RU2695686C2 - Режущий инструмент с покрытием и способ изготовления режущего инструмента с покрытием - Google Patents

Режущий инструмент с покрытием и способ изготовления режущего инструмента с покрытием Download PDF

Info

Publication number
RU2695686C2
RU2695686C2 RU2015131332A RU2015131332A RU2695686C2 RU 2695686 C2 RU2695686 C2 RU 2695686C2 RU 2015131332 A RU2015131332 A RU 2015131332A RU 2015131332 A RU2015131332 A RU 2015131332A RU 2695686 C2 RU2695686 C2 RU 2695686C2
Authority
RU
Russia
Prior art keywords
cutting tool
coating
layer
tool according
substrate
Prior art date
Application number
RU2015131332A
Other languages
English (en)
Other versions
RU2015131332A (ru
RU2015131332A3 (ru
Inventor
Ларс ЙОНСОН
Роберт ПИЛЕМАЛМ
Лина РОГСТРЕМ
Original Assignee
Сандвик Интеллекчуал Проперти Аб
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сандвик Интеллекчуал Проперти Аб filed Critical Сандвик Интеллекчуал Проперти Аб
Publication of RU2015131332A publication Critical patent/RU2015131332A/ru
Publication of RU2015131332A3 publication Critical patent/RU2015131332A3/ru
Application granted granted Critical
Publication of RU2695686C2 publication Critical patent/RU2695686C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/32Details of high speed steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/08Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by physical vapour deposition [PVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

