RU2706057C2 - Способ и установка для сшивания или вулканизации удлиненного элемента - Google Patents

Способ и установка для сшивания или вулканизации удлиненного элемента Download PDF

Info

Publication number
RU2706057C2
RU2706057C2 RU2016105394A RU2016105394A RU2706057C2 RU 2706057 C2 RU2706057 C2 RU 2706057C2 RU 2016105394 A RU2016105394 A RU 2016105394A RU 2016105394 A RU2016105394 A RU 2016105394A RU 2706057 C2 RU2706057 C2 RU 2706057C2
Authority
RU
Russia
Prior art keywords
heating
heating zone
extrusion
zone
carried out
Prior art date
Application number
RU2016105394A
Other languages
English (en)
Other versions
RU2016105394A3 (ru
RU2016105394A (ru
Inventor
Пекка ХУОТАРИ
Original Assignee
Майфер С.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Майфер С.А. filed Critical Майфер С.А.
Publication of RU2016105394A publication Critical patent/RU2016105394A/ru
Publication of RU2016105394A3 publication Critical patent/RU2016105394A3/ru
Application granted granted Critical
Publication of RU2706057C2 publication Critical patent/RU2706057C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0222Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould the curing continuing after removal from the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/06Rod-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/145Pretreatment or after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/918Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling
    • B29C48/9185Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling in the direction of the stream of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3462Cables
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

Изобретение относится к способу и установке для сшивания или вулканизации удлиненного элемента, при этом способ включает стадию (2) экструдирования, на которой на проводящий элемент наносят покрытие в виде слоя сшиваемого синтетического материала, и стадию (3) сшивания, на которой проводят реакцию сшивания после стадии экструдирования. Реакцию сшивания проводят сначала в первой зоне (3а) нагревания в результате нагревания проводящего элемента с нанесенным покрытием при температуре, составляющей 550 градусов Цельсия или более. Первая зона (3а) нагревания располагается ниже по ходу технологического потока по отношению к стадии (2) экструдирования. После первой зоны (3а) нагревания реакцию сшивания проводят дальше в результате нагревания проводника с нанесенным покрытием при температуре 200-300 градусов Цельсия во второй зоне (3b) нагревания. Техническим результатом изобретения является повышение качества изделий. 2 н. и 8 з.п. ф-лы, 6 ил.

