RU2698830C1 - Устройство для выращивания кристаллов вертикальным методом бриджмена - Google Patents

Устройство для выращивания кристаллов вертикальным методом бриджмена Download PDF

Info

Publication number
RU2698830C1
RU2698830C1 RU2019107908A RU2019107908A RU2698830C1 RU 2698830 C1 RU2698830 C1 RU 2698830C1 RU 2019107908 A RU2019107908 A RU 2019107908A RU 2019107908 A RU2019107908 A RU 2019107908A RU 2698830 C1 RU2698830 C1 RU 2698830C1
Authority
RU
Russia
Prior art keywords
heaters
heater
height
crucible
diameter
Prior art date
Application number
RU2019107908A
Other languages
English (en)
Inventor
Геннадий Николаевич Кожемякин
Станислав Игоревич Супельняк
Original Assignee
Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук" filed Critical Федеральное государственное учреждение "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук"
Priority to RU2019107908A priority Critical patent/RU2698830C1/ru
Application granted granted Critical
Publication of RU2698830C1 publication Critical patent/RU2698830C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Изобретение относится к технологии выращивания монокристаллов полупроводников вертикальным методом Бриджмена. Устройство содержит корпус 1 с размещенной внутри него теплоизоляцией 2, два последовательно установленных нагревателя 3, 5 и тигель 6 с рабочей камерой, имеющий возможность осевого перемещения, при этом устройство дополнительно содержит третий - средний нагреватель 4 высотой hс, установленный в зазоре между теплоизоляцией 2 и нагревателями 3, 5, имеющими одинаковые внутренние dв и внешние dн диаметры, симметрично плоскости соприкосновения нижнего 5 и верхнего 3 нагревателей, причем общая высота hвн верхнего 3 и нижнего 5 нагревателей составляет 1,5Н-2Н, внутренний диаметр dв - 1,1D-1,2D, внешний диаметр dн - 1,4D-1,5D, а высота третьего нагревателя hс составляет 0,25Н-0,5Н, его внутренний диаметр Dв - 1,55D-1,65D, и внешний диаметр Dн - 1,85D-1,95D, где Н - высота рабочей камеры тигля, a D - внешний диаметр тигля. Изобретение позволяет получать кристаллы высокого качества за счет обеспечения равномерного и регулируемого температурного поля в области контакта нагревателей. 1 ил., 1 пр.

