RU2743935C1 - Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления - Google Patents

Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления Download PDF

Info

Publication number
RU2743935C1
RU2743935C1 RU2020121638A RU2020121638A RU2743935C1 RU 2743935 C1 RU2743935 C1 RU 2743935C1 RU 2020121638 A RU2020121638 A RU 2020121638A RU 2020121638 A RU2020121638 A RU 2020121638A RU 2743935 C1 RU2743935 C1 RU 2743935C1
Authority
RU
Russia
Prior art keywords
catalyst
clay
zeolite
kaolin
halloysite
Prior art date
Application number
RU2020121638A
Other languages
English (en)
Inventor
Владимир Павлович Доронин
Татьяна Павловна Сорокина
Олег Валерьевич Потапенко
Петр Владимирович Липин
Константин Игоревич Дмитриев
Татьяна Викторовна Бобкова
Original Assignee
Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") filed Critical Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ")
Priority to RU2020121638A priority Critical patent/RU2743935C1/ru
Application granted granted Critical
Publication of RU2743935C1 publication Critical patent/RU2743935C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/16Clays or other mineral silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/89Silicates, aluminosilicates or borosilicates of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Предложен микросферический катализатор для крекинга нефтяных фракций, включающий ультрастабильный цеолит Y в катион-декатионированной форме и матрицу, в качестве компонентов которой используют аморфный алюмосиликат, оксид алюминия и природную глину, где в качестве компонента матрицы содержит модифицированную азотнокислым аммонием каолин-галлуазитовую глину с содержанием галлуазита более 40%, при следующем соотношении компонентов в катализаторе, мас. %: цеолит Y 18-20; аморфный алюмосиликат 27-40; оксид алюминия 15-30; каолин-галлуазитовая глина 20-25. Также предложен способ приготовления микросферического катализатора для крекинга нефтяных фракций, который описан выше. Технический результат - получение прочного высокоактивного катализатора крекинга, обеспечивающего повышенный выход бензина. 2 н.п. ф-лы, 2 табл., 7 пр.

