2388001 С1, МПК G01R 25/00 от 27.04.2010, Бюл. №12), в котором входные гармонические сигналы преобразуются в последовательности прямоугольных импульсов. На основе полученных последовательностей формируется последовательность импульсов, длительность которых пропорциональна сдвигу сигналов во времени. Эта длительность измеряется и далее вычисляется искомый сдвиг фаз.
Недостатком такого устройства являются зависимость точности измерения от частоты сигналов, а также необходимость определения периода сигнала и пересчета временного смещения в сдвиг фаз.
Известен ортогональный измеритель фазового сдвига (Чмых М. К. Цифровая фазометрия. - М.: Радио и связь, 1993. - 184 с.), содержащий генератор опорного сигнала (ГОС), два коррелятора и вычислитель фазового сдвига.
Его недостатками являются сложность вычислительной процедуры, необходимость предварительного определения периода сигнала и невысокая точность измерения, обусловленная погрешностью умножителей.
Общим недостатком известных устройств является сложность реализации усреднения результатов измерения по большому числу периодов сигнала с целью уменьшения погрешности измерения и повышения его помехоустойчивости. Кроме того, известные устройства имеют прерывистый характер измерительной процедуры (необходим сброс интеграторов или счетчиков импульсов).
Наиболее близким по технической сущности к предлагаемому цифровому устройству является цифровой фазовый детектор (Чернояров О.В., Глушков А.Н., Литвиненко В.П., Литвиненко Ю.В., Матвеев Б.В., Демина Т.И. Цифровой фазовый детектор // Патент №2723445 С2, МПК H04L 27/22 от 11.06.2020, Бюл. №17), содержащий аналого-цифровой преобразователь (АЦП), два канала квадратурной обработки (ККО) сигналов, нормирующее устройство (НУ), цифровой формирователь (ЦФ) арктангенса и генератор тактовых импульсов (ГТИ).
Недостатком этого фазового детектора является то, что он не позволяет измерять сдвиг фаз между двумя входными гармоническими сигналами.
Техническая задача предлагаемого решения заключается в обеспечении непрерывного цифрового измерения сдвига фаз между двумя гармоническими сигналами с высокой точностью и помехоустойчивостью при минимальном числе необходимых арифметических операций.
Техническим результатом предлагаемого решения является обеспечение измерения сдвига фаз между двумя входными гармоническими сигналами, которое производится во всем возможном диапазоне его изменения, с высокой точностью и максимальной скоростью формирования искомого результата.
Это достигается тем, что цифровой измеритель сдвига фаз, содержащий аналого-цифровой преобразователь (АЦП), вход которого соединен с первым генератором гармонических колебаний, а выход соединен с входом регистра сдвига многоразрядных кодов на четыре отсчета, нечетные выходы которого соединены с входами вычитателя первого канала квадратурной обработки (ККО), а четные выходы - с входами вычитателя второго ККО, каждый ККО содержит каскадно соединенные вычитатель и n блоков накопления отсчетов (БНО), входами ККО являются входы вычитателя, а выходом - выход последнего БНО, каждый БНО состоит из регистра сдвига многоразрядных кодов и сумматора, вход регистра сдвига является входом БНО и соединен с первым входом сумматора, а второй вход сумматора соединен с выходом регистра сдвига, выход сумматора является выходом БНО, выходы первого и второго ККО соединены с первым и вторым входами нормирующего устройства (НУ), выход НУ соединен с входом цифрового формирователя (ЦФ) арктангенса, дополнительно содержит регистр результата (РР), вход которого подключен к выходу ЦФ, а выход является выходом устройства, формирователь тактовых импульсов (ФТИ), вход которого соединен со вторым генератором гармонических колебаний, а выход ФТИ подключен к входу распределителя тактовых импульсов (РТИ), к выходу которого подключены тактовые входы АЦП, регистра сдвига многоразрядных кодов на 4 отсчета, всех БНО, НУ и PP.
