RU2634382C2 - Цифровой обнаружитель фазоманипулированных сигналов - Google Patents

Цифровой обнаружитель фазоманипулированных сигналов Download PDF

Info

Publication number
RU2634382C2
RU2634382C2 RU2015126507A RU2015126507A RU2634382C2 RU 2634382 C2 RU2634382 C2 RU 2634382C2 RU 2015126507 A RU2015126507 A RU 2015126507A RU 2015126507 A RU2015126507 A RU 2015126507A RU 2634382 C2 RU2634382 C2 RU 2634382C2
Authority
RU
Russia
Prior art keywords
output
input
signal
signals
outputs
Prior art date
Application number
RU2015126507A
Other languages
English (en)
Other versions
RU2015126507A (ru
Inventor
Алексей Николаевич Глушков
Владимир Петрович Литвиненко
Юлия Владимировна Литвиненко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority to RU2015126507A priority Critical patent/RU2634382C2/ru
Publication of RU2015126507A publication Critical patent/RU2015126507A/ru
Application granted granted Critical
Publication of RU2634382C2 publication Critical patent/RU2634382C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0483Transmitters with multiple parallel paths

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Analogue/Digital Conversion (AREA)
  • Noise Elimination (AREA)

Abstract

Изобретение относится к области радиотехники и может быть использовано в устройствах обнаружения занятости и контроля канала связи с фазоманипулированными (ФМ) сигналами в многоканальных системах радиосвязи, при управлении радиоприемником и цифровыми модемами с ФМ сигналами, а также радиоразведки систем радиосвязи с ФМ сигналами. Технический результат заключается в повышении помехоустойчивости и упрощении аппаратной реализации цифрового обнаружителя ФМ сигналов за счет увеличения уровня сигнала по отношению к уровню шума на выходе устройства и оценки уровня шума для формировании порога принятия решения о наличии сигнала. Цифровой обнаружитель содержит аналого-цифровой преобразователь, регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки сигналов, каждый из которых содержит последовательно соединенные блоки обработки отсчетов, каждый из этих блоков состоит из регистра сдвига многоразрядных кодов и сумматора, входной узкополосный фильтр, умножитель частоты, первый и второй вычитатели, первый и второй квадратичные преобразователи, решающее устройство. 4 ил.

