JP2016020875A - Evaluation method of defect/damage on heat-insulating coating film and evaluation apparatus - Google Patents

Evaluation method of defect/damage on heat-insulating coating film and evaluation apparatus Download PDF

Info

Publication number
JP2016020875A
JP2016020875A JP2014145463A JP2014145463A JP2016020875A JP 2016020875 A JP2016020875 A JP 2016020875A JP 2014145463 A JP2014145463 A JP 2014145463A JP 2014145463 A JP2014145463 A JP 2014145463A JP 2016020875 A JP2016020875 A JP 2016020875A
Authority
JP
Japan
Prior art keywords
coating film
thermal barrier
barrier coating
defect
damage evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014145463A
Other languages
Japanese (ja)
Inventor
雅貴 田村
Masaki Tamura
雅貴 田村
国彦 和田
Kunihiko Wada
国彦 和田
悟 窪谷
Satoru Kubotani
悟 窪谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014145463A priority Critical patent/JP2016020875A/en
Publication of JP2016020875A publication Critical patent/JP2016020875A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method of defect/damage on a heat-insulating coating film capable of easily determining a manufacturing defect or an operational damage on a boundary of the heat-insulating coating film and a metal base by means of visual inspection or observation via a camera.SOLUTION: The evaluation method of defect/damage on a heat-insulating coating film includes: heating the surface of a heat-insulating coating film 5 which is formed integrally with a metal base 13 red-hot; and evaluating a defect or damage on the heat-insulating coating film based on the color or brightness of the surface of the heat-insulating coating film 5.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、高温環境で使用される機器を非破壊で評価する遮熱コーティング皮膜欠陥損傷評価方法および評価装置に関する。 Embodiments described herein relate generally to a thermal barrier coating film defect damage evaluation method and an evaluation apparatus for non-destructively evaluating a device used in a high temperature environment.

遮熱コーティングと金属基材との界面欠陥を検出する方法として、例えば界面欠陥が断熱となることを利用して、加熱器(ヒーターやランプ)で加熱したときの温度分布を放射温度計(サーモグラフィー)により計測するサーモグラフィー法が知られている。このサーモグラフィー法では、加熱源の制約から、可視光では変化が生じず、赤外線でしか変化が見いだせない状態であった。 As a method of detecting interface defects between thermal barrier coatings and metal substrates, for example, utilizing the fact that interface defects become heat insulation, the temperature distribution when heated by a heater (heater or lamp) is measured using a radiation thermometer (thermography) ) Is known for measuring thermography. In this thermography method, there was no change in visible light due to the limitation of the heat source, and a change was found only in infrared rays.

一方、加熱源としてレーザ光を用いる方法もあるが、赤外線カメラによりコーティング皮膜の表面温度分布に応じた赤外線の強度分布を測定しており、これもサーモグラフィー法の範囲であった。 On the other hand, there is a method using laser light as a heating source, but the infrared ray intensity distribution corresponding to the surface temperature distribution of the coating film is measured by an infrared camera, which is also within the range of the thermography method.

特開2002−257764号公報JP 2002-257764 A 特開2000−206100号公報JP 2000-206100 A 特開2001−108643号公報JP 2001-108643 A 特開2013−246097号公報JP 2013-246097 A

上記従来技術では、ヒータやランプ、レーザ光のいずれの加熱源においても、コーティング皮膜の表面温度分布や赤外線強度分布を測定する方法を採用している。こうした方法を用いる赤外線を検出する機器には、検出感度、検出レベル、放射率の設定など制約が多いという課題があった。 In the above prior art, a method of measuring the surface temperature distribution and infrared intensity distribution of the coating film is adopted in any heating source of a heater, a lamp, and laser light. An apparatus for detecting infrared rays using such a method has a problem that there are many restrictions such as setting of detection sensitivity, detection level, and emissivity.