Description

Изобретение относится к способу сшивания или вулканизации удлиненного элемента, который включает стадию экструдирования, на которой на проводящий элемент наносят покрытие в виде слоя сшиваемого синтетического материала, и стадию сшивания, на которой проводят реакцию сшивания, после стадии экструдирования. Изобретение также относится к установке для сшивания или вулканизации удлиненного элемента.
Настоящее изобретение относится к способу и установке, использующимся в процессе изготовления электрических кабелей, в особенности кабелей высокого и сверхвысокого напряжения (кабелей СН, ВН и СВН). Данные кабели в основном являются изолированными пластиком и сшитыми в технологических линиях непрерывной вулканизации (технологических линиях НВ). Обсуждающиеся выше технологические линии непрерывной вулканизации могут представлять собой либо наклонные технологические линии НВ (технологические линии CCV), либо вертикальные технологические линии непрерывной вулканизации (технологические линии VCV), использующие сухое отверждение.
Сердцевина кабеля состоит из проводящего элемента (Al или Cu, 35…3500 мм2) и трех изолирующих слоев (внутренний полупроводящий 0,5…2 мм, изоляционный 3,5…35 мм и наружный полупроводящий 0,5…2 мм).
Отверждение кабеля достигается в работающей под давлением трубе (трубе НВ) при давлении, составляющем приблизительно 10 бар, при внутреннем диаметре 200…300 мм и длине 100…200 м. Сшивание слоев имеет место в первой секции трубы НВ в атмосфере азота. В целях активирования химической реакции сшивания изоляционные слои нагревают до повышенной температуры (200…300°С). Данная повышенная температура создает также и термическое расширение.
Вопросы, обсуждавшиеся выше, хорошо известны специалистам в данной области техники, и поэтому функционирование и/или конструкция технологических линий непрерывной вулканизации не описываются подробно в настоящем документе. В качестве примера документов предшествующего уровня техники, в которых описывается методика, относящаяся к технологическим линиям непрерывной вулканизации, может быть упомянута публикация ЕР 2574439 А1.
Проблемы предшествующего уровня техники относятся к круглости сердцевины или фактически ее отсутствию. Другими словами, при использовании методики предшествующего уровня техники результат, то есть поперечное сечение кабеля, не всегда совершенно круглое, но, например, может быть овальным или иметь некоторую другую форму.
Отсутствие круглости у сердцевины в общем случае может быть подразделено на следующие далее категории, а именно:
- уплощенность вблизи швов изоляционного слоя
- общая овальная форма
- провисание (в технологических линиях CCV)
- неправильная форма, обусловленная распределителем потока
Первые три категории являются теми категориями, которые наиболее важны. Провисание, очевидно, не является проблемой в вертикальных технологических линиях вулканизации. Распределение потока изоляционного слоя является достаточно хорошим для того, чтобы не вызывать появления какого-либо измеримого отклонения от круглости. Поэтому как уплощенность, так и овальная форма развиваются во время фазы сшивания.
Цель настоящего изобретения заключается в исключении проблем предшествующего уровня техники. Этого добиваются при использовании настоящего изобретения. Способ изобретения характеризуется тем, что реакцию сшивания проводят сначала в первой зоне нагревания в результате нагревания проводящего элемента с нанесенным покрытием при температуре, составляющей 550 градусов Цельсия или более, при этом первая зона нагревания располагается ниже по ходу технологического потока по отношению к стадии экструдирования, а после первой зоны нагревания реакцию сшивания проводят дальше в результате нагревания проводника с нанесенным покрытием при температуре 200-300 градусов Цельсия во второй зоне нагревания. Установка изобретения характеризуется тем, что реакция сшивания приспособлена для проведения сначала в первой зоне нагревания в результате нагревания проводящего элемента с нанесенным покрытием при температуре, составляющей 550 градусов Цельсия или более, при этом первая зона нагревания расположена ниже по ходу технологического потока по отношению к экструзионной головке, а после первой зоны нагревания реакция сшивания приспособлена для проведения дальше во второй зоне нагревания в результате нагревания проводника с нанесенным покрытием при температуре 200-300 градусов Цельсия.
Преимущество изобретения заключается в разрешении в нем обсуждавшихся выше проблем предшествующего уровня техники.
В следующем далее изложении изобретение будет описываться более подробно при обращении к прилагаемым чертежам, при этом
Фигура 1 демонстрирует принципиальную планировку вертикальной технологической линии непрерывной вулканизации,