Настоящее изобретение относится к режущему инструменту с покрытием для механической обработки металла, такой как механическая обработка с формированием стружки, к способу изготовления указанного режущего инструмента с покрытием и режущей пластине, выполненной в виде режущего инструмента с покрытием. Режущий инструмент с покрытием содержит подложку и покрытие на упомянутой подложке, содержащее слой, состоящий из TiZrAlN, причем 0<х≤0,3, 0,2≤y≤0,8 и 0,1≤(1-х-y)≤0,7. Способ изготовления режущего инструмента с покрытием включает размещение подложки в камере осаждения и нанесение покрытия, содержащего слой, состоящий из TiZrAlN, причем 0<х≤0,3, 0,2≤y≤0,8 и 0,1≤ (1-x-y) ≤0,7. Обеспечивается режущий инструмент с покрытием с улучшенными свойствами во время цикла механической обработки резанием, в частности с покрытием, которое является более стабильным при повышенных температурах. 3 н. и 16 з.п. ф-лы, 3 ил., 1 табл.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к режущему инструменту с покрытием для механической обработки металла, такой как механическая обработка с формированием стружки, содержащему подложку и покрытие на подложке, и к способу изготовления такого режущего инструмента с покрытием.
УРОВЕНЬ ТЕХНИКИ
Режущие инструменты, такие как режущие пластины, фрезы, сверла и т.д. можно использовать для механической обработки с образованием стружки из материала, такого как металлы. Такие инструменты чаще всего изготавливаются из прочного материала, такого как твердый сплав, кубический нитрид бора или быстрорежущая инструментальная сталь. Для улучшения свойств инструмента, например, характеристик износа, такие инструменты обычно выполняют с поверхностным покрытием. Такие покрытия могут наноситься на инструмент посредством химического (CVD) или физического (PVD) осаждения из паровой фазы.
До сих пор использовались различные типы поверхностных покрытий, например, такие как TiN, TiAlN. Во время обработки металлов режущим инструментом с покрытием температура вблизи режущей кромки режущего инструмента увеличивается из-за усилия сдвига обрабатываемого материала и силы трения. Температура покрытия, таким образом, может стать очень высокой, как, например, 1100°C или более. Кубический TiAlN обычно распадается на кубический TiN и кубический AlN при 800-900°C, и после этого кубический AIN переходит в гексаугольный вюртцит AlN при приблизительно 1000°C, который является менее желательной фазой. В EP 2628826 A1 раскрыто сногослойное покрытие из чередующихся слоев ZrAIN и TiN. Этот тип покрытия был разработан для обеспечения высокой термической стабильности покрытия, чтобы создать высокую твердость, даже если материал подвергается таким высоким температурам.
В настоящее время прилагаются усилия к дальнейшему усовершенствованию поверхностного покрытия с улучшенными свойствами при воздействии высоких температур. В частности необходимо обеспечить покрытия, имеющие низкую возможность распада на менее желательные фазы при повышенных температурах, например, на такие, как гексагональные фазы AlN. Поэтому необходимо обеспечить режущий инструмент с таким покрытием, которое имеет состав, относительно стабильный при повышенных температурах.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Таким образом, задачей настоящего изобретения является создание режущего инструмента с покрытием улучшенными свойствами во время цикла механической обработки резанием. В частности, задачей настоящего изобретения является создание режущему инструменту с покрытием, которое является более стабильным при повышенных температурах.
Таким образом, настоящее изобретение относится к режущему инструменту с покрытием, который содержит подложку и покрытие на подложке, содержащее слой, состоящий из TixZryAl(1-x-y)N, в котором 0<x≤0,3, 0,2≤y≤0,8 и 0,1≤(1-x-y)≤0,7.
Состав покрытия уменьшает вероятность перехода AlN в менее желаемые фазы при повышенных температурах, например, гексагональные AlN фазы. Таким образом, состав покрытия является более стабильным при повышенных температурах в частности, при температуре приблизительно 1100°C.
Покрытие может содержать слой, состоящий из TixZryAl(1-x-y)N, в котором x≥0,05, предпочтительно x≥0,1. Покрытие может содержать слой, состоящий из TixZryAl(1-x-y)N, в котором x≤0,25, предпочтительно x≤0,2. Благодаря чему стабильность состава дополнительно повышается.
Покрытие может содержать слой, состоящий из TixZryAl(1-x-y)N, в котором y≤0,6, предпочтительно y≤0,4. Таким образом, составы, имеющие преимущества, как здесь, могут быть получены с более низким количеством Zr.
Покрытие может содержать слой, состоящий из TixZryAl(1-x-y)N, в котором y≥0,3 или y≥0,4. Благодаря чему стабильность состава дополнительно повышается. Составы с высоким содержанием Zr могут обеспечивать лучшую устойчивость к процессу спинодального распада, в котором TiN, AlN и ZrN могут стать отделенными.
Слой TixZryAl(1-x-y)N может иметь кубическую кристаллическую структуру. Таким образом, режущие свойства режущего инструмента могут быть улучшены, например, такие, как срок эксплуатации и характеристики износа.
Слой TixZryAl(1-x-y)N может иметь столбчатую микроструктуру. Благодаря чему устойчивость к износу в виде лунки покрытия может быть улучшена, а также улучшена жесткость покрытия. В качестве альтернативы слой TixZryAl(1-x-y)N может иметь нано-кристаллическую или аморфную структуру.
Рентгеновская дифрактограмма слоя TixZryAl(1-x-y)N может иметь доминирующий пик (200) плоскости, то есть этот (200) пик может быть самым высоким пиком в XRD дифрактограмме. Таким образом, кристаллические зерна преимущественно ориентированы в направлении(200), то есть в направлении роста слоя покрытия.