本発明の目的は、目視、カメラによる観察で容易に遮熱コーティングと金属基材との界面の製造時の欠陥または運転時の損傷を判別できるコーティング皮膜の欠陥損傷評価装置と、本装置を用いてコーティング皮膜の熱サイクル試験を行うコーティング皮膜の欠陥損傷評価方法を提供する。 An object of the present invention is to use a coating film defect damage evaluation apparatus capable of easily distinguishing defects during production or damage during operation of an interface between a thermal barrier coating and a metal substrate by visual observation or observation with a camera, and this apparatus. The present invention provides a coating film defect damage evaluation method for performing a thermal cycle test of a coating film.

本実施形態に係る遮熱コーティング皮膜欠陥損傷評価方法は、コーティング皮膜を金属基材と一体に形成した耐熱コーティング部材の遮熱コーティング皮膜の表面を赤熱するまで加熱させ、この遮熱コーティング皮膜の表面の色によって遮熱コーティング皮膜の欠陥量または損傷量を評価することを特徴とする。 In the thermal barrier coating film defect damage evaluation method according to the present embodiment, the surface of the thermal barrier coating film of the heat resistant coating member in which the coating film is formed integrally with the metal substrate is heated to red hot, and the surface of the thermal barrier coating film It is characterized in that the amount of defects or damage of the thermal barrier coating film is evaluated based on the color of the film.

また、本実施形態に係る遮熱コーティング皮膜欠陥損傷評価装置は、コーティング皮膜を金属基材と一体に形成した耐熱コーティング部材の遮熱コーティング皮膜の表面を赤熱するまで加熱させる加熱装置と、この遮熱コーティング皮膜の表面の色によって遮熱コーティング皮膜の欠陥量または損傷量を評価する欠陥量または損傷量評価装置とを有することを特徴とする。   In addition, the thermal barrier coating film defect damage evaluation apparatus according to the present embodiment includes a heating device that heats the surface of the thermal barrier coating film of the heat-resistant coating member formed integrally with the metal substrate until it becomes red hot, and the shield. And a defect amount or damage amount evaluation device for evaluating the defect amount or damage amount of the thermal barrier coating film according to the color of the surface of the thermal coating film.

本発明の実施形態によれば、目視、カメラによる観察で容易に遮熱コーティングと金属基材との界面の製造時の欠陥または運転時の損傷を判別することができる。   According to the embodiment of the present invention, it is possible to easily discriminate defects during manufacturing or damage during operation of the interface between the thermal barrier coating and the metal substrate by visual observation or observation with a camera.

第1の実施形態を示し、(a)は遮熱コーティング皮膜欠陥損傷評価装置の概略縦断面図、(b)はレーザ照射を示す平面図。1 shows a first embodiment, (a) is a schematic longitudinal sectional view of a thermal barrier coating film defect damage evaluation apparatus, and (b) is a plan view showing laser irradiation. 第2の実施形態を示し、(a)は遮熱コーティング皮膜欠陥損傷評価装置の概略縦断面図、(b)はレーザ照射を示す平面図。The 2nd Embodiment is shown, (a) is a schematic longitudinal cross-sectional view of a thermal-shielding coating-film defect damage evaluation apparatus, (b) is a top view which shows laser irradiation.

以下、本発明の実施形態に係る遮熱コーティング皮膜欠陥損傷評価装置および評価方法について図面を参照しながら説明する。   Hereinafter, a thermal barrier coating film defect damage evaluation apparatus and an evaluation method according to an embodiment of the present invention will be described with reference to the drawings.

(実施例1)
図1(a)に遮熱コーティング皮膜欠陥損傷評価装置の第1の実施形態である概略縦断面図を示す。
Example 1
FIG. 1A is a schematic longitudinal sectional view showing a first embodiment of the thermal barrier coating film defect damage evaluation apparatus.

同図に示すように、光ファイバー1より伝送され、照射ヘッド2に内蔵されたビームシェイパー3によりレーザ光4が、遮熱コーティング皮膜5表面に照射される。このレーザ光4はビームシェイパー(結合光学素子)3でビーム形状が成形され、この成形されたレーザ光4のレーザ照射部6は図1(b)に示すように円形に形成され、レーザ照射部6全体でほぼ均一なエネルギー分布となる。 As shown in the drawing, the laser beam 4 is irradiated onto the surface of the thermal barrier coating 5 by a beam shaper 3 transmitted from the optical fiber 1 and built in the irradiation head 2. The beam shape of the laser beam 4 is shaped by a beam shaper (coupled optical element) 3, and the laser irradiation unit 6 of the molded laser beam 4 is formed in a circular shape as shown in FIG. 6 has an almost uniform energy distribution.