Description

Изобретение относится к области радиотехники и может быть использовано в устройствах:
- обнаружения занятости канала связи с фазоманипулированными (ФМ) сигналами в многоканальных системах радиосвязи;
- управления радиоприемником ФМ сигналов;
- контроля качества ФМ канала связи;
- радиоразведки систем радиосвязи с ФМ сигналами;
- управления цифровыми модемами с ФМ в проводных и радиоканалах.
Известно [1] устройство выделения узкополосных сигналов (см. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. «Цифровая обработка сигналов». М.: Радио и связь, 1985, стр. 53). Устройство содержит К-1 каскадно соединенных элементов задержки на интервал квантования отсчетов входного сигнала, где К - количество отсчетов, и многовходовый сумматор отсчетов. Недостатком данного устройства является сложность аппаратной реализации при больших К и низкая скорость обработки сигнала при последовательном во времени сложении отсчетов в накапливающем сумматоре.
Известно [2] устройство для обнаружения фазоманипулированных сигналов (см. патент РФ №2527761, опубл. 10.09.2014 Бюл. №3, авторы Литвиненко В.П., Литвиненко Ю.В.). Оно содержит входной полосовой фильтр, умножитель частоты, узкополосный фильтр сигнала, детектор сигнала, узкополосный фильтр помехи, детектор помехи и решающее устройство. Недостатком устройства является аналоговая обработка сигнала, приводящая к сложности при цифровой реализации.
Наиболее близким по технической сущности и внутренней структуре к предлагаемому устройству является [3] цифровой обнаружитель узкополосных сигналов (патент РФ №2257671 C1, Н04В 1/10, 27.07.2005, Бюл. №21, авторы Глушков А.Н., Литвиненко В.П., Проскуряков Ю.Д.).
Его недостатком является невысокая помехоустойчивость обнаружения ФМ сигналов, так как не используется возможность устранения фазовой манипуляции при умножении частоты.
Задачей предлагаемого технического решения является повышение помехоустойчивости обнаружителя ФМ сигналов.
Поставленная задача решается тем, что цифровой обнаружитель фазоманипулированных сигналов, содержащий аналого-цифровой преобразователь (АЦП), регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки (ККО) сигналов, каждый из которых содержит последовательно соединенные блоки обработки отсчетов (БОО), при этом количество (n) БОО определяется двоичным логарифмом числа N обрабатываемых периодов сигнала, n=log2N, а каждый из этих блоков состоит из регистра сдвига многоразрядных кодов и сумматора, дополнительно содержит узкополосный фильтр (Ф), вход которого является входом цифрового обнаружителя ФМ сигналов, подключенный к умножителю частоты (УЧ), выход которого подключен к входу АЦП, выход которого соединен с входом регистра сдвига многоразрядных кодов на четыре отсчета, первый вычитатель, входы которого подключены к четным выходам регистра сдвига многоразрядных кодов, а выход соединен с входом первого БОО первого ККО, второй вычитатель, входы которого подключены к нечетным выходам регистра сдвига многоразрядных кодов, а выход соединен с входом первого БОО второго ККО, третий и четвертый вычитатели, входы которых подключены к выходам многоразрядных регистров сдвига последних (с номером n) БОО первого и второго ККО соответственно, первый квадратичный преобразователь, входы которого соединены с выходами сумматоров последних БОО первого и второго ККО соответственно, второй квадратичный преобразователь, входы которого соединены с выходами третьего и четвертого вычитателей, и решающее устройство, входы которого соединены с выходами первого и второго квадратичных преобразователей, в выход является выходом обнаружителя.
Предлагаемое техническое решение поясняется чертежами.
На фиг. 1 представлена структурная схема предлагаемого устройства, на фиг. 2 - нормированная частотная характеристика устройства с выхода первого КП (сплошная линия) и частотная характеристика устройства с выхода второго КП (пунктирная линия), где ƒ1 - центральная частота сигнала с выхода умножителя частоты, частота квантования АЦП равна 4ƒ1. На фиг. 3а показана частотная характеристика узкополосного фильтра ФМ сигнала, выходной сигнал фильтра приведен на фиг. 3б, а его спектр - на фиг. 3в. На фиг. 4а представлена зависимость от времени нормированного отклика y(t) канала оценки уровня сигнала, а на фиг. 4б - временная зависимость нормированного отклика z(t) канала оценки уровня шума.