Слой TixZryAl(1-x-y)N может быть осажден посредством PVD, например, дуговым испарением или напылением. Благодаря чему слой может быть обеспечен сжимающими напряжениями, улучшающими ударную вязкость слоя покрытия. Посредством дугового испарения скорость осаждения может быть улучшена и может быть улучшена степень ионизации, что приводит к более плотным слоям, улучшенной адгезии и улучшенной геометрии слоя покрытия на подложке.
Слой TixZryAl(1-x-y)N может быть нанесен с использованием источника дугового осаждения, содержащего катод, анод и магнитные средства, которые позволяют линиям магнитного поля проходить от поверхности мишени к аноду по короткому соединению. Такой источник дугового напыления дополнительно описан в заявке на патент США 2013/0126347 A1. Таким образом, слой может быть обеспечен кубической кристаллической структурой и столбчатой микроструктурой по всему диапазону заявляемого состава. В заявке на патент США US 2013/0126347 A1 раскрывается, что состояние ионизации в камере может улучшать параметры покрытия, например, скорость напыления и качество покрытия.
Покрытие может содержать адгезионный слой и слой TixZryAl(1-x-y)N поверх адгезионного слоя. В качестве одного варианта осуществления покрытие может состоять только из адгезионного слоя и слоя TixZryAl(1-x-y)N поверх адгезионного слоя. Адгезионный слой может состоять из Ti, TiN, Cr, CrN или любого другого переходного металла или нитрида переходного металла, предпочтительно с толщиной, находящейся в диапазоне 1-200 нм, в частности 5-10 нм.
Покрытие может иметь адгезионную прочность по меньшей мере 50 кг, предпочтительно по меньшей мере 100 кг, более предпочтительно по меньшей мере 150 кг, как определено испытанием на твердость вдавливанием по шкале Роквелла. Адгезия может быть определена испытанием на твердость вдавливанием по шкале С Роквелла, как описано в VDI 3198, но в котором нагрузка при вдавливании может изменяться в пределах диапазона 50-150 кг. Нагрузка вдавливания, когда покрытие проходит испытание на твердость вдавливанием в соответствии с критериями как описано в VDI 3198, может тогда быть принята в качестве адгезивной прочности покрытия.
Покрытие может быть многослойным покрытием, дополнительно включающим один или более слоев, выбранных из группы, состоящей из TiN, TiAlN, TiSiN, TiSiCN, TiCrAIN и CrAlN, или их комбинаций. Покрытие может содержать один или более слоев, имеющих состав, содержащий по меньшей мере первый элемент, выбранный из группы, состоящей из Ti, Al, Cr, Si, V, Nb, Та, Mo и W, и второй элемент, выбранный из группы, состоящей из В, C, N и O. Покрытие может иметь толщину более чем 0,5 мкм, и/или менее чем 20 мкм, предпочтительно менее чем 10 мкм. Таким образом, свойства покрытия могут быть оптимизированы к конкретным прикладным потребностям.
Слой TixZryAl(1-x-y)N может иметь толщину более чем 5 нм, и/или менее чем 20 мкм, предпочтительно менее чем 10 мкм. Таким образом, покрытие может быть сформировано по существу посредством одного слоя из TiZrAlN, или посредством комбинации одного или более слоев из TiZrAlN с другими слоями покрытия.
Подложка может содержать твердый сплав или поликристаллический кубический нитрид бора. Они являются твердыми материалами с хорошими режущими свойствами, подходящими для режущих инструментов. Режущий инструмент может быть в форме режущей пластины, фрезы или сверла, предпочтительно используемых для формирования механической обработки с удалением материала, такого как металл.
Другой задачей является создание способа изготовления режущего инструмента с покрытием, имеющим состав, который является более стабильным при повышенных температурах.
Таким образом, настоящее изобретение также относится к способу изготовления режущего инструмента с покрытием, включающему обеспечение подложки и осаждение покрытия, содержащего слой, состоящий из TixZryAl(1-x-y)N, где 0<x≤0,3, 0,2≤y≤0,8 и 0,1≤(1-x-y)≤0,7.
Слой может наноситься посредством PVD, предпочтительно посредством дугового испарения.
Слой можно осаждать с использование источник дугового осаждения, который содержит катод, анод и магнитные средства, которые позволяют линиям магнитного поля проходить от поверхности мишени к аноду по короткому соединению. Такой источник осаждения дополнительно описан в заявке на патент США US 2013/0126347 A1.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 представляет собой псевдо-тройную фазовую диаграмму TiN-ZrN-AlN, показывающую примеры заявленных составов.
Фиг. 2 представляет собой рентгеновскую дифрактограмму трех составов покрытия, описанных здесь.
Фиг. 3 представляет собой рентгеновскую дифрактограмму непосредственно после осаждения и отжига покрытий из двух различных составов.
ОПРЕДЕЛЕНИЯ
Составы как определено в формуле изобретения могут содержать неизбежные примеси (например, менее чем 1-3%), замещающие любые из металлических элементов Ti, Zr и Al, и/или N, при этом поддерживая преимущества настоящего изобретения и не отступая от заявленного диапазона. Например, N может быть замещен элементами О, С или В в количестве менее чем 1-3%.
ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Описывается вариант осуществления режущего инструмента с покрытием, имеющего подложку из твердого сплава и покрытие на подложке, содержащее слой TixZryAl(1-x-y)N. Этот слой упоминается в тексте, как слой TiZrAlN. Количество Ti в составе (то есть x) находится в пределах интервала 0<x≤0,3, предпочтительно, когда x≥0,05, более предпочтительно, когда x≥0,1. Количество Zr в составе (то есть, y) находится в интервале 0,2≤y≤0,8. Количество Al в составе (то есть, 1-x-y) находится в интервале 0,1≤(1-x-y)≤0,7. Слой TiZrAlN имеет кубическую кристаллическую структуру и столбчатую микроструктуру.
