RU2716417C2 - Термореактивные сложнополиэфирные пеноматериалы и способ изготовления - Google Patents

Термореактивные сложнополиэфирные пеноматериалы и способ изготовления Download PDF

Info

Publication number
RU2716417C2
RU2716417C2 RU2018102244A RU2018102244A RU2716417C2 RU 2716417 C2 RU2716417 C2 RU 2716417C2 RU 2018102244 A RU2018102244 A RU 2018102244A RU 2018102244 A RU2018102244 A RU 2018102244A RU 2716417 C2 RU2716417 C2 RU 2716417C2
Authority
RU
Russia
Prior art keywords
weight
expandable
component
polyol
parts
Prior art date
Application number
RU2018102244A
Other languages
English (en)
Other versions
RU2018102244A (ru
RU2018102244A3 (ru
Inventor
Мари САВОННЕ
Эдуар Обер
Original Assignee
Сэн-Гобэн Изовер
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сэн-Гобэн Изовер filed Critical Сэн-Гобэн Изовер
Publication of RU2018102244A publication Critical patent/RU2018102244A/ru
Publication of RU2018102244A3 publication Critical patent/RU2018102244A3/ru
Application granted granted Critical
Publication of RU2716417C2 publication Critical patent/RU2716417C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/35Component parts; Details or accessories
    • B29C44/355Characteristics of the foam, e.g. having particular surface properties or structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0033Use of organic additives containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/02Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by the reacting monomers or modifying agents during the preparation or modification of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0014Catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/046Condition, form or state of moulded material or of the material to be shaped cellular or porous with closed cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Изобретение относится к способу изготовления термореактивного сложнополиэфирного пеноматериала. Способ включает следующие последовательные стадии, в которых: (а) формируют расширяемую и термореактивную композицию, содержащую полиольный компонент, включающий по меньшей мере одно соединение, выбранное из глицерина, диглицерина и олигомеров глицерина, поликислотный компонент, включающий по меньшей мере 50% по весу лимонной кислоты, поверхностно-активное вещество, выбранное из алкилполигликозидов и смесей анионного поверхностно-активного вещества и катионного поверхностно-активного вещества, и катализатор эстерификации, (b) вводят расширяемую и термореактивную композицию в форму, или наносят расширяемую композицию на подложку,(с) нагревают расширяемую и термореактивную композицию при температуре, равной по меньшей мере 175°С, чтобы провести реакцию полиольного компонента с поликислотным компонентом и образовать блок термореактивного сложнополиэфирного пеноматериала. При этом полиольный компонент и поликислотный компонент составляют совместно по меньшей мере 60% сухого веса расширяемой и термореактивной композиции и соответственные количества полиольных и поликислотных компонентов корректируются таким образом, чтобы ОН-функциональные группы и СООН-функциональные группы присутствовали в молярном соотношении между 0,65 и 1,5. Технический результат – обеспечение жестких пеноматериалов плотностью между 20 и 80 кг/м3, закрытой пористостью со средним диаметром пор, определяемым рентгеновской томографией между 100 и 800 мкм. 9 з.п. ф-лы, 2 ил., 5 табл., 5 пр.