Кроме того, формирователь тактовых импульсов ФТИ выполнен в виде устройства, содержащего первый усилитель-ограничитель УО1, вход которого является входом формирователя, на который подается сигнал от второго генератора гармонических колебаний, а выход соединен с первым дифференцирующим устройством ДУ1, умножитель У, вход которого подключен к входу формирователя тактовых импульсов, а выход соединен с входом второго усилителя-ограничителя УО2, выход которого подключен к входу второго дифференцирующего устройства ДУ2, выходы ДУ1 и ДУ2 соединены с входами формирователя импульсов ФИ, выход которого является выходом формирователя тактовых импульсов.
Кроме того, в цифровом формирователе арктангенса ЦФ, реализованным на базе постоянного запоминающего устройства, записаны двоичные коды сдвига фаз между гармоническими сигналами первого и второго генераторов, вычисляемые из выражения
Figure 00000001
лежащие в диапазоне от -π+π/4=-2,356 до π+π/4=3,927, или от -135° до 225°.
Цифровой измеритель сдвига фаз гармонических сигналов поясняется чертежами, где на фиг. 1 представлена структурная схема предлагаемого устройства, на фиг. 2 - временная диаграмма дискретизации входного сигнала, на фиг. 3 - временная диаграмма входного (опорного) сигнала, на фиг. 4 - временная диаграмма центрированного квадрата входного сигнала, на фиг. 5 - диаграммы формирования тактовых импульсов, на фиг. 6 - структурная схема формирователя тактовых импульсов, на фиг. 7 - фиг. 11 - результаты статистического имитационного моделирования работы измерителя сдвига фаз.
Цифровой измеритель сдвига фаз гармонических сигналов содержит АЦП 1, на вход которого поступает первый входной сигнал от генератора Г1 2, а на управляющий вход - тактовые импульсы. Выход АЦП 1 соединен с входом регистра 3 сдвига многоразрядных кодов на четыре отсчета, нечетные выходы которого соединены с соответствующими входами вычитателя В 4 первого ККО 5, а четные выходы - с соответствующими входами вычитателя В 6 второго ККО 7. Каждый ККО помимо вычитателя содержит n каскадно соединенных блоков накопления отсчетов (БНО). Количество БНО n определяется двоичным логарифмом числа N периодов накопления сигнала (n=log2N). Такое построение устройства обеспечивает минимальное количество БНО, при этом число обрабатываемых периодов сигнала равно N=2n, а длительность накопления равна NT0, где T0=1/ƒ0 - период входных сигналов с частотой ƒ0.
Первый ККО 5 содержит последовательно соединенные БНО 8-1, …, 8-n, а второй ККО 7 - последовательно соединенные БНО 9-1, …, 9-n. Каждый из БНО состоит из регистра сдвига многоразрядных кодов и сумматора. Блоки 8-1, …, 8-n накопления отсчетов содержат регистры 10-1, …, 10-n сдвига многоразрядных кодов и сумматоры 11-1, …, 11-n соответственно, а БНО 9-1, …, 9-n - соответственно регистры 12-1, …, 12-n сдвига многоразрядных кодов и сумматоры 13-1, …, 13-n. В каждом блоке 8 (9) накопления отсчетов первый вход регистра 10 (12) сдвига является входом блока 8 (9) накопления отсчетов и соединен с первым входом сумматора 11 (13). Второй вход сумматора 11 (13) соединен с выходом регистра 10 (12) сдвига. Выход сумматора 11 (13) является выходом блока 8 (9) накопления отсчетов, а тактовый вход регистра 10 (12) сдвига является управляющим входом блока 8 (9) накопления отсчетов.
