RU2699037C1 - Method of increasing reliability of temperature sensor attachment to surface of ceramic materials - Google Patents

Method of increasing reliability of temperature sensor attachment to surface of ceramic materials Download PDF

Info

Publication number
RU2699037C1
RU2699037C1 RU2018145486A RU2018145486A RU2699037C1 RU 2699037 C1 RU2699037 C1 RU 2699037C1 RU 2018145486 A RU2018145486 A RU 2018145486A RU 2018145486 A RU2018145486 A RU 2018145486A RU 2699037 C1 RU2699037 C1 RU 2699037C1
Authority
RU
Russia
Prior art keywords
temperature sensor
ceramic material
thermoelectrodes
heat
resistant adhesive
Prior art date
Application number
RU2018145486A
Other languages
Russian (ru)
Inventor
Михаил Юрьевич Русин
Павел Викторович Просунцов
Максим Олегович Забежайлов
Сергей Александрович Анучин
Мария Николаевна Кордо
Original Assignee
Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина" filed Critical Акционерное общество "Обнинское научно-производственное предприятие "Технология" им. А.Г. Ромашина"
Priority to RU2018145486A priority Critical patent/RU2699037C1/en
Application granted granted Critical
Publication of RU2699037C1 publication Critical patent/RU2699037C1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/04Flash butt welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

FIELD: test equipment.SUBSTANCE: invention relates to test equipment, mainly to technique of thermal testing of ceramic fairings of missiles during radiation heating. Disclosed is a method of improving the reliability of mounting a temperature sensor to the surface of a ceramic material, including mounting thermoelectrodes soldered without beads using a heat-resistant adhesive. Thermoelectrodes are placed in quartz tubes having thermal expansion coefficient close to that of ceramic material and glued to surface by heat-resistant adhesive. At that, quartz tubes are removed from work junction point at distance equal to 20 diameters of thermoelectrode.EFFECT: high reliability of attaching the temperature sensor to the surface of the ceramic material compared to the prototype by more than 5 times.1 cl, 1 dwg

Description

Изобретение относится к испытательной технике, преимущественно к технике проведения тепловых испытаний образцов и изделий из керамических материалов при радиационном нагреве.The invention relates to a testing technique, mainly to a technique for conducting thermal tests of samples and products of ceramic materials by radiation heating.

При наземной отработке конструкции теплонагруженных элементов летательных аппаратов проводят тепловые испытания материалов, которые воспроизводят эксплуатационный тепловой режим посредством радиационного нагрева. В процессе испытаний температура контролируется датчиками температуры (термопарами), закрепленными на поверхности образцов и изделий так, чтобы не нарушалась целостность конструкции и прочностные свойства изделия.During surface testing of the design of heat-loaded elements of aircraft, thermal tests of materials that reproduce the operational thermal regime by means of radiation heating are carried out. During testing, the temperature is controlled by temperature sensors (thermocouples), mounted on the surface of the samples and products so that the integrity of the structure and the strength properties of the product are not violated.

Известен способ крепления термопары на поверхности керамического материала термостойким клеем (Температурные измерения: Справочник / Отв. ред. Геращенко О.А. Киев: Наук. Думка, 1989. 704 с.), выбранный в качестве прототипа. При этом термопара приклеивается по всей длине термоэлектродов термостойким клеем. Недостатком этого способа является ненадежность крепления термопары при измерении температуры поверхности изделий из керамических материалов вследствие различия температурных коэффициентов расширения керамики и материала термоэлектродов. В зоне рабочего спая возникают температурные напряжения, приводящие к разрыву термопары при остывании. Таким образом повторный нагрев возможен только при демонтаже и повторной наклейке термопары.There is a method of mounting a thermocouple on the surface of a ceramic material with heat-resistant adhesive (Temperature measurements: Reference / Ed. Edited by Gerashchenko OA Kiev: Science. Dumka, 1989. 704 S.), selected as a prototype. In this case, the thermocouple is glued along the entire length of the thermoelectrodes with heat-resistant adhesive. The disadvantage of this method is the unreliability of mounting the thermocouple when measuring the surface temperature of products made of ceramic materials due to the difference in temperature expansion coefficients of the ceramic and the material of the thermoelectrodes. In the area of the working junction, thermal stresses occur, leading to the rupture of the thermocouple during cooling. Thus, reheating is only possible with the dismantling and re-labeling of the thermocouple.