Description

Настоящее изобретение относится к жестким термореактивным пеноматериалам, полученным химической реакцией и вспениванием расширяемой композиции, содержащей полиольный компонент, поликислотный компонент, поверхностно-активное вещество и катализатор эстерификации.
Известно получение термореактивных сложнополиэфирных пеноматериалов реакцией полиола и поликислоты.
В заявке WO 2010/059925 сложный полиэфир с высокой степенью сшивания получают в две стадии: первая стадия состоит в формировании несшитого форполимера реакцией полиола и поликислоты при первой относительно низкой температуре, и вторая стадия состоит в сшивании форполимера либо при второй температуре, более высокой, чем первая, либо при умеренной температуре в присутствии сшивающего реагента или катализатора полимеризации (эстерификации). Отсутствие катализатора в первой стадии представляется важным для возможности проведения этого процесса в две стадии.
Определенные отвержденные полимеры описаны как пеноматериалы. Однако их плотность является относительно высокой (Пример 12: 350 кг/м3; Пример 16: 190 кг/м3). Предусматривается применение физических или химических пенообразователей (смотри [0040]).
Международная заявка WO 2012/052385 описывает вспененный полимер, полученный реакцией глицерина и лимонной кислоты при температуре между 80 и 130°С, пока степень конверсии не станет равной по меньшей мере 90%, необязательно в присутствии катализатора эстерификации. Когда достигается степень конверсии по меньшей мере 90%, предпочтительно 98%, реакционную смесь нагревают при более высокой температуре, близкой к 150°С. Проведение первой стадии при низкой температуре имеет целью избежать, насколько возможно, декарбоксилирования лимонной кислоты.
Описанный в этом документе способ требует очень длительных продолжительностей реакции, варьирующих от нескольких часов до нескольких десятков часов. Полимеризация предпочтительно проводится в нелипких формах, например, изготовленных из тефлона. Полученные этим путем пеноматериалы имеют плотность между 200 и 850 г/литр.
Международная заявка WO 2013/121033 описывает усовершенствование этого способа, где полимеризацию глицерина и лимонной кислоты проводят в контакте с подложкой с наружным слоем, включающим по меньшей мере металл, оксид металла или галогенид металла. Этим способом получают пеноматериалы, имеющие более регулярный размер пор, чем у тех, которые получены способом, описанным в патентном документе WO 2012/052385. Заявленные плотности составляют между 50 и 850 г/литр. Пеноматериалы, полученные в примерах согласно изобретению, имеют плотности между 282 г/литр и 482 г/литр.
Настоящее изобретение основывается на обнаруженном факте, что применение катализатора эстерификации и поверхностно-активного вещества в исходной реакционной смеси, содержащей глицерин и лимонную кислоту, обеспечивает возможность получения в одной стадии полимеризации, проводимой при высокой температуре и с ограниченной продолжительностью, пеноматериалов превосходного качества, имеющих более низкую плотность, чем известные пеноматериалы, и имеющих тонкую и однородную пористость.
В способе согласно настоящему изобретению заявитель никоим образом не стремится избежать разложения лимонной кислоты с образованием аконитовой кислоты и СО2. Напротив, реакционную среду быстро нагревают при высокой температуре, чтобы использовать лимонную кислоту в качестве химического порообразователя (химического вспенивающего агента, химического пенообразователя), который делает излишним добавление физического порообразующего агента.
Поэтому одной целью настоящего изобретения является способ изготовления термореактивного сложнополиэфирного пеноматериала, включающий следующие последовательные стадии, в которых:
(а) формируют расширяемую и термореактивную композицию, содержащую
- полиольный компонент, включающий по меньшей мере одно соединение, выбранное из глицерина, диглицерина и олигомеров глицерина,
- поликислотный компонент, включающий лимонную кислоту,
- поверхностно-активное вещество, и
- катализатор эстерификации,
(b) вводят расширяемую и термореактивную композицию в форму, или наносят расширяемую композицию на подложку,
(с) нагревают расширяемую и термореактивную композицию при температуре, равной по меньшей мере 135°С, предпочтительно равной по меньшей мере 150°С, еще более предпочтительно равной по меньшей мере 175°С, чтобы провести реакцию полиольного компонента с поликислотным компонентом и образовать блок термореактивного сложнополиэфирного пеноматериала.
Еще одной целью изобретения является применение композиции, содержащей
- полиольный компонент, включающий по меньшей мере одно соединение, выбранное из глицерина, диглицерина и олигомеров глицерина,
- поликислотный компонент, включающий лимонную кислоту,
- поверхностно-активное вещество, и
- катализатор эстерификации,
в качестве расширяемой и термореактивной композиции для изготовления изоляционного изделия типа пеноматериала.
Поэтому расширяемая термореактивная композиция включает четыре важнейших компонента: полиольный компонент, поликислотный компонент, поверхностно-активное вещество и катализатор эстерификации.
Поликислотный компонент может включать иные поликислоты, нежели лимонная кислота, и полиольный компонент может включать полиолы, то есть, полигидроксилированные соединения, иные, нежели глицерин, диглицерин и олигомеры глицерина. Примеры других поликислот и полиолов будут приведены ниже.
В настоящей заявке количества, или уровни содержания, полиольных или поликислотных компонентов всегда понимаются как подразумевающие все полиолы или все поликислоты, присутствующие в композиции.
Это определение полиольных и поликислотных компонентов не исключает такой возможности, что определенные поверхностно-активные вещества рассматриваются как относящиеся к полиольным и поликислотным компонентам. Например, это может быть в случае алкилполигликозидов (APG), которые относятся к предпочтительным поверхностно-активным веществам. Алкилполигликозиды включают одну или многие углеводные структурные единицы (полигидроксилированные структурные единицы), и действуют и как поверхностно-активное вещество, регулирующее и контролирующее пористость полученного пеноматериала, и как полиолы, способные участвовать в формировании отвержденной трехмерной сетчатой структуры реакцией с кислотными группами поликислотного компонента.
В настоящем изобретении, когда соединение, присутствующее в расширяемой и термореактивной композиции, может рассматриваться и как первый из четырех важнейших компонентов, и как второй из четырех важнейших компонентов композиции (полиольного компонента, поликислотного компонента, поверхностно-активного вещества и катализатора эстерификации.), он будет считаться как тем, так и другим. Это значит, что будут приниматься в расчет количества каждого из этих двух компонентов.
Таким образом, расширяемая и термореактивная композиция, содержащая
48% по весу глицерина,
47% по весу лимонной кислоты,
3% по весу алкилполигликозидов, и
2% по весу катализатора эстерификации,
будет иметь содержание полиольного компонента 51% (48% глицерина+3% алкилполигликозида), содержание поликислотного компонента, равное 47%, содержание поверхностно-активного вещества, равное 3%, и содержание катализатора эстерификации, равное 2%. Тогда численная сумма этих четырех компонентов, конечно, составляет более 100%, поскольку 3% алкилполигликозидов учитываются дважды.
Определенные алкилфосфоновые кислоты (R-PO4H2, где R представляет алифатическую цепь) составляют еще один пример ингредиента, который может играть две роли, а именно, роль поверхностно-активного вещества и роль катализатора эстерификации.
Первый важнейший компонент расширяемой композиции представляет собой полиольный компонент. Этот компонент включает по меньшей мере одно вещество, выбранное из группы, образованной глицерином, диглицерином и олигоглицеринами. Соединения формулы:
(1) НО(СН2-СНОН-СН2-О)n