Выход вычитателя В 4 соединен с входом блока 8-1 накопления отсчетов ККО 5, а выход блока 8-n накопления отсчетов ККО 5 - с первым входом НУ 14. Выход вычитателя В 6 соединен с входом блока 9-1 накопления отсчетов ККО 7, а выход блока 9-n накопления отсчетов ККО 7 - с вторым входом НУ 14.
Второй (опорный) входной сигнал от генератора Г2 15 подается на вход формирователя тактовых импульсов (ФТИ) 16, выход которого соединен с входом распределителя тактовых импульсов (РТИ) 19, к выходам которого подключены тактовые входы АЦП, регистра сдвига многоразрядных кодов на 4 отсчета, всех БНО, НУ и PP.
Выход НУ 14 соединен с входом ЦФ 17, выход которого подключен к входу регистра результата (РР) 18, выход РР является выходом устройства, на который выдается двоичный код сдвига фаз между первым и вторым входными сигналами.
Устройство работает следующим образом.
На входы измерителя от генераторов Г1 2 и Г2 15 поступают первый и второй гармонические сигналы с частотой ƒ0 вида
Figure 00000002
где S1 и S2 - амплитуды, ψ1 и ψ2 - начальные фазы сигналов.
Первый сигнал поступает на вход АЦП 1, который формирует по четыре отсчета входного сигнала на период повторения T0=1/ƒ0 в соответствии с тактовыми импульсами от РИТ 19 с частотой 4ƒ0. Процесс квантования для i-го периода показан на фиг. 2.
Второй (опорный) гармонический входной сигнал s2(t) (фиг. 3) поступает на ФТИ 16, где возводится в квадрат и центрируется (фиг. 4). В результате на выходе ФТИ формируются синхронные с входным сигналом тактовые импульсы, например, как показано на фиг. 5. Вариант структурной схемы ФТИ показан на фиг. 6. Здесь сигнал s2(t) (фиг. 3) поступает на вход первого усилителя-ограничителя 20, а прямоугольные импульсы на его выходе подаются на первое дифференцирующее устройство 21, на выходе которого формируются короткие импульсы с0(t) (фиг. 5), соответствующие моментам «положительного» перехода через ноль входного сигнала. Сигнал s2(t) параллельно подается на умножитель 22, на выходе которого формируется его вторая гармоника (сигнал удвоенной частоты, показанный на фиг. 4), поступающая без постоянной составляющей на второй усилитель-ограничитель 23 и далее на второе дифференцирующее устройство 24. На выходе устройства 24 формируются 4 коротких импульса c1(t) на период входного сигнала (фиг. 5), которые управляют записью данных в регистр сдвига многоразрядных кодов на 4 отсчета (фиг. 1). Они синхронны с сигналом s2(t), но сдвинуты от него по времени на 1/8 периода или отстают по фазе на π/4=45°. Эта величина корректируется в цифровом формирователе арктангенса 17 (фиг. 1). На выходе формирователя импульсов 25 формируются тактовые импульсы, поступающие на распределитель тактовых импульсов 19, показанный на фиг. 1, который подает управляющие импульсы на блоки измерителя. Достоинством предлагаемой схемы ФТИ является независимость его работы от частоты сигнала.
Второй входной сигнал, приведенный к временной сетке тактовых импульсов (фиг. 5), имеет вид
Figure 00000003
а сдвиг фаз ϕ между входными гармоническими сигналами равен
Figure 00000004
После обработки i-го периода (заполнения многоразрядного регистра сдвига на 4 отсчета) на вход вычитателя 4 поступают отсчеты s2i и s4i, а на его выходе формируется разность
s2i-s4i=S1cos ϕ-(-S1)cosϕ=2S1cosϕ,
которая запоминается в многоразрядном регистре сдвига 10-1. В следующем периоде сигнала на выходе вычитателя 4 получим величину
s2(i+1)-s4(i+1)=2S1cosϕ,
а на выходе сумматора 11-1 - величину
s2i-s4i+s2(i+1)-s4(i+1)=4S1cosϕ.