Устройство содержит (см. фиг. 1) узкополосный фильтр (Ф) 1, на вход которого подается ФМ сигнал 2, а выход соединен с входом умножителя частоты (УЧ) 3, подключенного к АЦП 4, на управляющий вход 5 которого подаются импульсы квантования 5. Выход АЦП 4 соединен с входом регистра 6 сдвига многоразрядных кодов на четыре отсчета, четные выходы которого соединены с соответствующими входами первого вычитателя 7, выход которого соединен с входом первого ККО 9, а нечетные выходы - с соответствующими входами второго вычитателя 8, выход которого соединен с входом второго ККО 10. Каждый ККО содержит n каскадно соединенных БОО. Количество БОО зависит от числа N обрабатываемых периодов сигнала и определяется двоичным логарифмом N. Такое построение устройства обеспечивает минимальное количество БОО, при этом число обрабатываемых периодов сигнала равно N=2'' Первый ККО 9 содержит последовательно соединенные блоки 11-1, 11-2, … ,11-n обработки отсчетов, а второй ККО 10 - последовательно соединенные блоки 12-1, 12-2, …, 12-n обработки отсчетов. Каждый из БОО состоит из регистра сдвига многоразрядных кодов и сумматора. Блоки 1-1, 11-2, …, 11-n обработки отсчетов содержат регистры 13-1, 13-2, …, 13-n сдвига многоразрядных кодов и сумматоры 14-1, 14-2, …, 14-n соответственно, а блоки 12-1, 12-2, …, 12-n обработки отсчетов - соответственно регистры 15-1, 15-2, …, 15-n сдвига многоразрядных кодов и сумматоры 16-1, 16-2, …, 16-n. В каждом блоке 11 (12) обработки отсчетов первый вход сумматора 14 (16) соединен с входом регистра 13 (15) сдвига и является входом блока 11 (12) обработки отсчетов. Второй вход сумматора 14 (16) соединен с выходом регистра 13 (15) сдвига. Выход сумматора 14 (16) является выходом блока 11 (12) обработки отсчетов, а тактовый вход регистра 13 (15) сдвига является управляющим входом блока 11 (12) обработки отсчетов. Выход первого вычитателя 7 соединен с входом блока 11-1 обработки отсчетов ККО 9, а выход блока 11-n обработки отсчетов ККО 9 - с первым входом первого квадратичного преобразователя 19. Выход второго вычитателя 8 соединен с входом блока 12-1 обработки отсчетов второго ККО 10, а выход блока 12-n обработки отсчетов ККО 10 - с вторым входом первого квадратичного преобразователя 19. Первый и второй выходы регистра 13-n сдвига многоразрядных кодов БОО 11-n ККО 9 соединены с первым и вторым входами третьего вычитателя 17, выход которого подключен к первому входу второго квадратичного преобразователя 20, а первый и второй выходы регистра 15-n сдвига многоразрядных кодов БОО 12-n ККО 10 соединены с первым и вторым входами четвертого вычитателя 18, выход которого подключен к второму входу второго квадратичного преобразователя 20. Выход первого квадратичного преобразователя 19 подключен к первому (сигнальному) входу решающего устройства 21, на второй (пороговый) вход которого подается оценка шума с выхода второго квадратичного преобразователя 20, выход решающего устройства 21 является выходом обнаружителя ФМ сигнала.
Управляющие входы АЦП 4, регистра 6 сдвига многоразрядных кодов на четыре отсчета и блоков 11 (12) обработки отсчетов соединены с соответствующими выходами генератора 23 синхронизирующих импульсов.
Работает устройство следующим образом.
Входной сигнал с m-кратной фазовой манипуляцией вида
Figure 00000001
где при m=2 a(t)=0 или 1 и d=π, а при m=4 a(t)=0, 1, 2 или 3 и d=π/2, ƒ0 - частота сигнала на выходе тракта промежуточной частоты приемника, поступает на вход 2 узкополосного фильтра 1 и с его выхода на умножитель частоты 3. При m=2 в качестве УЧ можно использовать перемножитель (квадратичный преобразователь), а при m=4 - устройство возведения сигнала в четвертую степень. Для цифровой реализации удобно в качестве УЧ использовать вычисление модуля сигнала.
При умножении частоты идеального ФМ сигнала (1) формируется гармоническое колебание с частотой ƒ1=m⋅ƒ0. Для реального сигнала после узкополосной фильтрации и нелинейного преобразования появляется гармоника с частотой ƒ1 и боковые спектральные составляющие.
С выхода УЧ сигнал с центральной частотой ƒ1 подается на вход на вход аналого-цифрового преобразователя 4, который в соответствии с тактовыми импульсами, поступающими на его управляющий вход 5 с частотой квантования
Figure 00000002
формирует четыре отсчета xi1, xi2, xi3, xi4, на i-м периоде Т1=1/ƒ1=1/m⋅ƒ0 сигнала с выхода УЧ, где - xi1, xi2, xi3, xi4 - значения (двоичные коды) отсчетов сигнала на выходе АЦП 1. В соответствии с управляющими сигналами с генератора 23 синхронизирующих импульсов эти значения отсчетов последовательно запоминаются в регистре 6 сдвига многоразрядных кодов на четыре отсчета. Два одинаково функционирующих канала 9 и 10 квадратурной обработки сигнала определяют отклики на четные и нечетные отсчеты сигнала соответственно. На выходе ККО 10 имеем отклик нечетные отсчеты сигнала в виде
