RU2697049C1 - Способ управления преобразователем переменного напряжения в постоянное напряжение и устройства для его осуществления - Google Patents

Способ управления преобразователем переменного напряжения в постоянное напряжение и устройства для его осуществления Download PDF

Info

Publication number
RU2697049C1
RU2697049C1 RU2018124929A RU2018124929A RU2697049C1 RU 2697049 C1 RU2697049 C1 RU 2697049C1 RU 2018124929 A RU2018124929 A RU 2018124929A RU 2018124929 A RU2018124929 A RU 2018124929A RU 2697049 C1 RU2697049 C1 RU 2697049C1
Authority
RU
Russia
Prior art keywords
input
voltage
output
converter
transistor
Prior art date
Application number
RU2018124929A
Other languages
English (en)
Inventor
Геннадий Яковлевич Михальченко
Даниил Алексеевич Корольский
Сергей Геннадьевич Михальченко
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР)
Priority to RU2018124929A priority Critical patent/RU2697049C1/ru
Application granted granted Critical
Publication of RU2697049C1 publication Critical patent/RU2697049C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/443Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M5/452Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано в преобразователях однофазного переменного напряжения в постоянное с повышенной надежностью. Техническим результатом является увеличение надежности и коэффициента полезного действия преобразователя и повышение динамической устойчивости устройства для осуществления способа управления преобразователем. Способ управления используется при построении систем управления преобразователями переменного напряжения в постоянное напряжение. Устройство для осуществления способа управления используется в системах управления преобразователями переменного напряжения в постоянное. Способ управления заключается в формировании постоянной на полупериоде входного напряжения импульсной последовательности для управления транзистором обратноходового преобразователя и формировании противотактной импульсной последовательности, изменяющейся по закону |cos(ωt)| для управления транзисторами реверсивного преобразователя. 2 н.п. ф-лы, 3 ил.