После поступления N=2n периодов входного сигнала (n - число БНО в каждом ККО) в предположении, что за время NT0 начальная фаза входного сигнала меняется незначительно, и при отсутствии помех на выходе сумматора 11-n первого ККО 5 получим результат
Figure 00000005
Аналогично на вход вычитателя 6 поступают отсчеты s1i и s3i, а на выходе формируется разность
s1i-s3i=S1sinϕ-(-S1)sinϕ=2S1sinϕ.
В результате после поступления N периодов входного сигнала на выходе сумматора 13-n второго ККО 7 получим результат
Figure 00000006
Двоичные коды величин y0i и y1i поступают в нормирующее устройство 14 (на основе регистров сдвига), обеспечивающее путем совместного сдвига кодов полное заполнение разрядной сетки наибольшего по модулю из них, и результаты поступают в цифровой формирователь арктангенса 17, в котором определяется величина
Figure 00000007
равная сдвигу фаз между первым и вторым сигналами, Δi12. Значения сдвига фаз, полученные согласно (7), лежат в диапазоне от -π+π/4=-2,356 до π+π/4=3,927, или от -135° до 225°. Его можно сместить, добавляя или вычитая в нужных местах величину 2π или 360°.
Вычисления в (7) наиболее целесообразно реализовать аппаратно на базе постоянного запоминающего устройства (ПЗУ), в котором двоичные коды величин y0i и y1i образуют адрес ячейки памяти, в которой записан двоичный код Δi. Если выбрать разрядность нормированных кодов y0i и y1i равной 10 (20-разрядная шина адреса ПЗУ) и разрядность кода Δi равной 8, то потребуется ПЗУ общей емкостью 1 Мбайт.
Технически устройство наиболее целесообразно реализовать на базе программируемых логических интегральных схем (ПЛИС). Современные ПЛИС средней сложности, например фирмы Xilinx серии Spartan-6 позволяют реализовать предлагаемое устройство при N>1000 с рабочими частотами до 50-100 МГц.
На фиг. 7 и фиг. 8 показана полученная в результате имитационного моделирования зависимость от номера текущего периода i измеренного сдвига фаз Δi (радиан) при амплитуде сигнала S=1, заданном значении сдвига фаз Δ, N=210=1024 и отсутствии шума. Как видно, формируются точные значения сдвига фаз. При этом, если задать Δ=5 (за границами диапазона π+π/4), то измеритель выдаст правильное значение Δi=-1,283=5-2π.
На фиг. 9 приведена зависимость Δi при наличии на входе первого сигнала 2 независимых отсчетов аддитивного гауссовского шума с нулевым средним и среднеквадратическим отклонением σ=1 (равном амплитуде сигнала) при Δ=2 и N=1024 (здесь же в овальной рамке показаны те же зависимости в растянутом масштабе). Как видно, при данных условиях хаотические колебания результата измерения невелики, и составляют
Figure 00000008
от Δ=2. Здесь σΔ - среднеквадратическое отклонение результата измерения. Если среднеквадратическое отклонение шума увеличивается до σ=5 (фиг. 10), то флуктуации результата измерения возрастают до 5,5%.
С ростом N шумовая погрешность δ (8) снижается (на фиг. 11 до 1% при N=214=16384); при этом наглядно проявляется низкочастотная фильтрация результата измерения.
Из полученных результатов следует, что измеритель эффективно подавляет входные широкополосные помехи на входе первого сигнала за счет накопления большого числа отсчетов. Шумовая помеха на входе второго (опорного) сигнала нежелательна, так как приведет к нарушению работы формирователя тактовых импульсов. Допустимы нарушения гармонической формы опорного сигнала.
Приведенные зависимости свидетельствуют о работоспособности и высокой эффективности предлагаемого измерителя сдвига фаз, обеспечивающего непрерывные текущие измерения при минимальных вычислительных затратах.