Figure 00000003
а на выходе ККО 9 - отклик на обработку четных отсчетов
Figure 00000004
где N - количество обрабатываемых периодов Т1 сигнала на выходе УЧ, i - номер текущего периода Т1.
В ККО 9 и 10 реализуется быстрый алгоритм вычисления сумм (3) и (4), описанный в [3], в ходе которого в первых БОО суммируются сначала по 2 соседних разности, затем во вторых БОО по 4 разности и так далее. Всего для расчета сумм (3) и (4) требуется по n=log2N операций сложения (при N=1024 получим n=10).
Результаты вычисления y1 и y2 с выходов ККО 9 и 10 поступают в квадратичный преобразователь 19, где вычисляется величина
Figure 00000005
пропорциональная амплитуде узкополосного сигнала на частоте ƒ1 (с выхода УЧ). Амплитудно-частотная характеристика канала оценки уровня сигнала
Figure 00000006
нормированная к 2N, показана на фиг. 2 сплошной линией. Для интервала частот П1 до ближайшего нуля H(ƒ) (фиг. 2) получим
Figure 00000007
Как видно, при больших N можно обеспечить узкополосную фильтрацию сигнальной компоненты.
Для оценки уровня шума необходимо подавить сигнальную компоненту. Для этого значения
Figure 00000008
Figure 00000009
с выходов регистра 15-n сдвига многоразрядных кодов БОО 12-n ККО 10 поступают в вычитатель 18, формирующий величину
Figure 00000010
Аналогично для четных отсчетов значения с выходов регистра 13-n сдвига многоразрядных кодов БОО 11-n ККО 9 поступают в вычитатель 17, вычисляющий величину
Figure 00000011
На основе (10) и (11) в квадратичном преобразователе 20 вычисляются величины
Figure 00000012
Амплитудно-частотная характеристика H(ƒ)=z/S канала оценки уровня помехи, нормированная к 2N, показана на фиг. 2 пунктирной линией. Как видно, на частоте ƒ1 сигнал полностью подавляется. В решающем устройстве по величинам z (12) формируется порог, с которым сравниваются оценки уровня сигнала у (5) для формирования решения о его наличии или отсутствии.
На фиг. 3 показаны результаты статистического имитационного моделирования обнаружителя двоичных (m=2) ФМ сигналов. На интервале времени TC=2,38 мс сформирован идеальный ФМ сигнал с несущей частотой 10 МГц, амплитудой S=1 и случайной модулирующей последовательностью при длительности символа τ=6,4 мкс (64 периода несущей), а на следующем таком же интервале TC информационный сигнал отсутствует. К этому сигналу добавлен достаточно интенсивный белый шум с дисперсией σ2=16 и полученная смесь пропущена через узкополосный фильтр, амплитудно-частотная характеристика K(ƒ) которого показана на фиг. 3а, полоса пропускания фильтра по уровню 3 дБ равна 315 кГц и совпадает с шириной спектра ФМ сигнала. Выходной сигнал фильтра показан на фиг. 3б, а его спектр - на фиг. 3в, отношение сигнал/шум на выходе фильтра равно h2=3.
На фиг. 4а показана зависимость от времени нормированного отклика y(t) канала оценки уровня сигнала (с выхода первого квадратичного преобразователя 19) при умножении частоты в УЧ с помощью вычисления модуля входных отсчетов и настройке канала выделения сигнала на частоту ƒ1=2ƒ0=20 МГц (при этом частота квантования АЦП 4 равна ƒКВ=4ƒ1=8ƒ0=80 МГц). Число N периодов накопления сигнала в ККО выбрано равным N=213=8192, при этом время переходного процесса заполнения многоразрядных регистров сдвига равно N/ƒ1=0,41 мс, а полоса пропускания П=4,88 кГц, что значительно меньше ширины спектра входного сигнала. За счет этого даже при низком входном отношении сигнал/шум наблюдается уверенное обнаружение ФМ сигнала. Инерционность обусловлена необходимостью заполнения многоразрядных регистров сдвига в ККО.
На фиг. 4б приведена временная зависимость нормированного отклика z(t) канала оценки уровня шума с выхода квадратичного преобразователя 20. Как видно, обеспечивается оценка уровня шума при наличии и отсутствии сигнала. Треугольные выбросы в z(t) обусловлены переходными процессами заполнения многоразрядных регистров сдвига. Усреднение z(t) в решающем устройстве 21 позволит сформировать адаптивный порог сравнения для y(t).
Таким образом, предлагаемый цифровой обнаружитель при сравнительно малых аппаратных затратах обеспечивает обнаружение ФМ сигналов с высокой достоверностью.
Источники информации
1. Гольденберг Л.М., Матюшкин Б.Д., Поляк М.Н. «Цифровая обработка сигналов». М.: Радио и связь, 1985.
2. Патент РФ №2527761 С2, H03D 3/00, опубл. 10.09.2014 Бюл. №3, «Обнаружитель фазоманипулированных сигналов», авторы Литвиненко В.П., Литвиненко Ю.В.
3. Патент RU 2257671 C1, Н04В 1/10, опубл. 27.07.2005 Бюл. №21, «Цифровой обнаружитель узкополосных сигналов», авторы Глушков А.Н., Литвиненко В.П., Проскуряков Ю.Д.