Description

Изобретение относится к области электротехники, силовой электроники и систем автоматического регулирования.
Способ управления и устройство для его осуществления могут быть использованы в преобразователях однофазного переменного напряжения в постоянное с повышенной надежностью. В предложенном варианте этот эффект достигается за счет исключения из структуры силовой цепи устройства электролитических конденсаторов большой емкости и новыми законами управления транзисторами преобразователя. Это может быть использовано тогда, когда требуется одновременно повысить срок службы и энергетическую эффективность преобразователей. Наиболее востребованными в настоящее время являются драйверы светодиодных изделий и других нагрузок, для питания которых необходимо преобразование переменного однофазного напряжения в прецизионный постоянный ток.
Известен способ управления преобразователем однофазного переменного напряжения в постоянное напряжение, включающий входной выпрямитель, к выходу которого подключен корректор коэффициента мощности с выходным конденсатором, параллельно которому подключен двухключевой реверсивный преобразователь с входной индуктивностью и накопительным конденсатором на его выходе, обеспечивающий работу корректора и реверсивного преобразователя в режиме непрерывных токов [1].
Такой преобразователь и способ управления его транзисторами позволяют получить постоянный ток нагрузки, но достичь повышенной энергетической эффективности не удается, потому, что в режиме непрерывного тока неоправданно велики из-за «жесткой» коммутации силового транзистора динамические потери в транзисторе корректора коэффициента мощности, что снижают коэффициент полезного действия. Кроме того, в известном преобразователе используется косвенный способ формирования импульсной последовательности управления транзистором корректора коэффициента мощности по напряжению и току нагрузки, а также косвенный способ формирования двухтактной импульсной последовательности управления транзисторами реверсивного преобразователя.
В целом, такой способ управления характеризуется повышенным коэффициентом пульсаций напряжения и тока нагрузки. Кроме того, вследствие косвенного формирования импульсных последовательностей управления транзисторами, замкнутая система автоматического регулирования функционирует в различных режимах - с частотой следования импульсов развертывающего напряжения и множества субгармонических колебаний, в зависимости от уровня и фазы напряжения сети или фазы переменной составляющей напряжения на накопительном конденсаторе. Это сопровождается субгармоническими или хаотическими колебаниями (пульсациями) напряжения и тока нагрузки.
Наиболее близким по технической сущности является способ управления преобразователем переменного напряжения в постоянное напряжение, согласно которому формируется импульсная последовательность управления транзистором обратноходового преобразователя, пропорциональная среднему значению тока вторичной обмотки трансформатора обратноходового преобразователя. Для управления транзисторами реверсивного преобразователя формируется двухтактная импульсная последовательность, длительность импульсов которой изменяется пропорционально переменной составляющей тока трансформатора и пульсациями напряжения на накопительном конденсаторе. Это обеспечивает работу обратноходового преобразователя в режиме прерывистых токов, но на неопределенном интервале времени, а работу реверсивного преобразователя - по закону, весьма приближенному к требуемому. Устройство для реализации такого способа управления включает входной выпрямитель, к выходу которого подключен корректор коэффициента мощности с выходным конденсатором, параллельно которому подключен двухключевой реверсивный преобразователь с входной индуктивностью и накопительным конденсатором на его выходе и соответствующую систему автоматического управления. Этот способ и устройство его реализации выбраны в качестве прототипа [2].
Такой способ управления позволяет исключить динамические потери на переключение транзистора обратноходового преобразователя и повысить коэффициент полезного действия. В тоже время, как и в [1], формирование двухтактной импульсной последовательности управления транзисторами реверсивного преобразователя по косвенным оценкам требуемого закона управления не позволяет поддерживать устойчивый режим работы замкнутой системы автоматического управления реверсивного преобразователя с частотой развертывающего напряжения. Это сопровождается значительными пульсациями тока нагрузки.
Техническо-экономический эффект, достигаемый предлагаемым способом преобразования однофазного переменного напряжения в постоянное напряжение, заключается в установлении закономерностей формирования управляющих импульсных последовательностей транзисторов, как обратноходового, так и реверсивного преобразователей. Это позволяет увеличить надежность, коэффициент полезного действия и динамическую устойчивость предложенного устройства его реализации.
На фиг. 1 приведена блок-схема силовой цепи преобразователя однофазного переменного напряжения в постоянное напряжение. На фиг. 2 представлены временные диаграммы, поясняющие существо способа преобразования, а на фиг. 3 приведена схема устройства, реализующего предложенный способ управления преобразователем.
На фиг. 1 обозначено: 1 - источник напряжения питающей сети; 2 - входной фильтр; 3 - двухполупериодный выпрямитель; 4 - обратноходовый преобразователь с последовательно соединенными транзистором 5 трансформатором 6, во вторичную обмотку которого включен диод однополупериодного выпрямителя 7; 8 - цепь нагрузки; 9 - реверсивный преобразователь с первым транзистором 10 и с вторым транзистором 11, входной индуктивностью 12 и накопительным конденсатором 13.
На фиг. 2 обозначено: 14 - выпрямленное напряжение питающей сети; 15 - мгновенные значения тока, потребляемого обратноходовым преобразователем; 16 - импульсы напряжения моментов перехода питающей сети через ноль; 17 - среднее значение напряжения питающей сети за полупериод, формируемое в моменты перехода напряжения сети через ноль; 18 - импульсы управления транзистором 5 обратноходового преобразователя 4 (однотактная импульсная последовательность); 19 - мгновенные значения выходного тока обратноходового преобразователя; 20 - огибающая тока вторичной обмотки трансформатора 6 обратноходового преобразователя 4; 21 - усредненное значение тока вторичной обмотки трансформатора 6; 22 -функциональная зависимость |cos(ωt)|-0.5, отражающая характер изменения относительной длительности управляющих импульсов транзисторов реверсивного преобразователя 9; 23, 24 - импульсы управления транзисторами 10, 11 соответственно реверсивного преобразователя 9 (двухтактная импульсная последовательность); 25 - ток входной индуктивности реверсивного преобразователя; 26 - напряжение на нагрузке и ток цепи нагрузки 8.