Claims (5)

1. Цифровой измеритель сдвига фаз, содержащий аналого-цифровой преобразователь (АЦП), вход которого соединен с первым генератором гармонических колебаний, а выход соединен с входом регистра сдвига многоразрядных кодов на четыре отсчета, нечетные выходы которого соединены с входами вычитателя первого канала квадратурной обработки (ККО), а четные выходы - с входами вычитателя второго ККО, каждый ККО содержит каскадно соединенные вычитатель и n блоков накопления отсчетов (БНО), входами ККО являются входы вычитателя, а выходом - выход последнего БНО, каждый БНО состоит из регистра сдвига многоразрядных кодов и сумматора, вход регистра сдвига является входом БНО и соединен с первым входом сумматора, а второй вход сумматора соединен с выходом регистра сдвига, выход сумматора является выходом БНО, выходы первого и второго ККО соединены с первым и вторым входами нормирующего устройства (НУ), выход НУ соединен с входом цифрового формирователя (ЦФ) арктангенса, отличающийся тем, что он дополнительно содержит регистр результата (РР), вход которого подключен к выходу ЦФ, а выход является выходом устройства, формирователь тактовых импульсов (ФТИ), вход которого соединен со вторым генератором гармонических колебаний, а выход ФТИ подключен к входу распределителя тактовых импульсов (РТИ), к выходу которого подключены тактовые входы АЦП, регистра сдвига многоразрядных кодов на 4 отсчета, всех БНО, НУ и PP.
2. Цифровой измеритель по п. 1, отличающийся тем, что формирователь тактовых импульсов ФТИ выполнен в виде устройства, содержащего первый усилитель-ограничитель УО1, вход которого является входом формирователя, на который подается сигнал от второго генератора гармонических колебаний, а выход соединен с первым дифференцирующим устройством ДУ1, умножитель У, вход которого подключен к входу формирователя тактовых импульсов, а выход соединен с входом второго усилителя-ограничителя УО2, выход которого подключен к входу второго дифференцирующего устройства ДУ2, выходы ДУ1 и ДУ2 соединены с входами формирователя импульсов ФИ, выход которого является выходом формирователя тактовых импульсов.
3. Цифровой измеритель по п. 1, отличающийся тем, что в цифровом формирователе арктангенса ЦФ, реализованном на базе постоянного запоминающего устройства, записаны двоичные коды сдвига фаз между гармоническими сигналами первого и второго генераторов, вычисляемые из выражения
Figure 00000009
лежащие в диапазоне от -π+π/4=-2,356 до π+π/4=3,927, или от -135° до 225°.
RU2020139100A 2020-11-30 2020-11-30 Цифровой измеритель сдвига фаз гармонических сигналов RU2751020C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020139100A RU2751020C1 (ru) 2020-11-30 2020-11-30 Цифровой измеритель сдвига фаз гармонических сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020139100A RU2751020C1 (ru) 2020-11-30 2020-11-30 Цифровой измеритель сдвига фаз гармонических сигналов