Claims (1)

  1. Цифровой обнаружитель фазоманипулированных сигналов, содержащий аналого-цифровой преобразователь (АЦП), регистр сдвига многоразрядных кодов на четыре отсчета, первый и второй n-каскадные каналы квадратурной обработки (ККО) сигналов, каждый из которых содержит последовательно соединенные блоки обработки отсчетов (БОО), при этом количество n БОО определяется двоичным логарифмом числа N обрабатываемых периодов сигнала, n=log2N, а каждый из этих блоков состоит из регистра сдвига многоразрядных кодов и сумматора, дополнительно содержит узкополосный фильтр, вход которого является входом цифрового обнаружителя фазоманипулированных сигналов, подключенный к умножителю частоты, выход которого подключен к входу АЦП, выход которого соединен с входом регистра сдвига многоразрядных кодов на четыре отсчета, первый вычитатель, входы которого подключены к четным выходам регистра сдвига многоразрядных кодов, а выход соединен с входом первого БОО первого ККО, второй вычитатель, входы которого подключены к нечетным выходам регистра сдвига многоразрядных кодов, а выход соединен с входом первого БОО второго ККО, третий и четвертый вычитатели, входы которых подключены к выходам многоразрядных регистров сдвига последних, с номером n БОО первого и второго ККО соответственно, первый квадратичный преобразователь, входы которого соединены с выходами сумматоров последних БОО первого и второго ККО соответственно, второй квадратичный преобразователь, входы которого соединены с выходами третьего и четвертого вычитателей, и решающее устройство, входы которого соединены с выходами первого и второго квадратичных преобразователей, а выход является выходом обнаружителя.
RU2015126507A 2015-07-02 2015-07-02 Цифровой обнаружитель фазоманипулированных сигналов RU2634382C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015126507A RU2634382C2 (ru) 2015-07-02 2015-07-02 Цифровой обнаружитель фазоманипулированных сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015126507A RU2634382C2 (ru) 2015-07-02 2015-07-02 Цифровой обнаружитель фазоманипулированных сигналов

Publications (2)

Publication Number Publication Date
RU2015126507A RU2015126507A (ru) 2017-01-10
RU2634382C2 true RU2634382C2 (ru) 2017-10-27

Family

ID=57955928

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015126507A RU2634382C2 (ru) 2015-07-02 2015-07-02 Цифровой обнаружитель фазоманипулированных сигналов

Country Status (1)

Country Link
RU (1) RU2634382C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693930C1 (ru) * 2018-05-16 2019-07-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Цифровой обнаружитель фазоманипулированных сигналов
RU2751020C1 (ru) * 2020-11-30 2021-07-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Цифровой измеритель сдвига фаз гармонических сигналов
RU2776968C1 (ru) * 2021-04-14 2022-07-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Майкопский государственный технологический университет" Цифровой демодулятор сигналов с многопозиционной относительной фазовой манипуляцией