この状態で、レーザ出力を増加させ、遮熱コーティング皮膜5表面のレーザ照射部6が赤熱するまで加熱することで、遮熱コーティング皮膜5と金属基材13の界面の製造時の欠陥または運転による損傷(以下、欠陥損傷と省略する。)7がある部分8が断熱層となるため金属基材13に熱が逃げづらくなり温度が上昇して白熱し、その色や輝度を確認して目視観察9で欠陥損傷を判別できる。 In this state, the laser output is increased, and heating is performed until the laser irradiation portion 6 on the surface of the thermal barrier coating film 5 is heated red, thereby depending on a defect or operation during manufacture of the interface between the thermal barrier coating film 5 and the metal substrate 13. Since the portion 8 with damage (hereinafter abbreviated as defect damage) becomes a heat insulating layer, heat does not easily escape to the metal base 13 and the temperature rises and becomes incandescent, and its color and brightness are confirmed and visually observed. The defect damage can be discriminated at 9.

先に指摘したエネルギー分布が均一なレーザ光4を用いるのは、この白熱部8が、エネルギー分布の不均一によるものではなく、遮熱コーティング皮膜5と金属基材13の界面の欠陥損傷によるものに限定するためである。また、目視観察9では記録に残らないため、カメラ10を用いる場合もある。 The reason why the laser beam 4 with the uniform energy distribution mentioned above is used is that the incandescent portion 8 is not due to nonuniform energy distribution but due to defect damage at the interface between the thermal barrier coating 5 and the metal substrate 13. It is for limiting to. Further, since the visual observation 9 does not remain in the record, the camera 10 may be used.

白熱部8の輝度は高いため、減光フィルター11をカメラ10に装着する。レーザ光4の波長や遮熱コーティング皮膜5の種類により、レーザ光4の吸収率が低い場合は、耐熱性の黒体12を含む塗料を遮熱コーティング皮膜5の表面に塗布する。また、吸収されずに反射したレーザ光4によって光ファイバー1を損傷させないため、レーザ光4は遮熱コーティング皮膜5の表面に対して斜めに照射する。 Since the brightness of the incandescent part 8 is high, the neutral density filter 11 is attached to the camera 10. If the absorption rate of the laser beam 4 is low due to the wavelength of the laser beam 4 or the type of the thermal barrier coating film 5, a coating containing a heat-resistant black body 12 is applied to the surface of the thermal barrier coating film 5. Further, since the optical fiber 1 is not damaged by the laser beam 4 reflected without being absorbed, the laser beam 4 is applied obliquely to the surface of the thermal barrier coating film 5.

金属基材13裏面を冷却孔14内を流通する冷却水で冷却し、板厚方向に温度勾配をつけることで、遮熱コーティング皮膜5の表面の温度が制御でき、遮熱コーティング皮膜5の表面の温度を一定に保つことで、遮熱コーティング皮膜5と金属基材13の界面の欠陥損傷7により生じる白熱部8がより明確となり、欠陥損傷7を発見しやすくなる。 The surface of the thermal barrier coating film 5 can be controlled by cooling the back surface of the metal base material 13 with cooling water flowing through the cooling holes 14 and providing a temperature gradient in the plate thickness direction. By keeping the temperature constant, the incandescent part 8 caused by the defect damage 7 at the interface between the thermal barrier coating film 5 and the metal substrate 13 becomes clearer and the defect damage 7 can be easily found.