На фиг. 3 обозначено: 27 - устройство выборки и хранения; 28 - датчик перехода напряжения сети через ноль; 29 - резистивный делитель напряжения; 30 - первый узел сравнения; 31 - первый источник задающего напряжения; 32 и 39 - первый и второй компараторы напряжения соответственно; 33 - генератор развертывающего напряжения; 34 - задающий генератор; 35 - узел сдвига фазы; 36 - узел формирования модуль-функции; 37 - вычитатель; 38 - источник напряжения смещения; 40 - инвертор.
Способ управления преобразователем однофазного переменного напряжения в постоянное напряжение, включающим (фиг. 1) однофазный источник напряжения питающей сети 1, входной фильтр 2, двухполупериодный выпрямитель 3, обратноходовый преобразователь 4 с последовательно включенными транзистором 5 и трансформатором 6, во вторичную обмотку которого включен диод однополупериодного выпрямителя 7; цепь нагрузки 8; реверсивный преобразователь с первым и вторым транзисторами 10 и 11 соответственно, входной индуктивностью 12 и накопительным конденсатором 13, заключающийся (фиг. 2) в формировании одной импульсной последовательности 18, для управления транзистором 5 обратноходового преобразователя, относительная длительность импульсов которой определяется напряжением 17, зависящим от напряжения на накопительном конденсаторе 13, и остается постоянной величиной γ<0.5 на полупериоде напряжения питающей сети и формировании второй противотактной импульсной последовательности 23, 24 для управления первым и вторым транзисторами 10 и 11 реверсивного преобразователя 9, при этом характер изменения относительной длительности импульсов второй противотактной импульсной последовательности определяется по закону 22 |cos(ωt)|-0.5.
Для формирования первой импульсной последовательности 18 (фиг. 2) необходимо по напряжению питающей сети или по выпрямленному входному напряжению 14 сформировать последовательность импульсов перехода напряжения питающей сети через нулевое значение 16. Эта последовательность импульсов разрешает изменять напряжение ошибки по току один раз за полупериод напряжения питающей сети в контуре управления обратноходовым преобразователем. При этом, на полупериоде напряжения питающей сети, интервалы накопления и отдачи энергии трансформатором 6 сохраняются постоянными, что гарантирует изменение огибающей 20 импульсов 15 и 19 по закону модуль-синуса. Усредненное значение тока 21 треугольных импульсов 19 также будет изменяться по закону |sin(ωt)|. Небольшое изменение относительной длительности импульсов 18 в разные полупериоды входного напряжения обусловлено наличием нестабильности напряжения питающей сети 14 и требуется, чтобы поддерживать ток 26 постоянным. При постоянстве входного напряжения относительная длительность импульсов 18 будет неизменной все время.
Для получения на нагрузке постоянного тока 26 в входной индуктивности 12 формируем ток 25, характер изменения которого определяется модулем синусоидальной функции со смещением |sin(ωt)|-0.5. Для этого напряжение, прикладываемое к входной индуктивности 12, должно изменяться в соответствии с функциональной зависимостью 22. Таким образом, по закону |cos(ωt)|-0.5 формируется противотактная импульсная последовательность 23, 24 для управления транзисторами 10, 11 реверсивного преобразователя 9. При этом реверсивный преобразователь 9 работает в режиме повышающего либо понижающего преобразователя, накапливая энергию в накопительном конденсаторе 13 либо отдавая ее в нагрузку 8 соответственно.
Устройство на фиг. 3, реализующее способ управления преобразователем переменного напряжения в постоянное напряжение, работает следующим образом. Используется двухконтурная система управления, причем первый контур осуществляет управление обратноходовым преобразователем 4, а второй - управление реверсивным преобразователем 9. В частности, для управления обратноходовым преобразователем 4 используется устройство выборки и хранения 27, на тактирующий вход которого подается сигнал 16 с выхода датчика перехода напряжения сети через ноль 28, а на другой вход устройства выборки и хранения 27 поступает напряжение с резистивного делителя 29. Напряжение на выходе устройства выборки и хранения 27 устанавливается равным напряжению, которое было на его входе в момент подачи импульса на его тактовый вход и остается неизменным до подачи следующего тактового импульса. Это напряжение поступает на один из входов первого узла сравнения 30, к второму входу которого приложено напряжения с первого источника задающего напряжения 31. Результат поступает на первый вход первого компаратора напряжения 32, к второму входу которого приложено пилообразное напряжение с генератора развертывающего напряжения 33. К входу генератора развертывающего напряжения подключен задающий генератор 34, формирующий импульсы, задающие частоту работы преобразователя. На выходе первого компаратора напряжения 32 формируются импульсы напряжения для управления транзистором 5 обратноходового преобразователя 4.
Второй контур управления транзисторами 10 и 11 реверсивного преобразователя 9 (фиг. 3) содержит узел сдвига фазы 35, на выходе которого формируется напряжение, изменяющееся по закону косинуса. Выход узла сдвига фазы 35 подключен к узлу формирования модуль-функции 36, выход которого соединен с одним из входов вычитателя 37, к другому входу которого приложено напряжение с источника напряжения смещения 38, а выход вычитателя 37 подключен к второму входу второго компаратора напряжения 39. На выходе вычитателя 37 формируется модулирующая функция, изменяющая по закону |cos(ωt)| и смещенная относительно нулевого значения на величину сигнала на выходе источника напряжения смещения 38. На первый вход второго компаратора напряжения 39 поступает сигнал с выхода генератора развертывающего напряжения 33. На выходе второго компаратора напряжения 39 формируются импульсы напряжения, поступающие на управляющий вход транзистора 10 и через инвертор 40 на управляющий вход транзистора 11.
Такой способ управления преобразователем переменного напряжения в постоянное позволит повысить динамическую устойчивость предложенного устройства для его реализации, получить меньший коэффициент пульсаций тока нагрузки, увеличить коэффициент полезного действия и, как следствие, повысить надежность устройства, а представленное устройство для осуществления способа управления позволяет реализовать на практике преобразователь, сочетающий в себе вышеуказанные преимущества.
Список литературы
1. Liang, T.-J. Electrolytic Capacitor-Less AC/DC Converter and Controlling Method thereof / T.-J. Liang, K.-W. Lee, Y.-H. Hsieh, J.-F. Chen, Yi-C. Shen // US Patent 9,300,217 B2
2. Shu W. A Flicker-Free Electrolytic Capacitor-Less AC-DC LED Driver/ W. Shu, X. Ruan, K. Yao // Journal IEEE Transaction on Power Electronics. - 2011. - V. 27, No 11. - P. 4540-4548.