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557129B (zh) * 2019-09-12 2021-04-09 北京维普无限智能技术有限公司 一种多码制无线信号静噪方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629639A (en) * 1995-06-07 1997-05-13 Omnipoint Corporation Correlation peak detector
RU2257671C1 (ru) * 2003-12-09 2005-07-27 Федеральное государственное унитарное предприятие Воронежский научно-исследовательский институт "Вега" Цифровой обнаружитель узкополосных сигналов
RU2505922C2 (ru) * 2011-07-22 2014-01-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Цифровой демодулятор сигналов с относительной фазовой манипуляцией
RU2527761C2 (ru) * 2011-07-22 2014-09-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Обнаружитель фазоманипулированных сигналов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629639A (en) * 1995-06-07 1997-05-13 Omnipoint Corporation Correlation peak detector
RU2257671C1 (ru) * 2003-12-09 2005-07-27 Федеральное государственное унитарное предприятие Воронежский научно-исследовательский институт "Вега" Цифровой обнаружитель узкополосных сигналов
RU2505922C2 (ru) * 2011-07-22 2014-01-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Цифровой демодулятор сигналов с относительной фазовой манипуляцией
RU2527761C2 (ru) * 2011-07-22 2014-09-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Обнаружитель фазоманипулированных сигналов

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2693930C1 (ru) * 2018-05-16 2019-07-08 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Цифровой обнаружитель фазоманипулированных сигналов
RU2751020C1 (ru) * 2020-11-30 2021-07-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Цифровой измеритель сдвига фаз гармонических сигналов
RU2776968C1 (ru) * 2021-04-14 2022-07-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Майкопский государственный технологический университет" Цифровой демодулятор сигналов с многопозиционной относительной фазовой манипуляцией
RU2790205C1 (ru) * 2022-10-13 2023-02-15 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Цифровой демодулятор сигналов с амплитудной - относительной фазовой манипуляцией

Also Published As

Publication number Publication date
RU2015126507A (ru) 2017-01-10

Similar Documents

Publication Publication Date Title
US20200011911A1 (en) High-precision frequency measuring system and method
RU2505922C2 (ru) Цифровой демодулятор сигналов с относительной фазовой манипуляцией
US8145165B1 (en) Spur mitigation for wireless communication systems
JP2014523535A (ja) レーダー用デジタル受信機を用いるレーダーパルス検出
RU2634382C2 (ru) Цифровой обнаружитель фазоманипулированных сигналов
KR102341875B1 (ko) 송신기 및 수신기와 해당 방법들
RU2608553C1 (ru) Способ выделения сигнала в условиях воздействия помех путем компенсации помехи за счет аппроксимации значения ее амплитуды
RU141688U1 (ru) Устройство установления тактовой синхронизации по информационному составному последовательному сигналу
RU2683791C1 (ru) Способ определения видов радиолокационных сигналов в автокорреляционном приемнике
RU2708372C1 (ru) Способ обнаружения пачки радиоимпульсов с произвольной степенью когерентности и устройство его осуществления
RU2675386C2 (ru) Способ и устройство выделения сигналов в условиях наличия помех
RU2628427C2 (ru) Цифровой демодулятор сигналов с квадратурной амплитудной манипуляцией
SE519916C2 (sv) Koddelningsmultipelåtkomst- (CDMA) mottagare och sätt med borttagning av likströmskomposant
RU2693930C1 (ru) Цифровой обнаружитель фазоманипулированных сигналов
RU2257671C1 (ru) Цифровой обнаружитель узкополосных сигналов
PL222895B1 (pl) Sposób i układ kompresji sygnału radarowego
RU2550757C1 (ru) Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника
CN114675253A (zh) 水面微幅波频率估计方法、装置、电子设备及存储介质
RU2626332C1 (ru) Способ демодуляции сигнала
RU2700580C1 (ru) Способ энергетического обнаружения сигнала с компенсацией комбинационных составляющих сигнала и помех в основном и компенсационном каналах
RU2726221C1 (ru) Способ определения параметров частотно-кодированных сигналов в автокорреляционном приемнике
RU2491570C1 (ru) Квадратурный компенсатор импульсных помех
RU2470459C1 (ru) Способ обнаружения широкополосных сигналов и устройство для его реализации
RU2794344C1 (ru) Способ энергетического обнаружения сигнала с его компенсацией в дополнительном канале
RU2369018C1 (ru) Система передачи информации хаотическими сигналами

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180703