なお、上記カメラ10による損傷欠陥評価は白熱部8の輝度を予め定めた所定値以上で、または白熱部8の色が所定の波長の色として検出された場合に損傷欠陥と自動で損傷量評価装置によって判定することも可能である。よって、より容易に欠陥損傷を発見しやすくすることができる。 Note that the damage defect evaluation by the camera 10 is performed automatically when the brightness of the incandescent part 8 is equal to or higher than a predetermined value or when the color of the incandescent part 8 is detected as a color having a predetermined wavelength. It can also be determined by the device. Therefore, it is possible to easily find defect damage more easily.

具体的な例を以下に示す。 Specific examples are shown below.

実施例1で用いた遮熱コーティング皮膜5は溶射によって形成した部分安定化ジルコニアからなる遮熱コーティング皮膜であり、金属基材13はNi基合金であり、その中間のボンドコート15はMCrAlY(MはNiおよびCoから選ばれる少なくとも一方)である。遮熱コーティング皮膜5表面に黒体12(放射率:約100%)を塗布し、レーザ光4の吸収率を増加させることで、出力100〜300W程度の約1〜2分間のレーザ光4の照射で遮熱コーティング皮膜5の表面温度は800〜1200℃程度になり、遮熱コーティング皮膜5表面は赤熱する。 The thermal barrier coating 5 used in Example 1 is a thermal barrier coating made of partially stabilized zirconia formed by thermal spraying, the metal substrate 13 is a Ni-based alloy, and the intermediate bond coat 15 is MCrAlY (M Is at least one selected from Ni and Co). By applying a black body 12 (emissivity: about 100%) to the surface of the thermal barrier coating 5 and increasing the absorption rate of the laser beam 4, the laser beam 4 having an output of about 100 to 300 W for about 1 to 2 minutes. By irradiation, the surface temperature of the thermal barrier coating film 5 becomes about 800 to 1200 ° C., and the surface of the thermal barrier coating film 5 becomes red hot.

遮熱コーティング皮膜5界面の欠陥7は断熱層となるため、その部分の遮熱コーティング皮膜は1200℃を越え、白熱する様子が目視でも確認できる。なお、図1ではボンドコート15を形成した例を示したが、このボンドコート15を省略した場合、またこのボンドコート15と金属基材13の間にさらに保護層を設けても上記実施例と同様の作用効果を得ることができる。 Since the defect 7 at the interface of the thermal barrier coating film 5 becomes a heat insulating layer, the thermal barrier coating film in that portion exceeds 1200 ° C., and it can be visually confirmed that it is incandescent. FIG. 1 shows an example in which the bond coat 15 is formed. However, when the bond coat 15 is omitted, a protective layer may be further provided between the bond coat 15 and the metal substrate 13 as in the above embodiment. Similar effects can be obtained.

また、800〜1200℃程度の遮熱コーティング皮膜5の表面温度は、ガスタービンの動静翼などと同レベルもしくはそれ以上の加速条件となる。加熱手段であるレーザ光の照射・停止を繰り返すことで、熱サイクル試験を行うことができる。また、白熱部の様子を観察することで、遮熱コーティング皮膜の断面マクロを観察せずとも、遮熱コーティング皮膜界面の欠陥が成長する様子を確認することもできる。 Moreover, the surface temperature of the thermal barrier coating film 5 of about 800 to 1200 ° C. is under the same or higher acceleration conditions as the moving and stationary blades of the gas turbine. By repeatedly irradiating and stopping the laser beam that is a heating means, a thermal cycle test can be performed. In addition, by observing the state of the incandescent part, it is possible to confirm that the defects at the interface of the thermal barrier coating film grow without observing the cross-sectional macro of the thermal barrier coating film.

なお、加熱手段としてレーザ光4を用いる例を示したが、ガス炎、電気ヒータを使用することも可能である。 In addition, although the example which uses the laser beam 4 as a heating means was shown, it is also possible to use a gas flame and an electric heater.

(実施例2)
図2(a)に遮熱コーティング皮膜欠陥損傷評価装置の第2の実施形態である概略縦断面図を示す。なお、図2において図1と同一部分には同一符号を付してその部分の構成の説明は省略する。
(Example 2)
FIG. 2A is a schematic longitudinal sectional view showing a second embodiment of the thermal barrier coating film defect damage evaluation apparatus. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description of the configuration of those parts is omitted.