Слой TiZrAlN осаждается дуговым испарением на подложку, содержащую твердый сплав или поликристаллический кубический нитрид бора. При необходимости покрытие содержит толстый адгезионный слой толщиной 5-10 нм из Ti, Tin, Cr или Crn и слой TiZrAlN поверх адгезионного слоя. Толщина покрытия находится между 0,5-20 мкм, в основном меньше, чем 10 мкм. Слой TiZrAlN может быть одним из слоев в многослойном покрытии, имеющем непостоянство состава между различными слоями в многослойном покрытии. В качестве альтернативы покрытие может состоять из слоя TiZrAN, возможно в комбинации с адгезионным слоем.
Адгезию можно измерить испытанием на твердость вдавливанием по шкале С Роквелла, как описано в VDI 3198, но в котором нагрузка при вдавливании может изменяться в диапазоне 50-150 кг. Нагрузка при вдавливании, когда покрытие проходит испытание на твердости вдавливания в соответствии с критериями как описано в VDI 3198, может затем приниматься в качестве адгезионной прочности покрытия. Используя этот способ покрытие может иметь адгезию по меньшей мере 50 кг, предпочтительно по меньшей мере 100 кг, более предпочтительно по меньшей мере 150 кг.
На фиг. 1, показана псевдо-тройная фазовая диаграмма состояния TiN-ZrN-AlN системы. Каждая точка на графике соответствует чистому компоненту TiN, ZrN и AlN, как изображено на графике. Каждая линия, параллельнная соответствующей противоположной стороне графика, указывает на 10% интервалы соответствующего компонента.
ПРИМЕРЫ
На фиг. 1 показаны составы трех образцов в пределах заявленного диапазона. В таблице 1 показаны состав и толщина слоя TiZrAlN в каждом образце.
Таблица 1
Образцы покрытия S1, S2 и S3
TiN (%) ZrN (%) AlN (%) Толщина /мкм
S1/Образец 1 30 24 46 9,5
S2/Образец 2 21 48 31 13
S3/Образец 3 13 69 18 8
Образцы покрытия все были нанесены посредством двух катодных устройств один с Ti0,33Al0,67 - мишенью и один с Zr-мишенью. Подложки из твердого сплава были размещены в разных положениях в камере осаждения для получения осажденных слоев TiZrAlN различного состава.
Подложки покрывали в системе INNOVA Oerlikon Balzer с обновленным улучшенным плазменным оптимизатором. Подложки были помещены внутрь вакуумной камеры, которая снабжена двумя катодными устройствами. Камеру откачивали до создания высокого вакуума (менее чем 10-2 Пa). Камеру нагревали до температуры 350-500°C посредством нагревателей, расположенных внутри камеры, в данном конкретном случае до температуры 400°C. Подложки затем протравливали в течение 25 минут в тлеющем разряде Ar. Катоды в камерах были расположены друг за другом. Оба катода были снабжены кольцевыми анодами, расположенными вокруг них (как описано в заявке на патент США US 2013/0126347 A1), с системой, обеспечивающей магнитное поле с силовыми линиями, выходящими из поверхности мишени и входящими в анод (см. заявку на патент США US 2013/0126347 A1). Давление в камере (давление реакции) было установлено величиной 3,5 Пa газа N2, и отрицательное напряжение величиной -30 В (по отношению к стенкам камеры) было приложено к подложке. Катоды вводили в режим дугового разряда при 160 A, каждый в течение 60 минут. Поскольку посредством двух катодов испаряли различные материалы мишеней, градиент состава был сформирован в узле образцов, таким образом, что подложка образцов, расположенная вблизи мишени с Zr была обогащена Zr, а образцы, расположенные вблизи мишени с Ti-Al были обагащены Ti и Al.
Составы образцов были определены посредством энергодисперсионной рентгеновской спектроскопии (EDX). Состав S1 – Ti0,30Zr0,24Al0,46N, состав S2 – Ti0,21Zr0,48Al0,31N, а состав S3 – Ti0,13Zr0,69Al0,18N.
На фиг. 2 показаны рентгеновские дифрактограммы для трех покрытий, показанных в таблице 1. Все образцы имели TiZrAlN кубической структуры. Все они имеют доминирующий пик из (200) плоскости. В дополнение к этому видны пики из (111), (220) (311) плоскостей. Есть сдвиг в положении (200) пика из-за изменений в параметрах кристаллической решетки между покрытиями.
Образцы подвергали термической обработке для того, чтобы определить их поведение при повышенных температурах. Это было сделано посредством отжига при температуре 1100°C в течение 2 часов. Структуры покрытий непосредственно после осаждения и покрытий после отжига были охарактеризованы посредством рентгеновской дифрактометрии посредством установки Брэгга-Брентано. На фиг. 3 показаны рентгеновские дифрактограммы после осаждения и отжига Ti0,13Zr0,69Al0,18N (S3) и Ti0,30Zr0,24Al0,46N (S1). Для осажденных образцов (200)-пик из кубической фазы TiZrAlN идентифицируется в 20=40,8° для S3 и 2θ=42,08° для S1, в то время как другие пики (помеченные ‘s’) происходят из фаз подложки из твердого сплава. Для S3 нет никакого видимого изменения в структуре до и после отжига. Небольшой пиковый сдвиг (200) пика может быть отнесен к релаксации напряжений. Состав, таким образом, очень стабилен. После отжига S1 покрытия, (200) пик кубической структуры является ассиметричным из-за образования другой кубической фазы с (200) дифракционным пиком под более низкими углами. Это соответствует фазе с параметрами кристаллической решетке ближе к кристаллической решетке ZrN. Покрытие, таким образом, имеет преимущественно кубическую микроструктуру. Распад состава в покрытиях в менее желательные фазы, такие как гексагональные w-AlN, является, таким образом, незначительным или по меньшей мере замедленным.