где n представляет целое число между 3 и 6, и алифатические простые моноэфиры или полиэфиры соединений формулы (1), в которых до 30% ОН-функциональных групп могут быть этерифицированы алифатическими спиртами, рассматриваются как олигоглицерины.
Полиольный компонент предпочтительно включает, в расчете на общий сухой вес полиольного компонента, по меньшей мере 15% по весу, предпочтительно по меньшей мере 20% по весу, в частности, по меньшей мере 25% по весу глицерина. Заявитель действительно наблюдал, что большое количество мономера глицерина делает возможным получение пеноматериалов с низкой плотностью и однородной пористостью.
Полиольный компонент предпочтительно содержит не более 30% по весу, в частности, не более 20% по весу, и в идеальном случае не более 10% по весу, в расчете на общий сухой вес полиольного компонента, полиолов, которые не являются ни глицерином, ни диглицерином, ни олигомерами глицерина.
Эти полиолы предпочтительно представляют собой полиолы биологического происхождения, в частности, сахара и сахарные спирты (гидрированные сахара).
Сахара, которые могут быть использованы как часть полиольного компонента, могут быть восстанавливающими сахарами и невосстанавливающими сахарами.
Термин «восстанавливающие сахара» понимается как означающий углеводы формулы C n (H2O) p , имеющие по меньшей мере одну альдегидную или кетонную группу (восстанавливающую группу). Восстанавливающие сахара, которые могут быть использованы в настоящем изобретении, включают моносахариды и полисахариды (дисахариды, олигосахариды и подходящие полисахариды).
В отношении моносахаридов может быть сделана ссылка на такие, которые включают от 3 до 8 атомов углерода, предпочтительно альдозы, и главным образом альдозы, содержащие от 5 до 7 атомов углерода. Альдозы, которые являются особенно предпочтительными, представляют собой природные альдозы (принадлежащие к D-ряду), в частности, гексозы, такие как глюкоза, манноза и галактоза.
Лактоза и мальтоза представляют примеры дисахаридов, которые могут быть применены в качестве восстанавливающих сахаров.
Также благоприятным может быть оказаться применение гидролизатов крахмала, полученных ферментативным гидролизом или кислотным гидролизом крахмала.
Невосстанавливающими сахарами, которые могут быть использованы, являются сахароза и трегалоза.
В качестве примеров гидрированных сахаров могут быть упомянуты эритрит, арабит, ксилит, сорбит, маннит, идит, мальтит, изомальтит, лактит, целлобиит, палатинит, мальтотриит, и продукты гидрирования гидролизатов крахмала.
Вторым важнейшим компонентом расширяемой композиции является поликислотный компонент. Поликислотный компонент предпочтительно включает по меньшей мере 50% по весу, в частности, по меньшей мере 65% по весу, и в идеальном случае по меньшей мере 80% по весу лимонной кислоты, в расчете на общий вес поликислотного компонента.
Могут присутствовать другие поликислоты, способные реагировать с полиольным компонентом, чтобы сформировать сложнополиэфирную сетчатую структуру. Эти другие поликислоты предпочтительно представляют собой мономерные многоосновные кислоты, другими словами, поликислоты, которые не образованы полимеризацией мономерных структурных единиц, несущих кислотные группы, такие как полиакриловая кислота.
Другие поликислоты предпочтительно представляют собой поликарбоновые кислоты, например, дикарбоновые, трикарбоновые или тетракарбоновые кислоты.
Например, к дикарбоновым кислотам относятся щавелевая кислота, малоновая кислота, янтарная кислота, глутаровая кислота, адипиновая кислота, пимелиновая кислота, субериновая кислота, азелаиновая кислота, себациновая кислота, яблочная кислота, винная кислота, тартроновая кислота, аспарагиновая кислота, глутаминовая кислота, фумаровая кислота, итаконовая кислота, малеиновая кислота, трауматиновая кислота, камфорная кислота, фталевая кислота и ее производные, в частности, такие, которые содержат по меньшей мере один атом бора или хлора, тетрагидрофталевая кислота и ее производные, в частности, такие, содержащие по меньшей мере один атом хлора, такие как хлорэндиковая кислота, изофталевая кислота, терефталевая кислота, мезаконовая кислота и цитраконовая кислота.
К трикарбоновым кислотами относятся, например, трикарбаллиловая кислота, 1,2,4-бутантрикарбоновая кислота, аконитовая кислота, гемимеллитовая кислота, тримеллитовая кислота и тримезиновая кислота.
В качестве тетракарбоновой кислоты могут быть упомянуты, например, 1,2,3,4-бутантетракарбоновая кислота и пиромеллитовая кислота.
Полиольные и поликислотные компоненты, как определенные выше, составляет совместно по меньшей мере 60%, предпочтительно по меньшей мере 70%, и, в частности, по меньшей мере 80% сухого веса расширяемой и термореактивной композиции.
Полиольный компонент предпочтительно составляет от 15% до 60% по весу, в частности, от 20% до 50% по весу, и в идеальном случае от 25% до 45% по весу общего веса полиольных и поликислотных компонентов. Из этого логически следует, что поликислотный компонент составляет предпочтительно от 40% до 85% по весу, в частности, от 50% до 80% по весу, и в идеальном случае от 55% до 75% по весу общего веса полиольных и поликислотных компонентов.
Известным путем соответственные количества полиольных и поликислотных компонентов будут скорректированы так, чтобы ОН-функциональные группы и СООН-функциональные группы присутствовали в молярном соотношении между 0,65 и 1,5, предпочтительно между 0,8 и 1,4, в частности, между 1,0 и 1,3.
Третьим важнейшим компонентом расширяемой и термореактивной композиции является поверхностно-активное вещество. В настоящей заявке этот термин также включает смеси нескольких поверхностно-активных веществ.
Роль этого ингредиента состоит в улучшении качества пеноматериала, то есть, в сокращении размера пор, в сужении распределения пор по размерам и в снижении плотности полученных отвержденных пеноматериалов.
Поверхностно-активное вещество предпочтительно имеет гидрофильно-липофильный баланс (HLB) между 3 и 13, предпочтительно между 5 и 8.
В одном варианте исполнения поверхностно-активное вещество представляет собой смесь анионного поверхностно-активного вещества и катионного поверхностно-активного вещества. В области жидких водных пен известно, что сочетание двух типов поверхностно-активных веществ, имеющих противоположные заряды, обеспечивает возможность стабилизации пленки поверхностно-активных веществ на поверхности раздела воды и воздуха уменьшением отталкивания между молекулами, имеющими одинаковый заряд. Как будет продемонстрировано ниже в примерах, Заявитель получил превосходные результаты со смесью додецилсульфата натрия (SDS) и бромида тетрадецилтриметиламмония (TTAB), и поэтому применение комбинации этих двух поверхностно-активных веществ составляет предпочтительный вариант исполнения. Весовое соотношение TTAB/SDS предпочтительно составляет между 1,5 и 2,5, в частности, между 1,8 и 2,2, и в идеальном случае близко к 2.
Интересную альтернативу комбинации анионного поверхностно-активного вещества и катионного поверхностно-активного вещества составляют неионные поверхностно-активные вещества. Действительно, для неионных поверхностно-активных веществ нет сил отталкивания между гидрофильными головками, имеющими одинаковый заряд, и поэтому определенные неионные поверхностно-активные вещества в особенности пригодны для формирования пеноматериалов хорошего качества. Используемые в настоящем изобретении неионные поверхностно-активные вещества предпочтительно имеют HLB между 3 и 13.
Например, это справедливо для алкилполигликозидов (APG), которые представляют собой молекулы, включающие гидрофильную головку, образованную одной или многими сахарными структурными единицами, привитыми на алкильную алифатическую цепь.
Алкилполигликозиды предпочтительно включают между 1 и 2 глюкозидными структурными единицами, и алкильные цепи предпочтительно включают от 8 до 14 атомов углерода, и предпочтительно являются линейными алкильными цепями.
В качестве примеров алкилполигликозидов могут быть упомянуты продукты под торговой маркой Glucopon, в частности, Glucopon 600 CSUP (лаурилглюкозид) и Glucopon 650 ЕС (кокоглюкозид).