図2(a)において、照射ヘッド2には光学系のカレイドスコープ20が内蔵されている。このカレイドスコープ20で、成形されたレーザ照射部6は図2(b)に示すように四角になり、レーザ光4の強度分布は均一となる。 2A, the irradiation head 2 includes a kaleidoscope 20 of an optical system. In the kaleidoscope 20, the shaped laser irradiation unit 6 is square as shown in FIG. 2B, and the intensity distribution of the laser light 4 is uniform.

よって、実施例1と同様にこの状態で、レーザ出力を増加させ、遮熱コーティング皮膜5表面のレーザ照射部6が赤熱するまで加熱することで、遮熱コーティング皮膜5と金属基材13の界面の製造時の欠陥または運転による損傷(以下、欠陥損傷と省略する。)7がある部分8が断熱層となるため金属基材13に熱が逃げづらくなり温度が上昇して白熱し、目視観察9で容易に欠陥損傷を判別することができる。 Therefore, in the same manner as in Example 1, the laser output is increased in this state, and heating is performed until the laser irradiation portion 6 on the surface of the thermal barrier coating film 5 becomes red hot, so that the interface between the thermal barrier coating film 5 and the metal substrate 13 is increased. Since the portion 8 with defects during manufacturing or damage due to operation (hereinafter abbreviated as defect damage) 7 becomes a heat insulating layer, heat does not easily escape to the metal base 13 and the temperature rises and becomes incandescent and visually observed. The defect damage can be easily discriminated at 9.

1… 光ファイバー
2… 照射ヘッド
3… ビームシェイパー
4… レーザ光
5… 遮熱コーティング皮膜
6… レーザ光照射部
7… 界面の欠陥
8… 白熱部
9… 目視観察
10… カメラ
11… 減光フィルター
13… 金属基材
14… 冷却孔
20… カレイドスコープ
DESCRIPTION OF SYMBOLS 1 ... Optical fiber 2 ... Irradiation head 3 ... Beam shaper 4 ... Laser beam 5 ... Thermal barrier coating 6 ... Laser beam irradiation part 7 ... Interface defect 8 ... Incandescent part 9 ... Visual observation 10 ... Camera 11 ... Neutral filter 13 ... Metal substrate 14 ... Cooling hole 20 ... Kaleidoscope

Claims (12)