Description

Изобретение относится к технологии выращивания монокристаллов полупроводников и других кристаллических материалов.
Известны устройства для выращивания кристаллов вертикальным методом Бриджмена, содержащие 2-4 нагревателя для создания заданного градиента температуры, которые расположены соосно с тиглем, содержащим затравочный кристалл и расплав (US 20050076827 A1, US 20070151510 A1, RU №2357021, RU №2199615). В известных устройствах недостатком является снижение температуры в области соприкосновения нагревателей. В этой области теплового узла изменяется градиент температуры в расплаве и на границе раздела фаз, что может привести к поликристаллическому росту.
Наиболее близким по конструктивным особенностям к предлагаемому изобретению является устройство, защищенное патентом США US 5116456 (МПК С30В 11/02, опубликовано 26 мая 1992 г.). Это устройство для выращивания кристаллов вертикальным методом Бриджмена, содержит корпус с размещенной внутри него теплоизоляцией, два последовательно размещенных нагревателя и тигель, установленный с возможностью осевого перемещения. При этом верхняя секция нижнего нагревателя частично перекрывает нижнюю секцию верхнего нагревателя (внутренний диаметр верхнего нагревателя больше внешнего диаметра нижнего нагревателя).
Недостатком этого устройства является локальный перегрев расплава в области перекрытия названных секций нагревателей, что отрицательно влияет на качество выращиваемого кристалла.
Задачей изобретения является обеспечение равномерного и регулируемого температурного поля в области контакта нагревателей.
Техническим результатом является получение кристаллов высокого качества.
Указанные техническая задача и результат достигаются благодаря тому, что в устройстве для выращивания кристаллов вертикальным методом Бриджмена, содержащем корпус с размещенной внутри него теплоизоляцией, два последовательно установленных нагревателя и тигель, имеющий возможность осевого перемещения, дополнительно размещен третий нагреватель высотой h установленный между теплоизоляцией и зазором нагревателей, имеющих одинаковые внутренний и внешний диаметры, симметрично плоскости стыковки нижнего и верхнего нагревателей. При этом общая высота верхнего и нижнего нагревателей составляет 1,5Н-2Н, внутренний диаметр 1,1D-1,2D, внешний диаметр 1,4D-1,5D, а высота третьего нагревателя h составляет 0,25Н-0,5Н, его внутренний диаметр 1,55D-1,65D и внешний диаметр 1,85D-1,95D, где Н-высота рабочей камеры тигля, a D внешний диаметр тигля.
Сущность изобретения поясняется схемой на фиг.
Устройство содержит корпус 1 со слоем внутренней изоляции 2 и три нагревателя - верхний нагреватель 3, средний нагреватель 4 и нижний нагреватель 5. Указанные нагреватели образуют тепловой узел устройства. Внутри ростовой камеры, образованной верхним и нижним нагревателями, размещен с возможностью осевого перемещения тигель 6. Внутри тигля, имеющего внешний диаметр D и высоту рабочей камеры-полости Н, размещается шихта 7 и затравочный кристалл 8. Все устройство смонтировано на подставке 9.
Верхний 3 и нижний 5 нагреватели одинаковой высоты установлены соосно с тиглем 6 один над другим с зазором от 1 до 3 мм, что обусловлено конструкцией нагревателей. Высота heH нагревателей 3 и 5 больше высоты Н тигля 6 в 1,5-2 раза в связи с тем, что цилиндрические нагреватели такой формы в нижней и верхней части близкой к торцам, имеют температуру на 20-30% ниже, чем в средней части. Поэтому величина высоты нагревателей равная 1,5 является минимальным предельным значением. Увеличение высоты нагревателей более чем в 2 раза приведет к увеличению затрат на изготовление нагревателя за счет расхода материалов и затрат электроэнергии в процессе роста монокристаллов.
Внутренний диаметр dв нагревателей 3 и 5 больше диаметра D тигля 6 в 1,1-1,2 раза, а внешний dн больше диаметра тигля 6 в 1,4-1,5 раза. При внутреннем и внешнем диаметрах нагревателей менее 1,1 и 1,4, соответственно, возникает неоднородность теплового поля за счет конструктивных особенностей резистивного нагревателя, что увеличивает неоднородность температуры по сечению кристаллического слитка. Увеличение внутреннего и внешнего диаметров нагревателей более 1,2 и 1,5 раза, соответственно, требует повышения мощности нагревателей за счет увеличения расстояния между нагревателем и контейнером, что значительно повышает расход электроэнергии и требует дополнительной теплоизоляции внешней поверхности нагревателей.
Средний (третий) нагреватель 4 установлен снаружи области соприкосновения верхнего 3 и нижнего 5 нагревателей, благодаря чему не снижается температура в этой области и обеспечивается равномерное температурное поле в области контакта двух нагревателей теплового узла. Высота hc среднего нагревателя 4 соответствует 0,25-0,5 высоты тигля Н. При меньшей высоте нагреватель не обеспечивает подогрев контактной области вследствие того, что эти торцевые области имеют температуру на 20-30% ниже центральной части. При большей высоте нагревателя будет создаваться повышенная температура по сечению контейнера в торцевых областях среднего нагревателя.
Средний нагреватель располагается симметрично относительно области соприкосновения между нагревателями 3 и 5. Определенное перекрытие средним нагревателем 4 концов верхнего и нижнего нагревателей позволяет избежать чрезмерного снижения и повышения температуры в этих областях. Внутренний диаметр Dв среднего нагревателя 4 больше диаметра D тигля 6 в 1,55-1,65 раза, а внешний диаметр среднего Dн больше диаметра D тигля в 1,85-1,95 раза. Уменьшение внутреннего диаметра менее 1,55 раза ограничивается диаметрами нагревателей 3 и 5 в связи с конструктивными особенностями резистивного нагревателя за счет отклонения величины диаметра. Превышение внутреннего диаметра среднего нагревателя более, чем в 1,65 раза приведет к увеличению требуемой мощности нагревателей за счет увеличения расстояния между нагревателем и контейнером, что значительно повысит расход электроэнергии. Уменьшение внешнего диаметра среднего нагревателя менее 1,85 раза из-за конструктивных особенностей резистивного нагревателя не позволит создать равномерное температурное поле в поперечном сечении нагревателей. Увеличение внешнего диаметра среднего нагревателя 4 более чем в 1,95 раза приведет к увеличению расхода материалов, электроэнергии и сложности регулирования температуры.
Подставка контейнера 9 обеспечивает фиксацию тигля с затравочным кристаллом и расплавом на заданной высоте внутри теплового узла, а также способствует отводу тепла от нижней части выращиваемого кристалла. Тигель выполнен в форме цилиндра с плоским дном, благодаря чему достигается устойчивость на подставке 9 и не допускается соприкосновение стенки тигля с нагревательным элементом, что может привести к локальному перегреву расплава в этой области, повышенному дефектообразованию и росту поликристаллического материала.
Устройство функционирует следующим образом.
В тигель 6 загружают затравочный монокристалл 8, а сверху него шихту с поликристаллическим материалом заданного состава. Тигель 6 с затравочным монокристаллом и поликристаллическим материалом устанавливают внутри теплового узла таким образом, чтобы затравка располагалась в нижней части нижнего нагревателя в той его области, в которой обеспечивается условие частичного оплавления верхней части монокристаллической затравки в процессе затравления. После фиксации тигля внутри теплового узла и создания в ростовой камере необходимой атмосферы и давления к нижнему 5 и верхнему 3 нагревателям подается напряжение. Подводимое напряжение увеличивается постепенно, чтобы обеспечить медленный рост температуры загруженного материала. Увеличение температуры должно происходить со скоростью 3-10°С/мин для медленного нагрева и расплавления шихты, предотвращающего увеличение внутренних напряжений в твердой фазе и перегрев расплава. Напряжение вначале подается на нижний 5 и затем на верхний нагреватель 3 до достижения заданной температуры плавления материала. Температуры нижнего и верхнего нагревателей должны соответствовать заданному осевому градиенту температуры. После достижения заданных температур нижнего и верхнего нагревателей для выравнивания температурного профиля в области соприкосновения названных нагревателей на средний нагреватель 4 подают электрическое напряжение, обеспечивающее температуру в этой области, соответствующую заданному осевому градиенту температуры. После расплавления поликристаллического материала и частичного оплавления верхней части затравочного монокристалла производится плавное снижение температуры нагревателей, в результате чего происходит кристаллизация расплава и рост монокристалла от затравки вдоль оси контейнера.
Пример осуществления изобретения
Для выращивания монокристаллов состава Ge:Ga (1019 ат/см3) диаметром 30 мм на дно контейнера загружали затравочный монокристалл германия диаметром 30 мм и высотой 15 мм. Затем загружали шихту -кусковой поликристаллический германий массой 450 г. Контейнер устанавливали внутри теплового узла таким образом, что верхний торец затравочного кристалла находился на высоте 45 мм от нижней кромки нижнего нагревателя. После фиксирования контейнера ростовую камеру вакуумировали до давления 10-3 Па. После достижении заданной величины вакуума в ростовой камере подавали напряжение вначале на нижний и затем на верхний нагреватели для достижения температуры расплава до 950°С, которая выше температуры плавления материала равной 937°С. Подводимое напряжение увеличивали таким образом, чтобы повышение температуры происходило со скоростью 3-10°С/мин. Когда заданная температура расплава была достигнута на средний нагреватель подавалось электрическое напряжение, обеспечивающее температуру в этой области, соответствующую заданному осевому градиенту температуры около 60 К/см. Производили выдержку расплава при температуре 950°С в течение 1 часа. Затем производили охлаждение расплава с заданным осевым градиентом температуры при скорости охлаждения около 1,0 К/мин. В результате получен монокристалл Ge, легированный Ga, с фронтом кристаллизации близким к плоскому.
Проведенные эксперименты по выращиванию кристаллов в предлагаемом устройстве подтверждают его промышленную применимость.