Количество поверхностно-активного вещества преимущественно составляет от 0,1% до 10%, предпочтительно от 1% до 8%, и, в частности, от 2% до 6% общего сухого веса расширяемой композиции.
Четвертым важнейшим ингредиентом расширяемой и термореактивной композиции, используемой в способе согласно настоящему изобретению, является катализатор эстерификации. Этот катализатор предпочтительно, но не обязательно, представляет собой фосфорсодержащее соединение. В качестве примеров предпочтительных катализаторов на основе фосфора могут быть сделаны ссылки на такие, которые выбраны из группы, состоящей из гипофосфита щелочного металла (H2PO2M), фосфита щелочного металла (HPO3M2), полифосфата щелочного металла (M3PO4), гидрофосфата щелочного металла (M2HPO4), фосфорной кислоты (H3PO4), алкилфосфоновой кислоты (RPO3H2), и смеси двух или более из этих соединений. В особенности предпочтителен гипофосфит щелочного металла.
Концентрация катализатора эстерификации типично составляет между 0,1% и 10% по весу, предпочтительно между 1% и 8% по весу, и, в частности, от 2% до 6% по весу, в расчете на сухой вес расширяемой композиции.
Смесь описанных выше четырех важнейших компонентов преимущественно представляет собой раствор. Для растворения всех ингредиентов может быть полезным добавление определенного количества воды. Вода также может служить для разбавления композиции, чтобы облегчить ее течение или растекание ее во время стадии (b) способа согласно изобретению. Однако, как правило, следует стремиться к ограничению количества воды в расширяемой композиции, поскольку реакция эстерификации будет начинаться только после полного испарения воды, и испарение воды обусловливает нежелательный расход энергии.
Поэтому расширяемая композиция преимущественно будет содержать не более 60% по весу, предпочтительно не более 25% по весу, более предпочтительно не более 15% по весу, и в особенности не более 5% по весу воды, в расчете на общий вес расширяемой композиции.
Используемая в настоящем изобретении расширяемая композиция также может содержать до 30% по весу, предпочтительно до 20% по весу, в частности, до 10% по весу, в расчете на сухой вес всей расширяемой композиции, одного или многих неорганических или органических наполнителей.
Наконец, расширяемая композиция может содержать одну или многие другие добавки, обычно применяемые в промышленности для обработки и преобразования полимеров, такие как красители, пигменты, бактерицидные или противогрибковые препараты, огнезащитные средства, УФ-поглотители или гидрофобные агенты. Эти добавки присутствуют, в целом, предпочтительно в количестве не более 10% от сухого веса композиции.
Хотя в принципе расширяемая композиция может содержать органический пенообразователь, такой как пентан, важно отметить, что его добавление не является обязательным.
Это обусловливается тем, что лимонная кислота, присутствующая в поликислотном компоненте, действует как вспенивающий агент. Когда расширяемую композицию нагревают в стадии (с) при температуре, близкой к 175°С, лимонная кислота разлагается известным путем, с образованием аконитовой кислоты и СО2 (M. M. Barbooti и др., «Thermal Decomposition of Citric Acid» («Термическое разложение лимонной кислоты»), Thermochimica Acta, том 98 (1986), стр. 119-126; D. Wyrzykowski и др., «Thermal Behavior of Citric Acid and Isomeric Aconitic Acids» («Термическое поведение лимонной кислоты и изомерных аконитовых кислот»), J. Therm. Anal. Calorim., (2001), том 104: стр. 731-735). Ниже в примерных вариантах исполнения будет показано, что пеноматериалы хорошего качества и с низкой плотностью могут быть получены в отсутствие любого физического пенообразователя. Когда стадию (с) проводят при температуре выше 170°С, добавление органического пенообразователя тем самым становится излишним. Поэтому в одном предпочтительном варианте исполнения способа согласно настоящему изобретению расширяемая композиция по существу не содержит органический физический вспенивающий агент.
Когда расширяемую композицию разливают в форме сплошной пленки на подложке, толщина пленки перед нагреванием, то есть, перед расширением и отверждением, преимущественно является равной по меньшей мере 1 мм, предпочтительно равной по меньшей мере 2 мм, в частности, равной по меньшей мере 5 мм, и более предпочтительно равной по меньшей мере 10 мм.
Объем сформированного блока пеноматериала может варьировать в очень широких пределах. Когда расширяемую композицию применяют в процессе непрерывного формования, например, лент или профильных элементов из изоляционных материалов, потенциально он является бесконечным. Когда расширяемую композицию используют в форме отдельных блоков, например, пластин или листов пеноматериалов, его количество предпочтительно является таким, что объем каждого блока термореактивного жесткого пеноматериала является равным по меньшей мере 500 см3, предпочтительно равным по меньшей мере 0,001 м3, в частности, равным по меньшей мере 0,01 м3.
Блок пеноматериала предпочтительно получают в форме пластины.
Для нагревания расширяемой композиции в стадии (с) в принципе может быть использовано любое стандартное средство, известное в области обработки и преобразования полимеров, такое как горячий воздух, тепловое излучение, микроволновое излучение или приведение в контакт с горячей подложкой (формой).
Конечно, температура нагревательного устройства (сушильного шкафа, подложки, формы) может быть более высокой, чем вышеупомянутая температура реакции, например, между 160 и 210°С.
Продолжительность стадии нагревания (стадии (с)) зависит не только от температуры, но также от нагревательного устройства, и от соотношения объем/поверхность формируемого блока пеноматериала. Как правило, она составляет между 10 минутами и 5 часами, предпочтительно между 20 минутами и 4 часами, и в особенности между 30 минутами и 3 часами.
Еще одной целью настоящего изобретения является жесткий сложнополиэфирный пеноматериал, который может быть получен способом, который представляет собой цель настоящего изобретения.
В отсутствие добавленных красителей жесткие пеноматериалы, изготовленные способом согласно изобретению, обычно имеют светлый цвет, типично цвет слоновой кости, желтый или бежевый цвет. Их плотность составляет между 20 и 80 кг/м3, предпочтительно между 25 и 50 кг/м3, в частности, между 27 и 48 кг/м3.
Они имеют закрытую пористость со средним диаметром пор, определяемым рентгеновской томографией, между 100 и 800 мкм.
Примеры
Несколько расширяемых и термореактивных композиций получают добавлением порошкообразной лимонной кислоты к водному раствору, содержащему глицерин, диглицерин, олигоглицерин или их смесь. Следующим добавляют катализатор эстерификации (моногидрат гипофосфита натрия) в порошкообразной форме, и затем поверхностно-активное вещество, и содержание твердых веществ смеси корректируют до 66% по весу. Смесь перемешивают при комнатной температуре, пока порошок лимонной кислоты не растворится. Таблица 1 показывает соответственные количества использованных ингредиентов, выраженные в расчете на сухой материал, и также общее содержание твердых веществ в полученных композициях.
Затем реакционный раствор выливают в прямоугольные формы, дно которых покрыто листом из алюминия. Толщина жидкостной пленки составляет около 1 мм. Формы нагревают в течение 3 часов в вентилируемом сушильном шкафу при температуре 180°С.
После извлечения форм из сушильного шкафа и охлаждения сформированных пеноматериалов до температуры окружающей среды, оценивают толщину образованного пеноматериала с помощью следующей шкалы оценок:
-: менее 0,5 см
+: от 0,5 до 1 см
++: от 1,1 до 2 см
+++: от 2,1 до 3 см
++++: от 3,1 до 4 см
+++++: свыше 4 см
Таблица 1
Полиол Поликислота Катализатор Поверхностно-активное вещество Содержание твердых веществ Толщина пеноматериала
34 части глицерина 66 частей лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% +++++