金属基材と一体に形成した遮熱コーティング皮膜の表面を赤熱するまで加熱させ、この遮熱コーティング皮膜の表面の色または輝度によって遮熱コーティング皮膜の欠陥または損傷を評価することを特徴とする遮熱コーティング皮膜欠陥損傷評価方法。 The surface of the thermal barrier coating film formed integrally with the metal substrate is heated to red heat, and the defect or damage of the thermal barrier coating film is evaluated by the color or brightness of the surface of the thermal barrier coating film. Thermal coating film defect damage evaluation method. 前記遮熱コーティング皮膜の表面の色が前記遮熱コーティング皮膜の表面が赤熱した温度よりも高い白熱した色または輝度であり、この白熱した色または輝度の領域をコーティング皮膜と基材の界面に欠陥または損傷がある領域として判別することを特徴とする請求項1記載の遮熱コーティング皮膜欠陥損傷評価方法。   The surface color of the thermal barrier coating film is an incandescent color or brightness that is higher than the temperature at which the surface of the thermal barrier coating film is red hot, and this incandescent color or brightness area is defective at the interface between the coating film and the substrate. The thermal barrier coating film defect damage evaluation method according to claim 1, wherein the region is determined as a damaged area. 前記遮熱コーティング皮膜の表面には黒体となる塗料を塗布して熱の吸収量を増加させることを特徴とする請求項1または2記載の遮熱コーティング皮膜欠陥損傷評価方法。   3. The thermal barrier coating film defect damage evaluation method according to claim 1 or 2, wherein a heat-absorbing coating is applied to a surface of the thermal barrier coating film to increase a heat absorption amount. 前記遮熱コーティング皮膜の表面側を加熱し、金属基材の裏面側を冷却して前記遮熱コーティング皮膜の表面側の温度を制御することを特徴とする請求項1から請求項3の何れか1項記載の遮熱コーティング皮膜欠陥損傷評価方法。 The surface side of the thermal barrier coating is heated, the back side of the metal substrate is cooled, and the temperature on the front side of the thermal barrier coating is controlled. The thermal barrier coating film defect damage evaluation method according to item 1. 前記遮熱コーティング皮膜の表面の加熱と加熱の停止を繰り返すことを特徴とする請求項1から請求項4の何れか1項記載の遮熱コーティング皮膜欠陥損傷評価方法。   5. The thermal barrier coating film defect damage evaluation method according to claim 1, wherein heating of the surface of the thermal barrier coating film and stopping of the heating are repeated. 前記遮熱コーティング皮膜の表面の加熱はレーザ光の照射で成され、このレーザ光は前記遮熱コーティング皮膜に対して斜めから照射されることを特徴とする請求項1から請求項5の何れか1項記載の遮熱コーティング皮膜欠陥損傷評価方法。 The surface of the thermal barrier coating film is heated by laser light irradiation, and the laser beam is irradiated obliquely to the thermal barrier coating film. The thermal barrier coating film defect damage evaluation method according to item 1. 金属基材と一体に形成した遮熱コーティング皮膜の表面を赤熱するまで加熱させる加熱装置と、この遮熱コーティング皮膜の表面の色または輝度によって遮熱コーティング皮膜の欠陥量または損傷量を評価する欠陥量または損傷量評価装置とを有することを特徴とする遮熱コーティング皮膜欠陥損傷評価装置。 A heating device that heats the surface of the thermal barrier coating formed integrally with the metal substrate until it becomes red hot, and a defect that evaluates the defect amount or damage amount of the thermal barrier coating by the color or brightness of the surface of the thermal barrier coating A thermal barrier coating film defect damage evaluation apparatus, comprising: an amount or damage amount evaluation apparatus. この遮熱コーティング皮膜の表面の色または輝度はカメラで撮像して得られることを特徴とする請求項7記載の遮熱コーティング皮膜欠陥損傷評価装置。   8. The thermal barrier coating film defect damage evaluation apparatus according to claim 7, wherein the color or brightness of the surface of the thermal barrier coating film is obtained by imaging with a camera. 前記カメラには減光フィルターが装着されていることを特徴とする請求項8記載の遮熱コーティング皮膜欠陥損傷評価装置。 9. The thermal barrier coating film defect damage evaluation apparatus according to claim 8, wherein a dark filter is attached to the camera. 前記加熱装置はレーザ光照射装置からなり、このレーザ照射装置には、カレイドスコープまたはビームシェイパーのいずれかひとつが設けられていることを特徴する請求項7から請求項9の何れか1項記載の遮熱コーティング皮膜欠陥損傷評価装置。   The said heating apparatus consists of laser beam irradiation apparatuses, and this laser irradiation apparatus is provided with any one of a kaleidoscope or a beam shaper, The any one of Claims 7-9 characterized by the above-mentioned. Thermal barrier coating film defect damage evaluation system. 前記レーザ光照射装置から照射されるレーザ光はコーティング皮膜に対して斜めに照射されることを特徴とする請求項7から請求項10の何れか1項記載の遮熱コーティング皮膜欠陥損傷評価装置。   11. The thermal barrier coating film defect damage evaluation apparatus according to claim 7, wherein the laser light irradiated from the laser light irradiation apparatus is irradiated obliquely with respect to the coating film. 前記遮熱コーティング層の表面側を加熱する加熱機構と、前記金属基材側を冷却して前記遮熱コーティング層の表面側の温度を制御する冷却機構とを設けたことを特徴とする請求項7から請求項11の何れか1項記載の遮熱コーティング皮膜欠陥損傷評価装置。 The heating mechanism that heats the surface side of the thermal barrier coating layer and the cooling mechanism that controls the temperature on the surface side of the thermal barrier coating layer by cooling the metal substrate side are provided. The thermal barrier coating film defect damage evaluation apparatus according to any one of claims 7 to 11.
JP2014145463A 2014-07-15 2014-07-15 Evaluation method of defect/damage on heat-insulating coating film and evaluation apparatus Pending JP2016020875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014145463A JP2016020875A (en) 2014-07-15 2014-07-15 Evaluation method of defect/damage on heat-insulating coating film and evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014145463A JP2016020875A (en) 2014-07-15 2014-07-15 Evaluation method of defect/damage on heat-insulating coating film and evaluation apparatus