Claims (1)

  1. Устройство для выращивания кристаллов вертикальным методом Бриджмена, содержащее корпус с размещенной внутри него теплоизоляцией, два последовательно установленных нагревателя и тигель с рабочей камерой, имеющий возможность осевого перемещения, отличающееся тем, что оно дополнительно содержит третий нагреватель высотой hс, установленный в зазоре между теплоизоляцией и нагревателями, имеющими одинаковые внутренние и внешние диаметры, симметрично плоскости соприкосновения нижнего и верхнего нагревателей, причем общая высота верхнего и нижнего нагревателей составляет 1,5Н-2Н, внутренний диаметр - 1,1D-1,2D, внешний диаметр - 1,4D-1,5D, а высота третьего нагревателя hс составляет 0,25Н-0,5Н, его внутренний диаметр - 1,55D-1,65D, и внешний диаметр - 1,85D-1,95D, где Н - высота рабочей камеры тигля, a D - внешний диаметр тигля.
RU2019107908A 2019-03-20 2019-03-20 Устройство для выращивания кристаллов вертикальным методом бриджмена RU2698830C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019107908A RU2698830C1 (ru) 2019-03-20 2019-03-20 Устройство для выращивания кристаллов вертикальным методом бриджмена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019107908A RU2698830C1 (ru) 2019-03-20 2019-03-20 Устройство для выращивания кристаллов вертикальным методом бриджмена