Claims (2)

1. Способ управления преобразователем однофазного переменного напряжения в постоянное, включающим источник напряжения питающей сети, подключенный к входному фильтру, на выходе которого расположен входной двухполупериодный выпрямитель, выход которого соединен с обратноходовым преобразователем с емкостным фильтром, подключенным к цепи нагрузки и к входной индуктивности двухключевого реверсивного преобразователя, выход которого образован парой последовательно соединенных транзисторов с обратными диодами и подключен к накопительному конденсатору, причем обратноходовый преобразователь выполнен в виде последовательно соединенных транзистора и первичной обмотки трансформатора, вторичная обмотка которого подключена к емкостному фильтру через диод однополупериодного выпрямителя, заключающийся в формировании одной импульсной последовательности для управления транзистором обратноходового преобразователя и второй противотактной импульсной последовательности для управления транзисторами реверсивного преобразователя, отличающийся тем, что относительная длительность импульсов первой импульсной последовательности определяется величиной напряжения на накопительном конденсаторе и остается постоянной величиной на полупериоде напряжения питающей сети, а характер изменения второй импульсной последовательности определяется по закону
Figure 00000001
2. Устройство для осуществления способа управления по п. 1 преобразователем однофазного переменного напряжения в постоянное, включающим входной фильтр, входной двухполупериодный выпрямитель, обратноходовый преобразователь с емкостным фильтром, подключенным к нагрузке и к входному дросселю двухключевого реверсивного преобразователя, выход которого образован парой последовательно соединенных транзисторов с обратными диодами и подключен к накопительному конденсатору, причем обратноходовый преобразователь выполнен в виде последовательно соединенных транзистора и первичной обмотки трансформатора, вторичная обмотка которого подключена к емкостному фильтру через однополупериодный выпрямитель, отличающееся тем, что формирователь первой импульсной последовательности включает подключенный к источнику напряжения питающей сети датчик перехода напряжения сети через ноль, выход которого связан с тактирующим входом устройства выборки и хранения, другой вход которого через резистивный делитель напряжения подключен к накопительному конденсатору, а выход устройства выборки и хранения подключен к первому узлу сравнения, другой вход которого связан с выходом первого источника задающего напряжения, а выход подсоединен к первому входу первого компаратора напряжения, второй вход которого подключен к второму входу второго компаратора напряжения и к выходу генератора развертывающего напряжения, вход которого связан с задающим генератором, а первый вход второго компаратора напряжения связан с выходом вычитателя, к одному из входов которого подключен источник напряжения смещения, а к второму входу подсоединен выход узла формирования модуль-функции, вход которого связан с источником напряжения питающей сети через узел сдвига фазы, выход первого компаратора напряжения в свою очередь связан с управляющим электродом транзистора обратноходового преобразователя, а выход второго компаратора напряжения подключен к одному из транзисторов реверсивного преобразователя и через инвертор к другому транзистору реверсивного преобразователя.
RU2018124929A 2018-07-06 2018-07-06 Способ управления преобразователем переменного напряжения в постоянное напряжение и устройства для его осуществления RU2697049C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018124929A RU2697049C1 (ru) 2018-07-06 2018-07-06 Способ управления преобразователем переменного напряжения в постоянное напряжение и устройства для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018124929A RU2697049C1 (ru) 2018-07-06 2018-07-06 Способ управления преобразователем переменного напряжения в постоянное напряжение и устройства для его осуществления

Publications (1)

Publication Number Publication Date
RU2697049C1 true RU2697049C1 (ru) 2019-08-09

Family

ID=67586711

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018124929A RU2697049C1 (ru) 2018-07-06 2018-07-06 Способ управления преобразователем переменного напряжения в постоянное напряжение и устройства для его осуществления

Country Status (1)