42 части смеси глицерина, диглицерина и олигоглицерина*** 58 частей лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% +++++
41 часть диглицерина 59 частей лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% +++
41 часть олигоглице-рина**** 59 частей лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% ++
34 части глицерина 66 частей лимонной кислоты 5 частей HPS* 2,55 части TTAB/SDS** 66% +++++
34 части глицерина 66 частей лимонной кислоты 5 частей HPS* 5 частей (С814)-алкилполигликозида 66% +++++
34 части глицерина 66 частей лимонной кислоты 5 частей HPS* 2,5 части (С814)-алкилполигликозида+2,55 части TTAB/SDS** 66% +++++
34 части глицерина 66 частей лимонной кислоты 10 частей HPS* 814)-алкилполигликозид+2,55 части TTAB/SDS** 66% +++++
42 части смеси глицерина, диглицерина и олигоглицерина*** 58 частей лимонной кислоты 5 частей HPS* 2,5 части (С814)-алкилполигликозида 66% +++
42 части смеси глицерина, диглицерина и олигоглицерина*** 58 частей лимонной кислоты 5 частей HPS* 3,75 части (С814)-алкилполигликозида 66% +++++
42 части смеси глицерина, диглицерина и олигоглицерина*** 58 частей лимонной кислоты 5 частей HPS* 5 частей (С1214)-алкилполигликозида 66% +++++
42 части смеси глицерина, диглицерина и олигоглицерина*** 58 частей лимонной кислоты 5 частей HPS* 7,5 частей (С1214)-алкилполигликозида 66% +++++
42 части смеси глицерина, диглицерина и олигоглицерина*** 58 частей лимонной кислоты 5 частей HPS* 7,65 частей TTAB/SDS** 66% +++++
42 части смеси глицерина, диглицерина и олигоглицерина*** 58 частей лимонной кислоты 5 частей HPS* 10,2 частей TTAB/SDS** 66% +++++
* гидрат гипофосфита натрия
**бромид тетрадецилтриметиламмония (TTAB) и додецилсульфат натрия (SDS), добавленные в форме 25%-ного раствора в воде; весовое соотношение TTAB/SDS=2
***смесь, содержащая около трети каждого из компонентов
****полиглицерин-4 (CAS № 25618-55-7) содержит около 2% диглицерина, 43% триглицерина, 34% тетраглицерина, 14% пентаглицерина, 6% гексаглицерина
Все полученные пеноматериалы имеют тонкую и однородную пористую структуру. Они имеют цвет слоновой кости или бежевый цвет. Фигуры 1 и 2 показывают, в порядке примера, соответственно пластину и блок полученного пеноматериала. Эти испытания показывают, что комбинированное применение катализатора эстерификации (гипофосфита натрия) и поверхностно-активного вещества (комбинации катионного и анионного поверхностно-активного вещества) обеспечивает возможность получения пеноматериалов в одной высокотемпературной стадии.
Испытание с использованием полиглицерина-4 в качестве полиольного компонента свидетельствует о том, что пенообразование подавляется отсутствием мономера глицерина и практически отсутствием димера. Оказывается, что присутствие определенного количества мономера и/или димера глицерина является важным для пенообразования.
Алкилполигликозиды (нейтральные поверхностно-активные вещества) дают результаты, сравнимые с комбинацией TTAB/SDS.
Заявитель провел испытания с анионным поверхностно-активным веществом (Disponil® SUS 87 Spez.; динатриевая соль этоксилированного сложного эфира децилового спирта), но это поверхностно-активное вещество, использованное в отсутствие катионного поверхностно-активного вещества, не делает возможным получение пеноматериала.
Применение неионного поверхностно-активного вещества, имеющего HLB 14 (Disponil® PGE 110; простой полигликолевый диэфир алифатического диола) не приводит к получению пеноматериала ни в одном случае.
Замена части глицерина другими полиолами
Приведенная ниже Таблица 2 показывает результаты, полученные в испытаниях, проведенных в таких же условиях, как в таблице 1. Около трети глицерина/диглицерина/олигоглицерина заменили другим полиолом (гидрофобным крахмалом, триметилолпропаном, пентаэритритом).
Таблица 2
Полиол Поликислота Катализатор Поверхностно-активное вещество Содержание твердых веществ Толщина пеноматериала
24 части глицерина+10 частей гидрофобного крахмала 66 частей лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% +++++
24 части глицерина+10 частей триметилолпропана 66 частей лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% +++++
24 части глицерина+10 частей пентаэритрита 66 частей лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% +++++
* гидрат гипофосфита натрия
**бромид тетрадецилтриметиламмония (TTAB) и додецилсульфат натрия (SDS), добавленные в форме 25%-ного раствора в воде; весовое соотношение TTAB/SDS=2
Можно видеть, что частичная замена глицерина или его олигомеров никоим образом не ухудшает качество сформированных пеноматериалов.
Полная замена глицерина другими полиолами
Приведенная ниже Таблица 3 показывает результаты, полученные в испытаниях, проведенных в таких же условиях, как в таблице 1, за исключением того, что все глицерин/диглицерин/олигоглицерин заменили другим полиолом (гидрофобным крахмалом, мальтитом, изосорбидом).
Таблица 3
Полиол Поликислота Катализатор Поверхностно-активное вещество Содержание твердых веществ Толщина пеноматериала
34 части EmCap®*** 66 частей лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% -
48 частей мальтита 52 части лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% -
54 части изосорбида 46 частей лимонной кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% -
* гидрат гипофосфита натрия
**бромид тетрадецилтриметиламмония (TTAB) и додецилсульфат натрия (SDS), добавленные в форме 25%-ного раствора в воде; весовое соотношение TTAB/SDS=2
***гидрофобный модифицированный крахмал
Как видно, полная замена глицерина или его олигомеров предотвращает формирование пеноматериалов. Поэтому присутствие глицерина, диглицерина и олигоглицерина оказывается необходимым для образования пеноматериалов.
Замена части или всей лимонной кислоты еще одной поликислотой
Приведенная ниже Таблица 3 показывает результаты, полученные в испытаниях, проведенных в таких же условиях, как в таблице 1, за исключением того, что лимонная кислота частично или полностью была заменена еще одной поликислотой.
Таблица 4
Полиол Поликислота Катализатор Поверхностно-активное вещество Содержание твердых веществ Толщина пеноматериала
42 части смеси глицерина, диглицерина и олигоглицерина 58 частей трикарбаллиловой кислоты 5 частей HPS* 5 частей APG*** 66% -
42 части смеси глицерина, диглицерина и олигоглицерина 58 частей 1,2,3,4-бутантетракарбоновой кислоты 5 частей HPS* 5 частей APG*** 66% -
42 части смеси глицерина, диглицерина и олигоглицерина 58 частей итаконовой кислоты 5 частей HPS* 5 частей APG*** 66% -
34 части глицерина 56 частей лимонной кислоты+10 частей 1,2,3,4-бутантетра-карбоновой кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% +++++
34 части глицерина 56 частей лимонной кислоты+10 частей азелаиновой кислоты 5 частей HPS* 5,1 части TTAB/SDS** 66% +++++
* гипофосфит натрия
**бромид тетрадецилтриметиламмония (TTAB) и додецилсульфат натрия (SDS), добавленные в форме 25%-ного раствора в воде; весовое соотношение TTAB/SDS=2
***(С814)алкилполигликозид (Glucopon 650 ЕС), добавленный в форме водного раствора, имеющего 52% по весу твердых веществ
Как видно, полная замена лимонной кислоты другими поликислотами предотвращает формирование пеноматериалов. Частичная замена лимонной кислоты не ухудшает качество пеноматериалов.
Катализатор эстерификации
Когда испытание проводят в таких же условиях, как в таблице 1, но с исключением гипофосфита натрия, формирование пеноматериала подавляется в весьма высокой степени.
Таблица 5
Полиол Поликислота Катализатор Поверхностно-активное вещество Содержание твердых веществ Толщина пеноматериала
34 части глицерина 66 частей лимонной кислоты - 5,1 части TTAB/SDS* 66% +
*бромид тетрадецилтриметиламмония (TTAB) и додецилсульфат натрия (SDS), добавленные в форме 25%-ного раствора в воде; весовое соотношение TTAB/SDS=2
Испытания с термогравиметрическим анализом (TGA) на водном растворе лимонной кислоты, содержащем гипофосфит натрия, в сравнении с идентичным раствором без гипофосфита натрия, показали, что гипофосфит натрия катализирует разложение лимонной кислоты с образованием аконитовой кислоты и СО2.