Publications (1)

Publication Number Publication Date
RU2698830C1 true RU2698830C1 (ru) 2019-08-30

Family

ID=67851483

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019107908A RU2698830C1 (ru) 2019-03-20 2019-03-20 Устройство для выращивания кристаллов вертикальным методом бриджмена

Country Status (1)

Country Link
RU (1) RU2698830C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116456A (en) * 1988-04-18 1992-05-26 Solon Technologies, Inc. Apparatus and method for growth of large single crystals in plate/slab form
UA97932C2 (ru) * 2011-08-08 2012-03-26 Інститут Сцинтиляційних Матеріалів Нан України УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ПРОЦЕССОМ РОСТА монокристаллов из расплава В ампуле
US20150211146A1 (en) * 2014-01-27 2015-07-30 Innovia Materials (Shanghai) Co., Ltd. Methods and apparatuses for preparing a ferroelectric crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116456A (en) * 1988-04-18 1992-05-26 Solon Technologies, Inc. Apparatus and method for growth of large single crystals in plate/slab form
UA97932C2 (ru) * 2011-08-08 2012-03-26 Інститут Сцинтиляційних Матеріалів Нан України УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ПРОЦЕССОМ РОСТА монокристаллов из расплава В ампуле
US20150211146A1 (en) * 2014-01-27 2015-07-30 Innovia Materials (Shanghai) Co., Ltd. Methods and apparatuses for preparing a ferroelectric crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIKKELSEN, J. C., Three-zone Bridgman-Stockbarger crystal growth furnace, "Review of Scientific Instruments", 1980, Vol.51, No.11, pp. 1564-1566. *

Similar Documents

Publication Publication Date Title
KR101263082B1 (ko) 사파이어 잉곳 성장장치
KR101997565B1 (ko) 실리콘 단결정의 제조방법
CN104066874B (zh) 单晶制造装置所使用的籽晶保持轴以及单晶制造方法
KR101816109B1 (ko) 탄화규소 단결정 잉곳의 성장장치 및 그 성장방법
CN108103576A (zh) 一种实时观测调控碳化硅晶体生长过程中的温度的方法及其保温设备
KR101574749B1 (ko) 단결정 제조용 상부히터, 단결정 제조장치 및 단결정 제조방법
KR101048831B1 (ko) 단결정 제조용 흑연 히터 및 단결정 제조장치와 단결정 제조방법
JP4830312B2 (ja) 化合物半導体単結晶とその製造方法
US8647433B2 (en) Germanium ingots/wafers having low micro-pit density (MPD) as well as systems and methods for manufacturing same
RU2698830C1 (ru) Устройство для выращивания кристаллов вертикальным методом бриджмена
JP4833780B2 (ja) 蓋付き黒鉛坩堝及び炭化珪素単結晶成長装置
KR20110099481A (ko) 단결정 냉각장치 및 단결정 냉각장치를 포함하는 단결정 성장장치
CN109415843A (zh) 单晶硅的制造方法
JP2000335993A (ja) インゴット−溶融物の境界の中央及び縁での温度勾配の調節による単結晶シリコンインゴットの製造のためのチョクラルスキプーラー、チョクラルスキプーラー用熱遮断体及びチョクラルスキプーラーの改良方法
JP4265269B2 (ja) SiC単結晶製造炉
JP6304125B2 (ja) シリコン単結晶の軸方向の抵抗率制御方法
KR100428699B1 (ko) 수직-수평 온도구배를 갖는 대형 결정 육성장치 및 그육성방법
WO2018003264A1 (ja) シリコン単結晶の製造方法
KR101020429B1 (ko) 비저항 특성이 균일한 단결정 제조방법 및 이 방법에 의해 제조된 단결정
JP5951132B2 (ja) 溶融領域における単結晶の結晶化により単結晶を製造するための装置
JP6501494B2 (ja) 炭化珪素単結晶インゴットの製造方法及び製造装置
KR101100862B1 (ko) 실리콘 단결정 잉곳의 제조방법
JP2019514836A (ja) 単結晶シリコンの半導体ウェハを製造するための方法、単結晶シリコンの半導体ウェハを製造するための装置および単結晶シリコンの半導体ウェハ
JP7483240B2 (ja) 単結晶成長装置およびiii-v族半導体単結晶の製造方法
KR101956754B1 (ko) GaAs 단결정 성장 장치