Фигура 2 демонстрирует воздействие отверждения изобретения на уплощенность (глубину шва) в сопоставлении с отверждением предшествующего уровня техники,
Фигура 3 демонстрирует воздействие отверждения изобретения на овальную форму в сопоставлении с отверждением предшествующего уровня техники,
Фигура 4 демонстрирует глубину проникновения сшивания, полученную при использовании изобретения и предшествующего уровня техники,
Фигура 5 демонстрирует профили зон нагревания для изобретения и предшествующего уровня техники, и
Фигура 6 демонстрирует ситуацию с расширением в способе сшивания, наблюдаемую в поперечном сечении кабеля.
Изобретение описывается при использовании вертикальной технологической линии непрерывной вулканизации в качестве примера. Фигура 1 демонстрирует принципиальную планировку технологической линии вулканизации, в частности вертикальной технологической линии непрерывной вулканизации (технологической линии VCV). Продемонстрированная технологическая линия содержит подающее устройство 1, блок 2 экструзионной головки, трубу 3 вулканизации, трубу 4 охлаждения и принимающее устройство 5. Проводник направляют от подающего устройства 1 до принимающего устройства 4 через технологическую линию. Фигура 1 демонстрирует только самые основные элементы технологической линии. Как это сразу же осознают специалисты в соответствующей области техники при взгляде на фигуру 1, технологическая линия также может содержать дополнительные элементы, то есть предварительный нагреватель для проводящего элемента, последующий нагреватель и отмеряющие тяговые устройства или отмеряющие гусеничные тяговые устройства и тому подобное. Как это было указано раньше, функционирование и конструкция технологической линии, продемонстрированной на фигуре 1, хорошо известны специалистам в данной области техники, и поэтому упомянутые вопросы не описываются подробно в настоящем документе. Данные вопросы широко описывались на предшествующем уровне техники, например, в публикации ЕР 2574439, относящейся к предшествующему изложению.
В технологической линии ВНВ конструкция, охватывающая кабель, является радиально симметричной, таким образом, явления асимметрии, создающие отклонения от круглости, должны встречаться в самих слоях, в частности в изоляционном слое. Эффекты, создающие асимметрию, представляют собой комбинацию из
- асимметричной температуры
- механической ослабленности швов
- молекулярной ориентации
- механических напряжений
- неоднородности
Ни один из данных эффектов не будет достаточно сильным для стимулирования возникновения отклонений от круглости в случае простого охлаждения кабеля при отсутствии сшивания. Отклонения от круглости имеют своим происхождением наличие внутренних сил и смещения (как радиального, так и тангенциального), которые имеют место при термическом расширении сердцевины во время сшивания. Увеличенное термическое расширение в результате приводит к получению увеличенного отклонения от круглости. Механическая ослабленность (меньшее переплетение молекул в сопоставлении с остальной частью слоя пластика) в области шва приводит к появлению уплощенных областей (то есть уменьшенной толщины). Соотношение между овальной формой и другими эффектами, создающими асимметрию, является менее очевидным.
Идея изобретения заключается в сшивании поверхностного слоя вплоть до определенной глубины проникновения у сердцевины при использовании короткой первой зоны 3а нагревания для отверждения с исключительно высокой температурой. Изобретение может быть достаточно хорошо описано при использовании термина «импульсное отверждение». В полноразмерной технологической линии НВ данная конкретная первая зона 3а нагревания будет располагаться непосредственно ниже по ходу технологического потока по отношению к экструзионной головке или экструзионной установке 2 (например, непосредственно после экструзионной головки или экструзионной установки 2) при длине 0,5-4 м и заданной температуре, составляющей 550°C и более. После упомянутой первой зоны 3а нагревания способ отверждения продолжают в результате нагревания сердцевины во второй зоне 3b нагревания при более низкой температуре 200-300 градусов Цельсия.
В соответствии с технологическим устройством предшествующего уровня техники температура поверхности кабеля не должна превышать 300°С. Данное ограничение неприменимо для импульсного отверждения, поскольку термическое разложение поверхности зависит как от времени воздействия, так и от температуры; для полупроводящих материалов на основе сополимеров ЭЭА (этилена-этилакрилата) и ЭБА (этилена-бутилакрилата) приемлемой является намного более высокая температура.
Сшивание, индуцированное на ранней стадии в результате импульсного отверждения, упрочняет поверхность области шва, где воздействие термического расширения является наиболее сильным (фигура 2). Это также фиксирует первоначальную круглую форму (фигура 3). Критическим является применение импульсного отверждения в самом начале фазы сшивания до термического расширения.