Claims (18)

1. Способ изготовления термореактивного сложнополиэфирного пеноматериала, включающий следующие последовательные стадии, в которых:
(а) формируют расширяемую и термореактивную композицию, содержащую
- полиольный компонент, включающий по меньшей мере одно соединение, выбранное из глицерина, диглицерина и олигомеров глицерина,
- поликислотный компонент, включающий по меньшей мере 50% по весу лимонной кислоты,
- поверхностно-активное вещество, выбранное из алкилполигликозидов и смесей анионного поверхностно-активного вещества и катионного поверхностно-активного вещества, в количестве 0,1 до 10% общего сухого веса расширяемой композиции, и
- катализатор эстерификации,
при этом полиольный компонент и поликислотный компонент составляют совместно по меньшей мере 60% сухого веса расширяемой и термореактивной композиции, и соответственные количества полиольных и поликислотных компонентов корректируются таким образом, чтобы ОН-функциональные группы и СООН-функциональные группы присутствовали в молярном соотношении между 0,65 и 1,5,
(b) вводят расширяемую и термореактивную композицию в форму или наносят расширяемую композицию на подложку,
(с) нагревают расширяемую и термореактивную композицию при температуре, равной по меньшей мере 175°С, чтобы провести реакцию полиольного компонента с поликислотным компонентом и образовать блок термореактивного сложнополиэфирного пеноматериала.
2. Способ по п.1, отличающийся тем, что полиольный компонент и поликислотный компонент составляют совместно по меньшей мере 70%, и в особенности по меньшей мере 80% сухого веса расширяемой и термореактивной композиции.
3. Способ по п. 1 или 2, отличающийся тем, что полиольный компонент включает по меньшей мере 15% по весу, предпочтительно по меньшей мере 20% по весу, в частности по меньшей мере 25% по весу глицерина.
4. Способ по одному из предшествующих пунктов, отличающийся тем, что поликислотный компонент включает по меньшей мере 65% по весу, и в особенности по меньшей мере 80% по весу лимонной кислоты.
5. Способ по любому из предшествующих пунктов, отличающийся тем, что поверхностно-активное вещество представляет собой смесь додецилсульфата натрия (SDS) и бромида тетрадецилтриметиламмония (TTAB).
6. Способ по любому из пп. 1-5, отличающийся тем, что поверхностно-активное вещество имеет гидрофильно-липофильный баланс (HLB) между 3 и 13.
7. Способ по любому из предшествующих пунктов, отличающийся тем, что полиольный компонент составляет от 15 до 60% по весу, предпочтительно от 20 до 50% по весу и в особенности от 25 до 45% по весу общего веса полиольных и поликислотных компонентов.
8. Способ по любому из предшествующих пунктов, отличающийся тем, что расширяемая композиция содержит не более 60% по весу, предпочтительно не более 25% по весу, более предпочтительно не более 15% по весу, и в особенности не более 5% по весу воды.
9. Способ по любому из предшествующих пунктов, отличающийся тем, что катализатор эстерификации выбирают из фосфорсодержащих соединений, предпочтительно из группы, состоящей из гипофосфита щелочного металла, фосфита щелочного металла, полифосфата щелочного металла, гидрофосфата щелочного металла, фосфорной кислоты, алкилфосфоновой кислоты и смеси двух или более из этих соединений, в частности гипофосфита щелочного металла.
10. Способ по любому из предшествующих пунктов, отличающийся тем, что расширяемая композиция также содержит до 30% по весу, предпочтительно до 20% по весу, в частности до 10% по весу в расчете на сухой вес всей расширяемой композиции, одного или более неорганических или органических наполнителей.
RU2018102244A 2015-06-24 2016-06-15 Термореактивные сложнополиэфирные пеноматериалы и способ изготовления RU2716417C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1555789A FR3037964B1 (fr) 2015-06-24 2015-06-24 Mousses polyester thermodurcies et procede de fabrication
FR1555789 2015-06-24
PCT/FR2016/051446 WO2016207517A1 (fr) 2015-06-24 2016-06-15 Mousses polyester thermodurcies et procede de fabrication