Description

Изобретение относится к нефтеперерабатывающей промышленности, а именно к катализатору для крекинга нефтяных фракций и способу его приготовления.
Катализаторы крекинга состоят из основного активного компонента цеолита Y и матрицы, в состав которой входят связующее и наполнитель. В качестве наполнителя используются природные глины.
Вовлечение природных глин в состав катализаторов крекинга является практикой всех фирм мира. Основной функцией вовлечения природных глин в состав катализаторов крекинга является формирование широкопористой структуры катализатора для обеспечения диффузии реагентов к активным центрам катализатора. Кроме того, вовлечение природных глин должно обеспечивать высокую механическую прочность на истирание (износоустойчивость) микросферического катализатора крекинга. Механическая прочность катализатора зависит от среднего размера частиц глины в ее суспензии при приготовлении катализатора.
В мировой практике используются, в основном, две разновидности природных глин:
- бентонитовая глина, основным компонентом которой является монтмориллонит;
- каолиновая глина.
Достоинством использования бентонитовой глины является ее высокие связующие свойства, что позволяет производить механически прочные катализаторы крекинга. Недостатком катализаторов крекинга с использованием бентонитовой глины является низкий объем пор, что затрудняет диффузию реагентов к активным центрам катализаторов крекинга. Низкий объем пор приводит к невысокой активности катализатора.
Применение каолиновой глины в составе катализаторов крекинга позволяет производить катализаторы с высоким объемом пор и тем самым снижать диффузионные ограничения для транспорта реагентов к активным центрам катализатора. Кроме того, каолиновые глины многих месторождений имеют очень низкое содержание натрия (менее 0,1 мас. %). Катализаторы с вовлечением необработанного каолина имеют низкие механические свойства.
Таким образом, при применении каолина в составе катализатора увеличивается объем пор катализатора и уменьшаются диффузионные ограничения, что приводит к увеличению активности катализатора и увеличению отбора бензина. Способ вовлечения каолина в состав катализатора крекинга должен обеспечивать высокие механические свойства катализатора.
Известны микросферические катализаторы и способы приготовления катализаторов для крекинга нефтяных фракций с применением модифицированного каолина, активированного, например, неорганической кислотой (патент US 4843052) или полифосфатом аммония (патент US 8940156). Недостатком данных способов является низкая активность полученных катализаторов.
Известен микросферический катализатор для крекинга нефтяных фракций и способ его приготовления, который включает проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, ультрастабилизацию цеолита водяным паром, смешение цеолита с компонентами матрицы, в качестве которых используют аморфный алюмосиликат, гидроксид алюминия и бентонитовую глину, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, причем ионный обмен катионов натрия в цеолите на катионы аммония проводят дважды или трижды, а бентонитовую глину подвергают активации азотнокислым аммонием при соотношении грамм-эквивалентов азотнокислого аммония и оксида натрия в глине от 2,0 до 5,0 (патент RU 2473385). Недостатками данного способа являются низкая активность полученного катализатора и невысокий выход бензина.
Наиболее близким к настоящему изобретению является микросферический катализатор для крекинга нефтяных фракций, включающий ультрастабильный цеолит Y в катион-декатионированной форме и матрицу, в качестве компонентов которой используют аморфный алюмосиликат, оксид алюминия и природную глину, отличающийся тем, что в качестве компонента матрицы катализатор содержит модифицированную полифосфатом натрия каолиновую глину при следующем соотношении компонентов в катализаторе, мас. %: цеолит Y 18-25; аморфный алюмосиликат 20-40; оксид алюминия 10-40; каолиновая глина 10-30 (патент RU 2673811).
Наиболее близким к предлагаемому способу является способ приготовления микросферического катализатора для крекинга нефтяных фракций, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, двухстадийную ультрастабилизацию цеолита, смешение цеолита с матрицей, в качестве компонентов которой используют аморфный алюмосиликат, оксид алюминия и природную глину, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора. В качестве компонента матрицы используют каолиновую глину, которую предварительно модифицируют полифосфатом натрия в количестве 0,1-0,3 мас. % в течение 3-6 часов, а затем подвергают двухстадийной диспергации (патент RU 2673813). Выход бензина при использовании известного катализатора и данного способа получения катализатора также недостаточен.
Целью настоящего изобретения является получение прочного высокоактивного катализатора крекинга, обеспечивающего повышенный выход бензина.
Предлагаемый микросферический катализатор для крекинга нефтяных фракций включает ультрастабильный цеолит Y в катион-декатионированной форме и матрицу, в качестве компонентов которой используют аморфный алюмосиликат, оксид алюминия и природную глину, и отличается тем, что в качестве компонента матрицы содержит модифицированную азотнокислым аммонием каолин-галлуазитовую глину, при следующем соотношении компонентов в катализаторе, мас. %: цеолит Y 18-20; аморфный алюмосиликат 27-40; оксид алюминия 15-30; каолин-галлуазитовая глина 20-25.
Предлагаемый способ приготовления микросферического катализатора для крекинга нефтяных фракций включает проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, двухстадийную ультрастабилизацию цеолита, смешение цеолита с матрицей, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, причем в качестве компонентов матрицы используют аморфный алюмосиликат, оксид алюминия и каолин-галлуазитовую глину, которую предварительно модифицируют азотнокислым аммонием при соотношении г-эквивалентов аммония и натрия в глине от 3 до 5 в течение 2-4 часов, а затем подвергают диспергации. Содержание галлуазита в каолин-галлуазитовой глине, определяемое методом рентгено - фазового анализа, должно быть более 40%. Полученный катализатор содержит, мас. %: цеолит Y 18-20; аморфный алюмосиликат 27-40; оксид алюминия 15-30; каолин-галлуазитовая глина 20-25.
Способ приготовления катализатора осуществляют следующим образом. Цеолит NaY подвергают четырем ионным обменам на катионы редкоземельных элементов и аммония, проводят двухстадийную ультрастабилизацию цеолита с получением решеточного модуля цеолита в диапазоне от 7 до 10 и остаточного содержания оксида натрия в цеолите не более 0,5 мас. %. Готовый цеолит смешивают с компонентами матрицы катализатора, в качестве которых используют суспензии аморфного алюмосиликата с содержанием оксида натрия не более 0,2 мас. %, оксида алюминия и каолин-галлуазитовой глины. Предварительно природную каолин-галлуазитовую глину модифицируют путем гидратации в присутствии нитрата аммония, средний размер частиц глины при этом составил менее 4 микрон.
Полученную суспензию композиции катализатора подвергают формовке методом распылительной сушки и прокалке при высокой температуре.
Износоустойчивость катализаторов определяют как процент целевой фракции катализатора после истирания в шаровой мельнице в соответствии с ОСТ 38.01161-78.