Глубину проникновения определяют как расстояние от наружной поверхности, где степень сшивание превосходит 80%. Фигура 4 сопоставляет рассчитанные глубины проникновения вдоль трубы НВ, представленные в виде глубины проникновения для стандартного способа предшествующего уровня техники d(n) и для импульсного отверждения d(s).
Вычисление проводили для идентичного кабеля в соответствии с представлением на фигуре 2 и фигуре 3 (алюминиевый проводник Dc=50,0 мм, наружный диаметр Do=98,0 мм). Очевидно то, что импульсное отверждение приводит к получению значительного слоя сшитого материала на ранней стадии, что придает прочность наружной стороне изоляции для противостояния воздействию напряжений, связанных с термическим расширением. В качестве примера, глубина проникновения является почти что удвоенной на длине 7 м, где начинает развиваться значительное расширение.
Рассчитанное термическое расширение для совокупной толщины слоя (всех трех слоев) составляет 2,2% при импульсном отверждении и 2,6% при обычном отверждении. Соответствующие профили нагревания проиллюстрированы на фигуре 5, демонстрирующей профиль зоны нагревания для импульсного нагревания Tz(s) и профиль зоны нагревания для обычного отверждения Tz(n).
Фигура 5 также демонстрирует то, как проводят нагревание при более низкой температуре после первой зоны 3а нагревания во второй зоне 3b нагревания. В данном примере используют короткую пассивную и нейтральную «соединительную муфту» 8, соединяющую экструзионную головку с трубой НВ. Длина соединительной муфты может составлять, например, 2,5 м.
Первая зона 3а нагревания может быть расположена либо выше, либо ниже по ходу технологического потока по отношению к соединительной муфте 8 в вертикальных технологических линиях непрерывной вулканизации. Фигура 1 демонстрирует первую зону нагревания, расположенную выше по ходу технологического потока, то есть первая зона 3а нагревания располагается до соединительной муфты 8 при взгляде в направлении движения сердцевины 6. В положении ниже по ходу технологического потока первая зона 3а нагревания расположена после соединительной муфты при взгляде в направлении движения сердцевины 6. В данном случае дело заключается в том, что экструдированный поверхностный слой сшивают до того, как термическое расширение станет значительным. В наклонных технологических линиях вулканизации ситуация является другой вследствие провисания. По указанной причине в наклонных технологических линиях вулканизации первая зона 3а нагревания должна быть расположена настолько близко к экструзионной головке 2, насколько это возможно, то есть выше по ходу технологического потока по отношению к соединительной муфте 8.
Причина того, почему настоящее изобретение, то есть, импульсное отверждение, улучшает круглость и уменьшает уплощенность, вкратце может быть описана следующим далее образом при взгляде на фигуру 6, демонстрирующую поперечное сечение кабеля. Проводник продемонстрирован при использовании ссылочной позиции 6, а полупроводящий и изоляционный материал продемонстрирован при использовании ссылочной позиции 7 на фигуре 6.
Причина уплощенности заключается в тангенциальном смещении наружного полупроводящего и изоляционного материала. Шов (линия спая) характеризуется более ослабленной прочностью расплава в сопоставлении с остальной частью изоляции/полупроводника. Обычно при расширении внутренних частей (смотрите фигуру 6, расширение а) окружность увеличивается. Поскольку область шва является более ослабленной, она растягивается в тангенциальном направлении (фигура 6, растяжение b) и становится более тонкой (фигура 5, утончение с). Описанный механизм имеет место сначала поблизости от поверхности, а после этого производит проникновение и ослабление в направлении проводника.
При импульсном отверждении быстрое сшивание окружности до значительного термического расширения приводит к упрочнению области шва и значительному уменьшению уплощенности.
Изобретение было описано выше при использовании варианта осуществления, продемонстрированного на фигурах. Однако продемонстрированный вариант осуществления никоим образом не предусматривает ограничения изобретения, а изобретение может варьироваться совершенно свободно в объеме формулы изобретения. Продемонстрированный вариант осуществления относится к вертикальной технологической линии непрерывной вулканизации (технологической линии VCV). Однако изобретение не ограничивается технологическими линиями VCV, а изобретение может быть хорошо использовано также и в связи с непрерывными наклонными технологическими линиями НВ (технологическими линиями CCV) и тому подобным.