Publications (3)

Publication Number Publication Date
RU2018102244A RU2018102244A (ru) 2019-07-24
RU2018102244A3 RU2018102244A3 (ru) 2019-10-14
RU2716417C2 true RU2716417C2 (ru) 2020-03-11

Family

ID=53879682

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018102244A RU2716417C2 (ru) 2015-06-24 2016-06-15 Термореактивные сложнополиэфирные пеноматериалы и способ изготовления

Country Status (9)

Country Link
US (1) US10584224B2 (ru)
EP (1) EP3313919B1 (ru)
JP (1) JP6909163B2 (ru)
KR (1) KR20180022682A (ru)
CA (1) CA2987086A1 (ru)
DK (1) DK3313919T3 (ru)
FR (1) FR3037964B1 (ru)
RU (1) RU2716417C2 (ru)
WO (1) WO2016207517A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106915084B (zh) * 2017-03-07 2019-04-02 杭州杭景模型有限公司 3d打印机及其打印平台
FR3075209B1 (fr) * 2017-12-18 2019-12-20 Saint-Gobain Isover Procede de fabrication de mousses polyester thermodurcies a base de sucres hydrogenes
FR3075208B1 (fr) 2017-12-18 2019-12-20 Saint-Gobain Isover Procede de fabrication de mousses polyester thermodurcies avec etape de preoligomerisation
FR3080850B1 (fr) 2018-05-04 2022-08-12 Saint Gobain Isover Materiau d’isolation thermique
FR3089984B1 (fr) 2018-12-18 2021-01-01 Saint Gobain Isover Utilisation de diols linéaires pour la fabrication de mousses polyester biosourcées
JP2024520309A (ja) 2021-05-17 2024-05-24 プランティクス ホールディング ビー.ブイ. 熱硬化性ポリマー発泡体を製造する方法、及びポリマー発泡体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008031520A1 (de) * 2006-09-16 2008-03-20 Bayer Materialscience Ag Alkylpolyglycoside als stabilisatoren für pur-schäume
RU2328509C2 (ru) * 2003-12-19 2008-07-10 Дзанг Вон ПАРК Сшитая пена, имеющая структуру внутренних полостей, и способ ее получения
WO2010059925A1 (en) * 2008-11-20 2010-05-27 Polymer Phases, Inc. Polyesters, methods of their preparation and use
EP2628757A1 (en) * 2012-02-17 2013-08-21 Universiteit van Amsterdam Process for preparing foamed polymer
RU2517755C1 (ru) * 2013-02-26 2014-05-27 АйПи ПОЛИУРЕТАН ТЕКНОЛОДЖИС ЛТД Заливочная композиция для получения жесткого пенополиуретана для предизолированных труб