Claims (19)

1. Режущий инструмент с покрытием, содержащий подложку и покрытие на упомянутой подложке, содержащее слой, состоящий из TixZryAl(1-x-y)N, причем 0<х≤0,3, 0,2≤y≤0,8 и 0,1≤(1-х-y)≤0,7.
2. Режущий инструмент по п. 1, в котором х≥0,05, предпочтительно х≥0,1.
3. Режущий инструмент по п. 1 или 2, в котором х≤0,25, предпочтительно х≤0,2.
4. Режущий инструмент по п. 1, в котором y≤0,6, предпочтительно y≤0,4.
5. Режущий инструмент по п. 1, в котором y≥0,3 или y≥0,4.
6. Режущий инструмент по п. 1, в котором слой TixZryAl(1-x-y)N имеет кубическую кристаллическую структуру.
7. Режущий инструмент по п. 1, в котором слой TixZryAl(1-x-y)N имеет столбчатую микроструктуру.
8. Режущий инструмент по п. 1, в котором рентгеновская дифрактограмма слоя TixZryAl(1-x-y)N имеет доминирующий пик (200) плоскости.
9. Режущий инструмент по п. 1, в котором слой TixZryAl(1-x-y)N нанесен посредством PVD, в частности дуговым испарением или напылением.
10. Режущий инструмент по п. 1, в котором покрытие содержит адгезионный слой толщиной 1-200 нм, в частности 5-10 нм, выполненный из титана, нитрида титана, хрома или нитрида хрома, при этом слой TixZryAl(1-x-y)N расположен поверх адгезионного слоя.
11. Режущий инструмент по п. 1, в котором покрытие имеет адгезию по меньшей мере 50 кг, предпочтительно по меньшей мере 100 кг, более предпочтительно по меньшей мере 150 кг, как определено испытанием на твердость вдавливанием по шкале Роквелла.
12. Режущий инструмент по п. 1, в котором покрытие является многослойным покрытием, дополнительно содержащим один или более слоев, выбранных из группы, состоящей из TiN, TiAlN, TiSiN, TiSiCN, TiCrAIN и CrAIN или их комбинаций.
13. Режущий инструмент по п. 1, в котором покрытие имеет толщину более 0,5 мкм и/или менее 20 мкм, предпочтительно менее 10 мкм.
14. Режущий инструмент по п. 1, в котором слой TixZryAl(1-x-y)N имеет толщину более 5 нм и/или менее 20 мкм, предпочтительно менее 10 мкм.
15. Режущий инструмент по п. 1, в котором подложка выполнена из твердого сплава или поликристаллического кубического нитрида бора.
16. Режущая пластина, отличающаяся тем, что она выполнена в виде режущего инструмента по любому из пп. 1-15.
17. Способ изготовления режущего инструмента с покрытием, включающий размещение подложки в камере осаждения и нанесение покрытия, содержащего слой, состоящий из TixZryAl(1-x-y)N, причем 0<х≤0,3, 0,2≤y≤0,8 и 0,1≤ (1-x-y) ≤0,7.
18. Способ по п. 17, в котором упомянутый слой осаждают дуговым испарением.
19. Способ по п. 18, в котором упомянутый слой осаждают с использованием источника дугового осаждения, содержащего катод, анод и магнитную систему, обеспечивающую магнитное поле с силовыми линиями, проходящими от поверхности мишени к аноду по короткому пути.
RU2015131332A 2014-07-29 2015-07-28 Режущий инструмент с покрытием и способ изготовления режущего инструмента с покрытием RU2695686C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14178913 2014-07-29
EP14178913.1 2014-07-29