Publications (1)

Publication Number Publication Date
RU2751020C1 true RU2751020C1 (ru) 2021-07-07

Family

ID=76820237

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020139100A RU2751020C1 (ru) 2020-11-30 2020-11-30 Цифровой измеритель сдвига фаз гармонических сигналов

Country Status (1)

Country Link
RU (1) RU2751020C1 (ru)

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU834548A2 (ru) * 1978-09-18 1981-05-30 Предприятие П/Я Г-4273 Устройство дл измерени ортогональныхСОСТАВл ющиХ СигНАлА
SU868625A1 (ru) * 1980-01-02 1981-09-30 Красноярский Политехнический Институт Цифровой измеритель сдвига фаз
SU1467785A1 (ru) * 1986-09-01 1989-03-23 Предприятие П/Я Г-4173 Цифровой фазовый детектор
SU1677654A2 (ru) * 1989-04-14 1991-09-15 Севастопольский Приборостроительный Институт Способ измерени разности фаз
RU2037160C1 (ru) * 1993-12-09 1995-06-09 Борис Георгиевич Келехсаев Способ определения сдвига фаз двух синусоидальных сигналов
RU94010433A (ru) * 1994-03-25 1996-04-27 Б.Г. Келехсаев Способ определения сдвига фаз гармонических сигналов
US5629639A (en) * 1995-06-07 1997-05-13 Omnipoint Corporation Correlation peak detector
US6590426B2 (en) * 2000-07-10 2003-07-08 Silicon Laboratories, Inc. Digital phase detector circuit and method therefor
RU2257671C1 (ru) * 2003-12-09 2005-07-27 Федеральное государственное унитарное предприятие Воронежский научно-исследовательский институт "Вега" Цифровой обнаружитель узкополосных сигналов
RU2388001C1 (ru) * 2009-03-18 2010-04-27 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ (ТУ)") Измеритель разности фаз радиосигналов
RU2505922C2 (ru) * 2011-07-22 2014-01-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Цифровой демодулятор сигналов с относительной фазовой манипуляцией
RU2522039C1 (ru) * 2012-12-17 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Цифровой демодулятор сигналов с частотной модуляцией
RU2556429C1 (ru) * 2014-07-14 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Некогерентный цифровой демодулятор "в целом" кодированных сигналов с фазовой манипуляцией
RU2628427C2 (ru) * 2015-07-02 2017-08-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (ФГБОУ ВО "ВГТУ", ВГТУ) Цифровой демодулятор сигналов с квадратурной амплитудной манипуляцией
RU2634382C2 (ru) * 2015-07-02 2017-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Цифровой обнаружитель фазоманипулированных сигналов
RU2649782C1 (ru) * 2017-06-15 2018-04-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Цифровой некогерентный демодулятор четырехпозиционных сигналов с относительной фазовой манипуляцией
RU2656577C1 (ru) * 2017-08-30 2018-06-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Цифровой когерентный демодулятор четырехпозиционного сигнала с фазовой манипуляцией
RU2685062C1 (ru) * 2018-07-17 2019-04-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Цифровой измеритель действующего значения сигнала
RU2690959C1 (ru) * 2018-11-27 2019-06-07 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Цифровой демодулятор двоичных сигналов с относительной фазовой манипуляцией второго порядка
RU2693930C1 (ru) * 2018-05-16 2019-07-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Цифровой обнаружитель фазоманипулированных сигналов
RU2710990C1 (ru) * 2019-09-23 2020-01-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Цифровой интегратор
RU2723445C2 (ru) * 2018-10-01 2020-06-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Майкопский государственный технологический университет" Цифровой фазовый детектор
RU2735488C1 (ru) * 2020-04-03 2020-11-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Майкопский государственный технологический университет" Цифровой коррелятор