Каталитические испытания приготовленных катализаторов проводят на лабораторной установке проточного типа МАК-2М, соответствующей стандарту ASTM D 3907, с неподвижным слоем катализатора. Реакторную систему продувают азотом с расходом 30 мл/мин. Катализатор загружают в количестве 5 г. Углеводородное сырье дозируют в течение 30 с. Активность при этом оценивают как степень превращения сырья в приведенных стандартных условиях. Катализаторы перед испытанием обрабатывают 100% водяным паром при температуре 788°С в течение 5 ч. Состав газообразных продуктов крекинга (С15+), а также содержание продувочного газа (N2) определяют хроматографически. Хроматограф Кристалл 5000.1 оборудован капиллярной колонкой HP-PLOT Al2O3 "S" (50 м × 0,537 мм × 15,00 мкм, неподвижная фаза HP-Al/S), стальной насадочной колонкой (3 м × 3 мм, адсорбент NaX фракции 45/60), пламенно-ионизационным детектором и детектором по теплопроводности. Количественный анализ жидких продуктов проводят в соответствии с методикой ASTM D 2887 (метод имитированной дистилляции) на хроматографе GC-2010 (Shimadzu) с капиллярной колонкой Rtx-2887 (10 м × 0,53 мм × 2,65 мкм, неподвижная фаза - диметилполисилоксан) и пламенно-ионизационным детектором. К бензиновой фракции относят все углеводороды, которые выкипают до 216°С. Содержание коксовых отложений на отработанном катализаторе определяют по убыли массы выдержанного при 150°С образца после его последовательного прокаливания при температурах 500°С (1 ч) и 550°С (1 ч).
Свойства вакуумного газойля, применяемого для испытаний катализаторов, приведены в таблице 1. Состав катализаторов и результаты испытаний приведены в таблице 2.
Figure 00000001
Figure 00000002
Сущность изобретения иллюстрируется следующими примерами.
Пример 1 (по прототипу).
Цеолит NaY подвергают двукратному ионному обмену на катионы аммония для получения остаточного содержания оксида натрия в цеолите менее 4,5 мас. %. Далее цеолит подвергают ультрастабилизации в среде водяного пара для достижения решеточного модуля цеолита равного 7. Далее цеолит подвергают ионному обмену на катионы аммония и РЗЭ, чтобы получить остаточное содержание оксида натрия в цеолите менее 1,4 мас. %, и подвергают ультрастабилизации в среде водяного пара для достижения решеточного модуля цеолита равного 9. Затем цеолит подвергают ионному обмену на катионы аммония, чтобы получить остаточное содержание оксида натрия в цеолите менее 0,7 мас. %.
Готовый цеолит смешивают с компонентами матрицы катализатора, в качестве которых используют суспензии аморфного алюмосиликата с содержанием оксида натрия не более 0,2 мас. %, оксида алюминия и каолиновой глины. Предварительно природную каолиновую глину модифицируют полифосфатом натрия в количестве 0,2 мас. % в течение 3 часов, а затем подвергают двухстадийной диспергации. Средний размер частиц глины при этом составил 7,9 микрон. Аморфный алюмосиликат приготавливают таким способом, чтобы содержание оксида натрия составляло 0,18 мас. %, а содержание оксида алюминия 14 мас. %. Суспензии полученного цеолита, каолиновой глины, переосажденного гидроксида алюминия и аморфного алюмосиликата смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имела следующий компонентный состав, мас. %:
цеолит - 18
оксид алюминия из переосажденного гидроксида алюминия - 24
каолиновая глина - 24
аморфный алюмосиликат - 34.
Полученную суспензию формуют в микросферическую форму методом распылительной сушки. Микросферические гранулы сухого катализатора прокаливают при температуре 720°С и стабилизируют при температуре 788°С.
Свойства полученного катализатора приведены в таблице 2. Полученный катализатор имеет недостаточную активность и выход бензина.
Пример 2.
Характеризует заявляемый катализатор и способ его приготовления. Отличие от примера 1 состоит в использовании в составе катализатора каолин-галлуазитовой глины, которую приготавливают следующим образом. Содержание галлуазита в каолин-галлуазитовой глине составляет 62%. Предварительно природную каолин-галлуазитовую глину модифицируют путем гидратации в присутствии нитрата аммония при соотношении 5 г-эквивалентов аммония на г-эквивалент натрия в глине в течение 3 часов, средний размер частиц глины при этом составил 0,4 микрона.
Суспензии полученного цеолита, каолин-галлуазитовой глины, переосажденного гидроксида алюминия и аморфного алюмосиликата смешивают в таких пропорциях, чтобы композиция катализатора в пересчете на абсолютно сухое вещество имела следующий компонентный состав, мас. %:
цеолит -18
оксид алюминия из переосажденного гидроксида алюминия - 24
каолиновая глина - 24
аморфный алюмосиликат - 34.
Свойства полученного катализатора приведены в таблице 2. Полученный катализатор имеет повышенные активность и выход бензина и высокую прочностную характеристику.
Пример 3.
Аналогичен примеру 2, но содержание галлуазита в каолин-галлуазитовой глине составляет 40%, полученную суспензию каолин-галлуазитовой глины модифицируют путем гидратации в присутствии нитрата аммония при соотношении 3 г-эквивалента аммония на г-эквивалент натрия в глине в течение 2 часов, средний размер частиц глины при этом составил 0,7 микрон. Полученный катализатор имеет высокую активность и высокий выход бензина при высокой износоустойчивости.
Пример 4.
Аналогичен примеру 2, но содержание галлуазита в каолин-галлуазитовой глине составляет 49%, полученную суспензию каолин-галлуазитовой глины модифицируют путем гидратации в присутствии нитрата аммония при соотношении 4 г-эквивалентов аммония на г-эквивалент натрия в глине в течение 2 часов, средний размер частиц глины при этом составил 0,8 микрон. Полученный катализатор имеет высокую активность и высокий выход бензина при высокой износоустойчивости.
Пример 5.
Аналогичен примеру 2, содержание галлуазита в каолин-галлуазитовой глине составляет 62%, полученную суспензию каолин-галлуазитовой глины модифицируют путем гидратации в присутствии нитрата аммония при соотношении 3 г-эквивалентов аммония на г-эквивалент натрия в глине в течение 4 часов, средний размер частиц глины при этом составил 1,2 микрона. Полученный катализатор имеет высокую активность и высокий выход бензина при высокой износоустойчивости. Композиция катализатора в пересчете на абсолютно сухое вещество имеет следующий компонентный состав, мас. %:
цеолит - 20
оксид алюминия - 20
каолин-галлуазитовая глина - 20
аморфный алюмосиликат - 40.
Пример 6.
Аналогичен примеру 3, но композиция катализатора в пересчете на абсолютно сухое вещество имеет следующий компонентный состав, мас. %:
цеолит - 20
оксид алюминия-15
каолин-галлуазитовая глина - 25
аморфный алюмосиликат - 40.
Пример 7.
Аналогичен примеру 2, но композиция катализатора в пересчете на абсолютно сухое вещество имеет следующий компонентный состав, мас. %:
цеолит - 18
оксид алюминия - 30
каолин-галлуазитовая глина - 25
аморфный алюмосиликат - 27.
Таким образом, как следует из примеров и таблицы, предлагаемый микросферический катализатор для крекинга нефтяных фракций и способ его приготовления позволяют достигать повышенного выхода бензина и высокой прочностной характеристики.
Кроме того, техническим результатом изобретения является увеличение ассортимента катализаторов крекинга с улучшенными свойствами за счет расширения спектра применяемых в качестве компонентов катализатора природных глин.
Figure 00000003