Claims (12)

1. Способ сшивания или вулканизации удлиненного элемента, который включает стадию (2) экструдирования, на которой на проводящий элемент наносят покрытие в виде слоя сшиваемого синтетического материала, и стадию (3) сшивания, на которой проводят реакцию сшивания, после стадии экструдирования,
отличающийся тем, что реакцию сшивания проводят сначала в первой зоне (3а) нагревания, имеющей длину 0,5-4 м, в результате нагревания проводящего элемента с нанесенным покрытием при температуре, составляющей 550 градусов Цельсия или более, при этом первая зона (3а) нагревания располагается ниже по ходу технологического потока по отношению к стадии (2) экструдирования, а после первой зоны (3а) нагревания реакцию сшивания проводят дальше в результате нагревания проводника с нанесенным покрытием при температуре 200-300 градусов Цельсия во второй зоне (3b) нагревания.
2. Способ по п. 1, отличающийся тем, что нагревание в первой зоне (3а) нагревания проводят выше по ходу технологического потока по отношению к пассивной соединительной муфте (8), соединяющей стадию (2) экструдирования со второй зоной (3b) нагревания.
3. Способ по п. 1, отличающийся тем, что нагревание в первой зоне (3а) нагревания проводят ниже по ходу технологического потока по отношению к пассивной соединительной муфте (8), соединяющей стадию (2) экструдирования со второй зоной (3b) нагревания.
4. Способ по любому из пп. 1-3, отличающийся тем, что его осуществляют на вертикальной технологической линии непрерывной вулканизации (технологической линии VCV).
5. Способ по п. 1 или 2, отличающийся тем, что его осуществляют на наклонной технологической линии непрерывной вулканизации (технологической линии CCV).
6. Установка для сшивания или вулканизации удлиненного элемента, в которой на проводящий элемент наносят покрытие в виде слоя сшиваемого синтетического материала при использовании экструзионной головки (2) и после экструзионной головки проводят реакцию сшивания в трубе (3) вулканизации,
отличающаяся тем, что реакция сшивания приспособлена для проведения сначала в первой зоне (3а) нагревания в результате нагревания проводящего элемента с нанесенным покрытием при температуре, составляющей 550 градусов Цельсия или более, при этом первая зона нагревания (3а) имеет длину 0,5-4 м и расположена ниже по ходу технологического потока по отношению к экструзионной головке (2), а после первой зоны (3а) нагревания реакция сшивания приспособлена для проведения дальше во второй зоне (3b) нагревания в результате нагревания проводника с нанесенным покрытием при температуре 200-300 градусов Цельсия.
7. Установка по п. 6, отличающаяся тем, что первая зона (3а) нагревания расположена между экструзионной головкой (2) и пассивной соединительной муфтой (8), соединяющей экструзионную головку (2) с трубой (3) вулканизации.
8. Установка по п. 6, отличающаяся тем, что первая зона (3а) нагревания расположена между пассивной соединительной муфтой (8), соединяющей экструзионную головку (2) с трубой (3) вулканизации, и второй зоной (3b) вулканизации трубы (3) вулканизации.
9. Установка по любому из пп. 6-8, отличающаяся тем, что она представляет собой часть вертикальной технологической линии непрерывной вулканизации (технологической линии VCV).
10. Установка по п. 6 или 7, отличающаяся тем, что она представляет собой часть наклонной технологической линии непрерывной вулканизации (технологической линии CCV).
RU2016105394A 2015-02-18 2016-02-17 Способ и установка для сшивания или вулканизации удлиненного элемента RU2706057C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20155106 2015-02-18
FI20155106 2015-02-18

Publications (3)

Publication Number Publication Date
RU2016105394A RU2016105394A (ru) 2017-08-22
RU2016105394A3 RU2016105394A3 (ru) 2019-06-20
RU2706057C2 true RU2706057C2 (ru) 2019-11-13

Family

ID=55755294

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016105394A RU2706057C2 (ru) 2015-02-18 2016-02-17 Способ и установка для сшивания или вулканизации удлиненного элемента

Country Status (8)