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU834548A2 (ru) * 1978-09-18 1981-05-30 Предприятие П/Я Г-4273 Устройство дл измерени ортогональныхСОСТАВл ющиХ СигНАлА
SU868625A1 (ru) * 1980-01-02 1981-09-30 Красноярский Политехнический Институт Цифровой измеритель сдвига фаз
SU1467785A1 (ru) * 1986-09-01 1989-03-23 Предприятие П/Я Г-4173 Цифровой фазовый детектор
SU1677654A2 (ru) * 1989-04-14 1991-09-15 Севастопольский Приборостроительный Институт Способ измерени разности фаз
RU2037160C1 (ru) * 1993-12-09 1995-06-09 Борис Георгиевич Келехсаев Способ определения сдвига фаз двух синусоидальных сигналов
RU94010433A (ru) * 1994-03-25 1996-04-27 Б.Г. Келехсаев Способ определения сдвига фаз гармонических сигналов
US5629639A (en) * 1995-06-07 1997-05-13 Omnipoint Corporation Correlation peak detector
US6590426B2 (en) * 2000-07-10 2003-07-08 Silicon Laboratories, Inc. Digital phase detector circuit and method therefor
RU2257671C1 (ru) * 2003-12-09 2005-07-27 Федеральное государственное унитарное предприятие Воронежский научно-исследовательский институт "Вега" Цифровой обнаружитель узкополосных сигналов
RU2388001C1 (ru) * 2009-03-18 2010-04-27 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ (ТУ)") Измеритель разности фаз радиосигналов
RU2505922C2 (ru) * 2011-07-22 2014-01-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Цифровой демодулятор сигналов с относительной фазовой манипуляцией
RU2522039C1 (ru) * 2012-12-17 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Цифровой демодулятор сигналов с частотной модуляцией
RU2556429C1 (ru) * 2014-07-14 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Некогерентный цифровой демодулятор "в целом" кодированных сигналов с фазовой манипуляцией
RU2628427C2 (ru) * 2015-07-02 2017-08-16 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" (ФГБОУ ВО "ВГТУ", ВГТУ) Цифровой демодулятор сигналов с квадратурной амплитудной манипуляцией
RU2634382C2 (ru) * 2015-07-02 2017-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Цифровой обнаружитель фазоманипулированных сигналов
RU2649782C1 (ru) * 2017-06-15 2018-04-04 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Цифровой некогерентный демодулятор четырехпозиционных сигналов с относительной фазовой манипуляцией
RU2656577C1 (ru) * 2017-08-30 2018-06-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Цифровой когерентный демодулятор четырехпозиционного сигнала с фазовой манипуляцией
RU2693930C1 (ru) * 2018-05-16 2019-07-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Цифровой обнаружитель фазоманипулированных сигналов
RU2685062C1 (ru) * 2018-07-17 2019-04-16 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Цифровой измеритель действующего значения сигнала
RU2723445C2 (ru) * 2018-10-01 2020-06-11 Федеральное государственное бюджетное образовательное учреждение высшего образования "Майкопский государственный технологический университет" Цифровой фазовый детектор
RU2690959C1 (ru) * 2018-11-27 2019-06-07 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Цифровой демодулятор двоичных сигналов с относительной фазовой манипуляцией второго порядка
RU2710990C1 (ru) * 2019-09-23 2020-01-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Цифровой интегратор
RU2735488C1 (ru) * 2020-04-03 2020-11-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Майкопский государственный технологический университет" Цифровой коррелятор

Similar Documents

Publication Publication Date Title
US4074201A (en) Signal analyzer with noise estimation and signal to noise readout
US4071821A (en) Quadrature correlation phase determining apparatus
CN102035472A (zh) 可编程数字倍频器
CN100492026C (zh) 一种去直流电能计量电路和去直流电路
CN110579618A (zh) 一种基于fpga的电机转速采集、解析装置和方法
US4216543A (en) Means for deriving baud timing from an available AC signal
RU2751020C1 (ru) Цифровой измеритель сдвига фаз гармонических сигналов
US20120229185A1 (en) Time-to-Digital Converter with Successive Measurements
Toral et al. Reactive power and energy measurement in the frequency domain using random pulse arithmetic
US3548107A (en) Signal processing apparatus for multiplex transmission
RU2710990C1 (ru) Цифровой интегратор
CN100378463C (zh) 一种检波装置和方法
RU2225012C2 (ru) Фазометр с гетеродинным преобразованием частоты
JP2587970B2 (ja) インピーダンス測定装置
RU2117954C1 (ru) Измеритель отношения сигнал-шум
RU2165627C1 (ru) Доплеровский фазометр многочастотных сигналов
RU2785898C1 (ru) Автоматизированное устройство контроля взаимного влияния сигналов
RU2670389C1 (ru) Цифровой интегратор
RU2659466C1 (ru) Преобразователь частоты следования импульсов в код
SU813290A1 (ru) Устройство дл измерени центральнойчАСТОТы СпЕКТРА СигНАлА
SU928252A1 (ru) Способ измерени сдвига фаз и устройство дл его осуществлени
SU935822A1 (ru) Цифровое устройство дл оптимального измерени фазы сигнала
RU164241U1 (ru) Устройство управления коэффициентом усиления передающего устройства рлс на основе восстановления параметров усиливаемого сигнала
SU1684713A1 (ru) Цифровой фазометр
RU2642370C1 (ru) Устройство для вычисления логарифмических функций