Задачей данного изобретения является повышение надежности крепления термопары на поверхности керамического материала при интенсивном радиационном нагреве.The objective of the invention is to increase the reliability of mounting a thermocouple on the surface of a ceramic material with intense radiation heating.

Задача решается тем, что предложен способ повышения надежности крепления датчика температуры к поверхности керамического материала, включающий - крепление спаянных без королька термоэлектродов с помощью термостойкого клея, термоэлектроды помещают в кварцевые трубки, имеющие коэффициент температурного расширения, близкий по значению с керамическим материалом, и приклеивают к поверхности термостойким клеем, при этом кварцевые трубки удалены от места рабочего спая на расстоянии равном 20 диаметрам термоэлектрода.The problem is solved in that a method is proposed for improving the reliability of fixing the temperature sensor to the surface of a ceramic material, including: fixing thermoelectrodes welded without a king using heat-resistant glue, the thermoelectrodes are placed in quartz tubes having a coefficient of thermal expansion similar in value to the ceramic material and glued to surface with heat-resistant adhesive, while the quartz tubes are removed from the working junction at a distance equal to 20 diameters of the thermoelectrode.

Изобретение поясняется конкретным примером крепления датчика температуры предложенным способом.The invention is illustrated by a specific example of mounting the temperature sensor of the proposed method.

Термопара изготовлена из термоэлектродов диаметром 0,2 мм. На расстоянии 8 мм от спая термоэлектроды помещены в кварцевые трубки с наружным диаметром 1,4 мм. Проводился нагрев при плотности потока падающего излучения 35 Вт/см2 в течение 50 с. Температура поверхности керамического материала достигала 1100°С. На фиг. показана микрофотография термопары после 5 циклов нагрева - остывания. Повреждения термопары не обнаружены. Показания термопары воспроизводятся с погрешностью не более 5°С, что доказывает повышение надежности заявляемого способа по сравнению с прототипом более, чем в 5 раз.The thermocouple is made of thermoelectrodes with a diameter of 0.2 mm. Thermoelectrodes are placed in quartz tubes with an outer diameter of 1.4 mm at a distance of 8 mm from the junction. The heating was carried out at an incident radiation flux density of 35 W / cm 2 for 50 s. The surface temperature of the ceramic material reached 1100 ° C. In FIG. shows a micrograph of a thermocouple after 5 cycles of heating - cooling. Damage to the thermocouple is not detected. The thermocouple readings are reproduced with an error of not more than 5 ° C, which proves the increase in the reliability of the proposed method in comparison with the prototype by more than 5 times.

Claims (1)

Способ повышения надежности крепления датчика температуры к поверхности керамического материала, включающий изготовление датчика температуры посредством спая термоэлектродов из термоэлектродной проволоки, крепление его к керамической поверхности термостойким клеем, отличающийся тем, что термоэлектроды спаивают без образования королька и помещают в кварцевые трубки с коэффициентом температурного расширения, согласованнным с керамическим материалом, расположенные на расстоянии от спая не менее 20 диаметров термоэлектрода, и приклеивают термостойким клеем к поверхности.A method for improving the reliability of attaching a temperature sensor to the surface of a ceramic material, including manufacturing a temperature sensor by soldering thermoelectrodes from a thermoelectrode wire, attaching it to a ceramic surface with heat-resistant adhesive, characterized in that the thermoelectrodes are soldered without formation of a bead and placed in quartz tubes with a coefficient of thermal expansion that is agreed upon with ceramic material, located at a distance from the junction of at least 20 diameters of the thermoelectrode, and They are heat-resistant adhesive to the surface.
RU2018145486A 2018-12-21 2018-12-21 Method of increasing reliability of temperature sensor attachment to surface of ceramic materials RU2699037C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018145486A RU2699037C1 (en) 2018-12-21 2018-12-21 Method of increasing reliability of temperature sensor attachment to surface of ceramic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018145486A RU2699037C1 (en) 2018-12-21 2018-12-21 Method of increasing reliability of temperature sensor attachment to surface of ceramic materials