Country Link
US (1) US9856351B2 (ru)
EP (1) EP3059741B1 (ru)
KR (1) KR102172809B1 (ru)
CN (1) CN105895271B (ru)
ES (1) ES2716166T3 (ru)
PL (1) PL3059741T3 (ru)
RU (1) RU2706057C2 (ru)
TW (1) TWI688972B (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110375541A (zh) * 2019-06-10 2019-10-25 淮南新光神光纤线缆有限公司 电缆密封无氧烧结装置及烧结方法
CN112309647B (zh) * 2019-07-26 2022-05-06 无锡鑫宏业特塑线缆有限公司 新能源电动车用电缆线的立式生产线
CN112318790B (zh) * 2020-09-09 2022-08-19 西安近代化学研究所 一种高粘度硅基绝热层硫化成型工艺
CN114083726B (zh) * 2021-11-05 2022-12-06 瑞邦电力科技有限公司 内半导电层交联成型装置及交联成型工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2143978C1 (ru) * 1993-08-02 2000-01-10 Депрон Б.В. Формованное изделие из термопласта и способ его получения
RU2171744C1 (ru) * 2000-09-28 2001-08-10 Общество с ограниченной ответственностью "Аквафор" Способ и устройство для непрерывной экструзии фильтрующих элементов
EP2574439A1 (en) * 2011-09-30 2013-04-03 Maillefer S.A. Method and arrangement of crosslinking or vulcanising an elongate element
EP2755211A1 (en) * 2013-01-09 2014-07-16 Maillefer S.A. Method and arrangement of crosslinking or vulcanizing an elongate element

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1722797A (en) * 1925-11-10 1929-07-30 Western Electric Co Method of and apparatus for applying and baking an insulating enamel coating
GB586209A (en) * 1944-09-05 1947-03-11 Henleys Telegraph Works Co Ltd Improvements relating to the vulcanising or like heat treatment of the rubber or other coverings of insulated electric wires
SE380126B (ru) 1970-09-21 1975-10-27 Fujikura Ltd
US4080131A (en) 1977-04-27 1978-03-21 General Cable Corporation Curing system for high voltage cross linked cables
DE2803252C2 (de) * 1978-01-26 1984-08-23 Vereinigung zur Förderung des Instituts für Kunststoffverarbeitung in Industrie und Handwerk an der Rhein.-Westf. Technischen Hochschule Aachen e.V., 5100 Aachen Verfahren zur Vernetzung von als elektrische Isolatoren dienendem Kunststoff und/oder Kautschuk
SE415006B (sv) 1978-03-07 1980-09-01 Asea Ab Sett att anbringaen isolering av tverbunden polymer pa en kabelledare
DE2814503A1 (de) 1978-03-31 1979-10-04 Siemens Ag Verfahren und vorrrichtung zum aufbringen einer vernetz- und vulkanisierbaren kunststoffisolierung
US4752217A (en) * 1987-08-28 1988-06-21 Essex Group, Inc. Wire coating oven including wire cooling apparatus
US5302411A (en) * 1991-01-22 1994-04-12 Endre Toth Process for vulcanizing insulated wire
JPH0773761A (ja) * 1993-09-03 1995-03-17 Furukawa Electric Co Ltd:The 電力ケーブルの押出式連続成形架橋方法及び装置
JPH0968388A (ja) * 1995-08-31 1997-03-11 Fujikura Ltd 走行長尺体の加圧加熱処理装置および加圧加熱処理方法
FR2762860B1 (fr) * 1997-05-02 1999-07-23 Alsthom Cge Alcatel Ligne d'emaillage d'un fil conducteur
CN1293577C (zh) * 2002-12-06 2007-01-03 河北宝丰线缆有限公司 垂直连续硫化立式“u”型交联聚乙烯绝缘电缆生产线
DE10311512B3 (de) * 2003-03-17 2004-11-04 Troester Gmbh & Co. Kg Anlage zur Herstellung von Kabeln
JP2008006972A (ja) 2006-06-29 2008-01-17 Toyoda Gosei Co Ltd ウエザストリップ
US8051607B2 (en) * 2005-11-09 2011-11-08 Toyoda Gosei Co., Ltd. Weather strip and manufacturing method thereof
CN102432928A (zh) * 2011-10-24 2012-05-02 天津鹏翎胶管股份有限公司 适用于微波硫化工艺的氯丁橡胶组合物及软管制备方法
CN102543316A (zh) * 2012-02-17 2012-07-04 杭州电缆股份有限公司 500kV交联电缆绝缘工序的加工方法
US20150013177A1 (en) * 2013-07-15 2015-01-15 Finishing Brands Holdings Inc. Curing System and Method
KR101492790B1 (ko) 2014-05-19 2015-02-13 주식회사 씨맥 전선 케이블 고속 화학가교 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2143978C1 (ru) * 1993-08-02 2000-01-10 Депрон Б.В. Формованное изделие из термопласта и способ его получения
RU2171744C1 (ru) * 2000-09-28 2001-08-10 Общество с ограниченной ответственностью "Аквафор" Способ и устройство для непрерывной экструзии фильтрующих элементов
EP2574439A1 (en) * 2011-09-30 2013-04-03 Maillefer S.A. Method and arrangement of crosslinking or vulcanising an elongate element
EP2755211A1 (en) * 2013-01-09 2014-07-16 Maillefer S.A. Method and arrangement of crosslinking or vulcanizing an elongate element