Claims (2)

1. Микросферический катализатор для крекинга нефтяных фракций, включающий ультрастабильный цеолит Y в катион-декатионированной форме и матрицу, в качестве компонентов которой используют аморфный алюмосиликат, оксид алюминия и природную глину, отличающийся тем, что в качестве компонента матрицы содержит модифицированную азотнокислым аммонием каолин-галлуазитовую глину с содержанием галлуазита более 40%, при следующем соотношении компонентов в катализаторе, мас. %: цеолит Y 18-20; аморфный алюмосиликат 27-40; оксид алюминия 15-30; каолин-галлуазитовая глина 20-25.
2. Способ приготовления микросферического катализатора для крекинга нефтяных фракций, включающий проведение ионных обменов на катионы редкоземельных элементов и аммония на цеолите NaY, двухстадийную ультрастабилизацию цеолита, смешение цеолита с матрицей, в качестве компонентов которой используют аморфный алюмосиликат, оксид алюминия и природную глину, распылительную сушку полученной композиции с последующей прокалкой и получением катализатора, отличающийся тем, что в качестве компонента матрицы используют каолин-галлуазитовую глину с содержанием галлуазита более 40%, которую предварительно модифицируют азотнокислым аммонием при соотношении г-эквивалентов аммония и натрия в глине от 3 до 5 в течение 2-4 часов, а затем подвергают диспергации, получая катализатор, содержащий, мас. %: цеолит Y 18-20; аморфный алюмосиликат 27-40; оксид алюминия 15-30; каолин-галлуазитовая глина 20-25.
RU2020121638A 2020-06-25 2020-06-25 Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления RU2743935C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020121638A RU2743935C1 (ru) 2020-06-25 2020-06-25 Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020121638A RU2743935C1 (ru) 2020-06-25 2020-06-25 Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления

Publications (1)

Publication Number Publication Date
RU2743935C1 true RU2743935C1 (ru) 2021-03-01

Family

ID=74857501

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020121638A RU2743935C1 (ru) 2020-06-25 2020-06-25 Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления

Country Status (1)

Country Link
RU (1) RU2743935C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789407C1 (ru) * 2021-10-11 2023-02-02 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Микросферический катализатор для повышения выхода бензина каталитического крекинга и способ его приготовления

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2300420C2 (ru) * 2005-06-28 2007-06-10 Институт проблем переработки углеводородов Сибирского отделения Российской Академии наук Способ приготовления микросферического катализатора для крекинга нефтяных фракций
US7390762B2 (en) * 2004-11-26 2008-06-24 Petrochina Company Limited Method for the preparation of high-content NaY molecular sieves synthesized from kaolin sprayed microspheres
CN102133542A (zh) * 2010-01-27 2011-07-27 华东理工大学 一种复合型催化裂化催化剂及其制备方法
RU2673811C1 (ru) * 2018-09-26 2018-11-30 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Микросферический катализатор для крекинга нефтяных фракций

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390762B2 (en) * 2004-11-26 2008-06-24 Petrochina Company Limited Method for the preparation of high-content NaY molecular sieves synthesized from kaolin sprayed microspheres
RU2300420C2 (ru) * 2005-06-28 2007-06-10 Институт проблем переработки углеводородов Сибирского отделения Российской Академии наук Способ приготовления микросферического катализатора для крекинга нефтяных фракций
CN102133542A (zh) * 2010-01-27 2011-07-27 华东理工大学 一种复合型催化裂化催化剂及其制备方法
RU2673811C1 (ru) * 2018-09-26 2018-11-30 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Микросферический катализатор для крекинга нефтяных фракций

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789407C1 (ru) * 2021-10-11 2023-02-02 Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть-ОНПЗ") Микросферический катализатор для повышения выхода бензина каталитического крекинга и способ его приготовления

Similar Documents

Publication Publication Date Title
US5051385A (en) Monodispersed mesoporous catalyst matrices and FCC catalysts thereof
US3257310A (en) Steam activated catalyst
US4968405A (en) Fluid catalytic cracking using catalysts containing monodispersed mesoporous matrices
US7067449B2 (en) Y-zeolite-containing composite material and a process for preparing the same
RU2673811C1 (ru) Микросферический катализатор для крекинга нефтяных фракций
CN101745417B (zh) 一种催化裂化催化剂
KR100783987B1 (ko) 열적으로 안정한, 고표면적의 개질된 메조다공성알루미노포스페이트
Doronin et al. Development and introduction of zeolite containing catalysts for cracking with controlled contents of rare earth elements
JP2023030124A (ja) ボトムアップグレーディングおよび低コークス流動接触分解触媒
CN1334318A (zh) 一种全白土型高辛烷值催化裂化催化剂的制备
CN102600826B (zh) 一种催化裂化助剂组合物和催化裂化助剂
RU2743935C1 (ru) Микросферический катализатор для крекинга нефтяных фракций и способ его приготовления
TWI307641B (en) Zeolite based catalyst of ultra-high kinetic conversion activity
CN103657701B (zh) 一种催化裂化催化剂及其制备方法
CN109675616A (zh) 一种多产丁烯的催化转化催化剂以及制备方法和多产丁烯的催化转化方法
CA2084929C (en) Catalyst and process for cracking hydrocarbons with highly attrition resistant mesoporous catalytic cracking catalysts
RU2673813C1 (ru) Способ приготовления микросферического катализатора для крекинга нефтяных фракций
TW201228727A (en) Sodium tolerant zeolite catalysts and processes for making the same
JP2020032352A (ja) 炭化水素油用流動接触分解触媒
JP7217656B2 (ja) 局所的に結晶構造を有する非晶質シリカアルミナおよびその製造方法
US4636484A (en) Method for the preparation of catalyst composition for use in cracking hydrocarbons
RU2789407C1 (ru) Микросферический катализатор для повышения выхода бензина каталитического крекинга и способ его приготовления
RU2473384C1 (ru) Микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления
JPS61283353A (ja) 小粒径ゼオライトを含む接触分解用触媒
JP6873133B2 (ja) ブチレン収率を増加させるための流動接触分解触媒