Publications (1)

Publication Number Publication Date
RU2699037C1 true RU2699037C1 (en) 2019-09-03

Family

ID=67851788

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018145486A RU2699037C1 (en) 2018-12-21 2018-12-21 Method of increasing reliability of temperature sensor attachment to surface of ceramic materials

Country Status (1)

Country Link
RU (1) RU2699037C1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU301567A1 (en) * ПАТЕНТН ЕХйН NAS LIBRARY. M. Evsyunin
SU1185117A1 (en) * 1984-06-08 1985-10-15 Предприятие П/Я А-3759 Method of producing the thermocouple hot junction
SU1278619A1 (en) * 1985-01-16 1986-12-23 Предприятие П/Я А-3759 Method for manufacturing hot joint of thermocouple
RU2114404C1 (en) * 1995-11-14 1998-06-27 Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики Process of manufacture of thermocouples
CN106568520A (en) * 2016-11-07 2017-04-19 宁波精丰测控技术有限公司 High temperature sensitive ceramic armored high-temperature thermocouple and manufacture method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU301567A1 (en) * ПАТЕНТН ЕХйН NAS LIBRARY. M. Evsyunin
SU1185117A1 (en) * 1984-06-08 1985-10-15 Предприятие П/Я А-3759 Method of producing the thermocouple hot junction
SU1278619A1 (en) * 1985-01-16 1986-12-23 Предприятие П/Я А-3759 Method for manufacturing hot joint of thermocouple
RU2114404C1 (en) * 1995-11-14 1998-06-27 Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт технической физики Process of manufacture of thermocouples
CN106568520A (en) * 2016-11-07 2017-04-19 宁波精丰测控技术有限公司 High temperature sensitive ceramic armored high-temperature thermocouple and manufacture method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Боровкова Т.В., Елисеев В.Н., Лопухов И.И. "Повышение точности измерения температуры при испытаниях на стенде радиационного нагрева элементов конструкций из низкотеплопроводных материалов", Вестник Московского государственного технического университета им. Н.Э. Баумана. Серия "Машиностроение", 2006, номер 3, С.51-52. *

Similar Documents

Publication Publication Date Title
Panda et al. Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment
JP5915026B2 (en) Plate for temperature measurement and temperature measurement apparatus provided with the same
JP2014122843A (en) Heat conductivity measuring apparatus and measuring method
Palmer et al. Development of test facilities for thermo-mechanical fatigue testing
RU2699037C1 (en) Method of increasing reliability of temperature sensor attachment to surface of ceramic materials
McNamara et al. Infrared imaging microscope as an effective tool for measuring thermal resistance of emerging interface materials
CN109313089B (en) Apparatus and method for determining convective heat transfer coefficients
RU2649248C1 (en) Method of thermal tests of ceramic shells
RU2577389C1 (en) Method of calibrating thermoelectric heat flux sensors
CN113203768A (en) Thermal conductivity testing method of anisotropic material based on laser heating
Murthy et al. High-heat-flux sensor calibration using black-body radiation
JP2011242248A (en) Method and device for observing inner structure of goods
RU2694115C1 (en) Method of determining degree of blackness of surface of natural fairings of missiles during thermal tests and installation for its implementation
RU2710123C1 (en) Method of mounting a thermoelectric temperature converter on the surface of ceramic materials
Diller et al. Heat flux measurement
CN107515059B (en) Electrical impedance-tungsten lamp composite type radiant heating experimental device and test system
Hohmann et al. Calibration of heat flux sensors with small heat fluxes
JP2006242574A (en) Pad type thermocouple
JP2016020875A (en) Evaluation method of defect/damage on heat-insulating coating film and evaluation apparatus
KR101831682B1 (en) Apparatus and method for measuring gas temperature
RU2795250C1 (en) Heat flux sensor calibration method
JP2009002688A (en) Temperature calibration method for infrared detector and specific heat capacity measuring method
CN114777929B (en) Ground test temperature measurement method based on trajectory in airplane ground heat intensity test
Jones et al. Assessment of infrared thermography for cyclic high-temperature measurement and control
JP5793454B2 (en) Joining apparatus and joining method