Also Published As

Publication number Publication date
KR102172809B1 (ko) 2020-11-03
CN105895271A (zh) 2016-08-24
TWI688972B (zh) 2020-03-21
TW201701302A (zh) 2017-01-01
CN105895271B (zh) 2019-06-04
US9856351B2 (en) 2018-01-02
PL3059741T3 (pl) 2019-07-31
RU2016105394A3 (ru) 2019-06-20
EP3059741A1 (en) 2016-08-24
KR20160101868A (ko) 2016-08-26
RU2016105394A (ru) 2017-08-22
ES2716166T3 (es) 2019-06-10
EP3059741B1 (en) 2018-12-19
US20160237226A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
RU2706057C2 (ru) Способ и установка для сшивания или вулканизации удлиненного элемента
RU2592539C2 (ru) Способ изготовления непрерывной композитной трубы, устройство для изготовления непрерывной композитной трубы
US11618237B2 (en) Co-extruded multilayer articles including continuous layer and discontinuous layer
US3538207A (en) Pressure equalizer for vulcanizable elastomers for three layer extrusion
US3944459A (en) Method and apparatus for applying reinforced insulation to a conductor
CN106505489A (zh) 一种海底电缆抢修用软接头的制作方法
KR20050086928A (ko) 복합 내부 도체를 갖는 동축 케이블의 제조방법 및제조장치
KR100371066B1 (ko) 전기절연체및그제조방법
US3479419A (en) Process and apparatus for curing material by induction heating
EP2755211B1 (en) Method and arrangement of crosslinking or vulcanizing an elongate element
WO2012086231A1 (ja) スリット入り収縮チューブ、ワイヤハーネス、および、スリット入り収縮チューブの製造方法
WO2002007948A1 (en) Method and device for manufacturing insulated tube
KR100965290B1 (ko) 나선상 지지구 제조 방법
JP2009083450A (ja) ベルトスリーブ加硫装置、ベルトスリーブの加硫方法、及び、ベルトスリーブの製造方法
US20130084383A1 (en) Method and arrangement of crosslinking or vulcanising an elongate element
US20040188876A1 (en) Coating of conductor lines
EP4160838A1 (en) Method of jointing a power cable
RU2601440C1 (ru) Способ наложения изоляции при изготовлении кабеля с токопроводящей жилой секторной формы
JP3446199B2 (ja) 多層絶縁電線の製造方法
RU2720086C9 (ru) Многослойная полимерная армированная труба, способ ее непрерывного изготовления и устройство для осуществления способа
JPH0773761A (ja) 電力ケーブルの押出式連続成形架橋方法及び装置
CN103065725A (zh) 牵引接头及防止蒸汽进入橡套电缆的方法
RU2188911C1 (ru) Устройство для гидроизоляции стыковых соединений
KR200248461Y1 (ko) 파이프 성형테이프
CN115579191A (zh) 一种电缆交联工序中的导体预热方法及预热系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210218