Publications (3)

Publication Number Publication Date
RU2015131332A RU2015131332A (ru) 2017-02-03
RU2015131332A3 RU2015131332A3 (ru) 2018-12-29
RU2695686C2 true RU2695686C2 (ru) 2019-07-25

Family

ID=51260625

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015131332A RU2695686C2 (ru) 2014-07-29 2015-07-28 Режущий инструмент с покрытием и способ изготовления режущего инструмента с покрытием

Country Status (7)

Country Link
US (1) US9758859B2 (ru)
EP (1) EP2987890B1 (ru)
JP (1) JP6842233B2 (ru)
KR (1) KR102436934B1 (ru)
CN (1) CN105312600A (ru)
BR (1) BR102015018142B1 (ru)
RU (1) RU2695686C2 (ru)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10570501B2 (en) 2017-05-31 2020-02-25 Kennametal Inc. Multilayer nitride hard coatings
CN108129152A (zh) * 2017-12-01 2018-06-08 高昕文 一种耐磨耐高温TiSiN涂层陶瓷铣刀的制备方法
US11370033B2 (en) * 2018-03-07 2022-06-28 Sumitomo Electric Hardmetal Corp. Surface coated cutting tool and method for manufacturing the same
CN108950488A (zh) * 2018-08-03 2018-12-07 河北工程大学 TiAl/TiAlN/TiZrAlN复合涂层及其制备方法
CN109695023B (zh) * 2018-12-13 2020-07-17 上海航天设备制造总厂有限公司 一种空间机构件固体抗菌硬质涂层及其制备方法
EP3757252B1 (en) * 2019-06-28 2022-03-30 Walter Ag A coated cutting tool
CN113088895B (zh) * 2021-04-01 2022-07-19 九牧厨卫股份有限公司 一种装饰性低温硬质涂层及其镀膜方法和应用
CN117561134A (zh) * 2021-07-30 2024-02-13 京瓷株式会社 涂层刀具及切削刀具