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480963A (en) * 1994-07-22 1996-01-02 United States Surgical Corporation Absorbable copolymers derived from tricarboxylic acids and surgical articles made therefrom
US20090253820A1 (en) * 2006-03-21 2009-10-08 Honeywell International Inc. Foaming agents and compositions containing fluorine sustituted olefins and methods of foaming
JP2007070504A (ja) * 2005-09-08 2007-03-22 Nitto Boseki Co Ltd フェノール樹脂発泡体
FR2955863B1 (fr) * 2010-02-03 2012-03-09 Saint Gobain Rech Materiaux d'isolation thermique hautes performances
WO2012035457A1 (de) * 2010-09-16 2012-03-22 Basf Se Verfahren zur herstellung von melamin/formaldehyd-schaumstoffen
EP2444441A1 (en) 2010-10-19 2012-04-25 Universiteit van Amsterdam Process for preparing foamed polymer
FR2978446B1 (fr) * 2011-07-27 2015-06-05 Saint Gobain Isover Composition d'encollage pour laine minerale a base de maltitol et produits isolants obtenus
JP5611932B2 (ja) * 2011-12-14 2014-10-22 チェイル インダストリーズ インコーポレイテッド 重縮合樹脂の製造方法
JP2015052045A (ja) * 2013-09-06 2015-03-19 株式会社カネカ ポリエステル樹脂組成物、ポリエステル樹脂発泡体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2328509C2 (ru) * 2003-12-19 2008-07-10 Дзанг Вон ПАРК Сшитая пена, имеющая структуру внутренних полостей, и способ ее получения
WO2008031520A1 (de) * 2006-09-16 2008-03-20 Bayer Materialscience Ag Alkylpolyglycoside als stabilisatoren für pur-schäume
WO2010059925A1 (en) * 2008-11-20 2010-05-27 Polymer Phases, Inc. Polyesters, methods of their preparation and use
EP2628757A1 (en) * 2012-02-17 2013-08-21 Universiteit van Amsterdam Process for preparing foamed polymer
RU2517755C1 (ru) * 2013-02-26 2014-05-27 АйПи ПОЛИУРЕТАН ТЕКНОЛОДЖИС ЛТД Заливочная композиция для получения жесткого пенополиуретана для предизолированных труб

Also Published As

Publication number Publication date
EP3313919B1 (fr) 2019-04-24
CA2987086A1 (fr) 2016-12-29
JP6909163B2 (ja) 2021-07-28
FR3037964A1 (fr) 2016-12-30
JP2018524444A (ja) 2018-08-30
EP3313919A1 (fr) 2018-05-02
US10584224B2 (en) 2020-03-10
KR20180022682A (ko) 2018-03-06
US20180171090A1 (en) 2018-06-21
RU2018102244A (ru) 2019-07-24
RU2018102244A3 (ru) 2019-10-14
DK3313919T3 (da) 2019-06-24
WO2016207517A1 (fr) 2016-12-29
FR3037964B1 (fr) 2019-12-20

Similar Documents

Publication Publication Date Title
RU2716417C2 (ru) Термореактивные сложнополиэфирные пеноматериалы и способ изготовления
US4565833A (en) Fire retardant composition
CN114072440B (zh) 酚醛泡沫制造用树脂组合物以及酚醛泡沫及其制造方法
CN107257821B (zh) 热固泡沫和使用还原糖和胺的制造方法
IE52481B1 (en) Improvements in or relating to phenolic foams
KR20180054540A (ko) 레졸형 페놀수지 조성물, 그의 제조방법 및 그를 사용하여 제조된 레졸형 페놀수지 발포체
JP7458587B2 (ja) フェノール発泡体及びその製造方法
EP2748240B1 (en) Water expandable polymer beads
JP2020519726A (ja) 低い加工温度及び強化された接着力を有するサンドイッチパネルのためのポリイソシアヌレートフォーム
CA2885123C (en) Phenolic foam
EP3555184B1 (fr) Mousses organiques thermodurcies et procede de fabrication
EP3728428B1 (fr) Procede de fabrication de mousses polyester thermodurcies a base de sucres hydrogenes
JPS5876432A (ja) 吸水性及び保水性に優れたレゾ−ル型フエノ−ル樹脂発泡体の製造方法
US3128258A (en) Foamable composition comprising a halomethylated diaromatic ether, an organic solvent, and a finely divided solid salt of carbonic acid; process of foaming same; and foamed product
JP2588777B2 (ja) 発泡用フェノール樹脂組成物の製造方法
JPH036243A (ja) 発泡用フェノール樹脂組成物
JPS61243A (ja) フエノ−ル樹脂発泡体の製造方法
WO1990011312A1 (en) Method of producing heat-resistant urethane-modified polyisocyanurate foam
JPH01297437A (ja) フェノール性フォームの製造方法