Country Link
RU (1) RU2697049C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785363C1 (ru) * 2022-09-12 2022-12-06 Акционерное общество "Научно-производственная фирма "Микран" Способ, устройство и система управления распределением тока между модулями AC/DC преобразователей

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292598A (zh) * 1999-09-24 2001-04-25 索尼公司 开关电源电路
RU2242073C2 (ru) * 2002-07-25 2004-12-10 Томский университет систем управления и радиоэлектроники Зарядное устройство для аккумуляторной батареи
RU92261U1 (ru) * 2009-11-02 2010-03-10 Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Преобразователь однофазного переменного напряжения в постоянное с корректором коэффициента мощности
US7830686B2 (en) * 2007-06-05 2010-11-09 Honeywell International Inc. Isolated high power bi-directional DC-DC converter
RU119186U1 (ru) * 2012-02-17 2012-08-10 Общество с ограниченной ответственностью "СКом" Импульсный источник питания для светодиодов
RU2473109C1 (ru) * 2011-05-03 2013-01-20 Галина Алексеевна Наумова Корректор коэффициента мощности
JP5699456B2 (ja) * 2010-06-10 2015-04-08 カシオ計算機株式会社 表示装置
US9300217B2 (en) * 2013-12-25 2016-03-29 National Cheng Kung University Electrolytic capacitor-less AC/DC converter and controlling method thereof
DE112016001457T5 (de) * 2015-06-09 2017-12-14 Google Llc Ein netzteil inklusive rücklaufsteuerung und abwärtswandler

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292598A (zh) * 1999-09-24 2001-04-25 索尼公司 开关电源电路
RU2242073C2 (ru) * 2002-07-25 2004-12-10 Томский университет систем управления и радиоэлектроники Зарядное устройство для аккумуляторной батареи
US7830686B2 (en) * 2007-06-05 2010-11-09 Honeywell International Inc. Isolated high power bi-directional DC-DC converter
RU92261U1 (ru) * 2009-11-02 2010-03-10 Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники Преобразователь однофазного переменного напряжения в постоянное с корректором коэффициента мощности
JP5699456B2 (ja) * 2010-06-10 2015-04-08 カシオ計算機株式会社 表示装置
RU2473109C1 (ru) * 2011-05-03 2013-01-20 Галина Алексеевна Наумова Корректор коэффициента мощности
RU119186U1 (ru) * 2012-02-17 2012-08-10 Общество с ограниченной ответственностью "СКом" Импульсный источник питания для светодиодов
US9300217B2 (en) * 2013-12-25 2016-03-29 National Cheng Kung University Electrolytic capacitor-less AC/DC converter and controlling method thereof
DE112016001457T5 (de) * 2015-06-09 2017-12-14 Google Llc Ein netzteil inklusive rücklaufsteuerung und abwärtswandler

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2785363C1 (ru) * 2022-09-12 2022-12-06 Акционерное общество "Научно-производственная фирма "Микран" Способ, устройство и система управления распределением тока между модулями AC/DC преобразователей

Similar Documents

Publication Publication Date Title
RU2427954C2 (ru) Схема питания и устройство, содержащее схему питания
CN102801341B (zh) 具有pfc和dc/dc转换器的ac/dc转换器
US9184664B2 (en) Semiconductor device provided with switching power supply device with intermittent oscillation control
US20140376278A1 (en) Method and apparatus for providing power conversion using an interleaved flyback converter with reactive power control
TWI353712B (en) A synchronous regulation circuit for a power conve
WO1997047070A1 (en) Ac/ac converter
JPH01501834A (ja) 被調整交流/直流変換装置
JP6218996B1 (ja) 電力変換装置
JP6787505B2 (ja) スイッチング電源装置の制御方法および制御回路
JP6478323B2 (ja) スイッチング電源装置
US11005386B2 (en) Power converter circuit and power conversion method
JP3574849B2 (ja) Dc−dcコンバータ装置
RU2697049C1 (ru) Способ управления преобразователем переменного напряжения в постоянное напряжение и устройства для его осуществления
US7019986B2 (en) Power conversion apparatus and dead time generator
CN107819407B (zh) 电力转换装置
JP2020108246A (ja) 制御回路、および、dc/dcコンバータ装置
KR20090102948A (ko) 다중출력 직류/직류 컨버터
JP2003125582A (ja) 電源装置
JP2539158Y2 (ja) 直流電源装置
JP2005304211A (ja) 電力変換装置
JP5577933B2 (ja) コンバータ
JPH10155273A (ja) スイッチングモード整流回路
CN101527504A (zh) 一种多电平t型变换器的功率因数控制方法
JPH037066A (ja) 直流電源装置
CN106058933B (zh) 一种并网逆变装置的控制方法