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617057B2 (en) * 1999-11-29 2003-09-09 Vladimir Gorokhovsky Composite vapor deposited coatings and process therefor
RU78198U1 (ru) * 2008-04-29 2008-11-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Режущий инструмент с многослойным покрытием
RU2363761C1 (ru) * 2008-05-23 2009-08-10 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ получения многослойного покрытия для режущего инструмента
US20100086397A1 (en) * 2008-10-03 2010-04-08 General Electric Company Surface Treatments for Turbine Components to Reduce Particle Accumulation During Use Thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108404A (ja) * 1993-10-13 1995-04-25 Mitsubishi Materials Corp 表面被覆切削工具
JP3978775B2 (ja) * 2002-06-25 2007-09-19 三菱マテリアル株式会社 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
CN100419117C (zh) * 2004-02-02 2008-09-17 株式会社神户制钢所 硬质叠层被膜、其制造方法及成膜装置
JP2006255848A (ja) * 2005-03-18 2006-09-28 Nippon Steel Corp 低炭快削鋼の切削工具及び切削方法
JP4697660B2 (ja) * 2005-06-28 2011-06-08 三菱マテリアル株式会社 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
SE0701320L (sv) * 2007-06-01 2008-12-02 Sandvik Intellectual Property Belagd hårdmetall för formverktygsapplikationer
SE531933C2 (sv) * 2007-12-14 2009-09-08 Seco Tools Ab Belagt hårdmetallskär för bearbetning av stål och rostfria stål
CN101596607B (zh) * 2009-05-04 2010-09-15 山东大学 TiZrN涂层刀具及其制备方法
SE533884C2 (sv) * 2009-06-01 2011-02-22 Seco Tools Ab Nanolaminerat belagt skärverktyg
EP2287359B1 (en) * 2009-07-03 2012-05-23 Sandvik Intellectual Property AB Coated cutting tool insert
JP5440352B2 (ja) * 2010-04-16 2014-03-12 三菱マテリアル株式会社 表面被覆切削工具
US10253407B2 (en) 2010-06-22 2019-04-09 Oerlikon Surface Solutions Ag, Pfäffikon Arc deposition source having a defined electric field
CN103052456B (zh) * 2010-08-04 2015-04-22 株式会社图格莱 被覆工具
EP2628826A1 (en) 2012-02-14 2013-08-21 Sandvik Intellectual Property AB Coated cutting tool and method for making the same
JP5896326B2 (ja) * 2012-10-02 2016-03-30 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
CN103273687B (zh) * 2013-05-13 2015-02-18 山东大学 TiSiN+ZrSiN复合纳米涂层刀具及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617057B2 (en) * 1999-11-29 2003-09-09 Vladimir Gorokhovsky Composite vapor deposited coatings and process therefor
RU78198U1 (ru) * 2008-04-29 2008-11-20 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Режущий инструмент с многослойным покрытием
RU2363761C1 (ru) * 2008-05-23 2009-08-10 Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Способ получения многослойного покрытия для режущего инструмента
US20100086397A1 (en) * 2008-10-03 2010-04-08 General Electric Company Surface Treatments for Turbine Components to Reduce Particle Accumulation During Use Thereof

Also Published As

Publication number Publication date
RU2015131332A (ru) 2017-02-03
EP2987890A1 (en) 2016-02-24
US20160032444A1 (en) 2016-02-04
CN105312600A (zh) 2016-02-10
BR102015018142A2 (pt) 2017-07-11
KR102436934B1 (ko) 2022-08-25
KR20160014541A (ko) 2016-02-11
US9758859B2 (en) 2017-09-12
BR102015018142B1 (pt) 2022-04-05
JP2016030330A (ja) 2016-03-07
EP2987890B1 (en) 2020-09-09
JP6842233B2 (ja) 2021-03-17
RU2015131332A3 (ru) 2018-12-29

Similar Documents

Publication Publication Date Title
RU2695686C2 (ru) Режущий инструмент с покрытием и способ изготовления режущего инструмента с покрытием
JP6858347B2 (ja) 被覆切削工具
US8852305B2 (en) Nanolaminated coated cutting tool
US8507108B2 (en) Thin wear resistant coating
US8864861B2 (en) Nanolaminated coated cutting tool
US9447491B2 (en) Coated cutting tool and method of making the same
KR101822810B1 (ko) 코팅된 절삭 공구
US10023952B2 (en) Coated cutting tool and a method for coating the cutting tool
CN102994948A (zh) 经多层涂覆的耐磨损构件及其制造方法
US8685531B2 (en) Surface-coated cutting tool
US8685530B2 (en) Surface-coated cutting tool
US11440102B2 (en) Coated cutting tool and method
US10837100B2 (en) Method of producing a PVD layer and a coated cutting tool
US10954590B2 (en) Coated cutting tool
GB2492885A (en) Yttrium-containing coating applied by PVD