Publications (1)

Publication Number Publication Date
JP2016020875A true JP2016020875A (en) 2016-02-04

Family

ID=55265786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014145463A Pending JP2016020875A (en) 2014-07-15 2014-07-15 Evaluation method of defect/damage on heat-insulating coating film and evaluation apparatus

Country Status (1)

Country Link
JP (1) JP2016020875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057190A (en) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 Lighting device
RU2767888C1 (en) * 2021-05-14 2022-03-22 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Method for inspecting defect of heat-shielding coating of sample during tests for thermal cyclic resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057190A (en) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 Lighting device
JP7474945B2 (en) 2019-09-30 2024-04-26 パナソニックIpマネジメント株式会社 Lighting equipment
RU2767888C1 (en) * 2021-05-14 2022-03-22 Акционерное общество "Объединенная двигателестроительная корпорация" (АО "ОДК") Method for inspecting defect of heat-shielding coating of sample during tests for thermal cyclic resistance

Similar Documents

Publication Publication Date Title
Lane et al. Transient laser energy absorption, co-axial melt pool monitoring, and relationship to melt pool morphology
TWI302358B (en) Method and system for determining optical properties of semiconductor wafers
Hagqvist et al. Emissivity estimation for high temperature radiation pyrometry on Ti–6Al–4V
Hay et al. New facilities for the measurements of high-temperature thermophysical properties at LNE
JP2011191232A (en) Method and device of determining acceptance/rejection of fine diameter wire bonding
US10241036B2 (en) Laser thermography
KR102404004B1 (en) Processing system and methods for calibrating workpiece process, validating workpiece manufacturing process and processing workpiece at elevated temperature
JP5831940B2 (en) Nondestructive inspection method and nondestructive inspection device for delamination in coating layer
Cai et al. A novel lifetime-based phosphor thermography using three-gate scheme and a low frame-rate camera
Fénot et al. A heat transfer measurement of jet impingement with high injection temperature
Pozzobon et al. High heat flux mapping using infrared images processed by inverse methods: an application to solar concentrating systems
Surtaev et al. Application of high-speed IR thermography to study boiling of liquids
JP2016020875A (en) Evaluation method of defect/damage on heat-insulating coating film and evaluation apparatus
JP2001228105A (en) Characteristic evaluating device for thermally insulating coating and charcteristic evaluating method tehrefor
JP2006098295A (en) Emissivity measurement apparatus
Che et al. Development of ReFaST pyrometer for measuring surface temperature with unknown emissivity: methodology, implementation, and validation
CN105928625B (en) Metal surface dynamic temperature point measuring method based on reflectivity change
US20160258827A1 (en) Method for determing a transition point and/or for determining wall shear stresses on surfaces around which surfaces a flow circulates, and measuring device
JP2011242248A (en) Method and device for observing inner structure of goods
Deisenroth et al. Measurement Uncertainty of Surface Temperature Distributions for Laser Powder Bed Fusion Processes.
Schaumberger et al. Improving process reliability by means of detection of weld seam irregularities in copper via thermographic process monitoring
BOUBAULTI et al. Study of the aging of a solar absorber material following the evolution of its thermoradiative and thermophysical properties.
JP6579570B2 (en) Nondestructive inspection method and nondestructive inspection device for delamination in coating layer
Mann et al. Influence of temperature and wavelength on optical behavior of copper alloys
JP2017096834A (en) Device and method for inspecting coating peeling

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170220