RU2682208C2 - Способ и устройство для регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува - Google Patents

Способ и устройство для регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува Download PDF

Info

Publication number
RU2682208C2
RU2682208C2 RU2017110869A RU2017110869A RU2682208C2 RU 2682208 C2 RU2682208 C2 RU 2682208C2 RU 2017110869 A RU2017110869 A RU 2017110869A RU 2017110869 A RU2017110869 A RU 2017110869A RU 2682208 C2 RU2682208 C2 RU 2682208C2
Authority
RU
Russia
Prior art keywords
stream
partial
pressure
gas
charge air
Prior art date
Application number
RU2017110869A
Other languages
English (en)
Other versions
RU2017110869A3 (ru
RU2017110869A (ru
Inventor
Марио СКОПИЛ
Original Assignee
Антрова Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Антрова Аг filed Critical Антрова Аг
Publication of RU2017110869A publication Critical patent/RU2017110869A/ru
Publication of RU2017110869A3 publication Critical patent/RU2017110869A3/ru
Application granted granted Critical
Publication of RU2682208C2 publication Critical patent/RU2682208C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/42Engines with pumps other than of reciprocating-piston type with driven apparatus for immediate conversion of combustion gas pressure into pressure of fresh charge, e.g. with cell-type pressure exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F13/00Pressure exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

Предложены способ и устройство для регулирования давления наддува в двигателе (39) внутреннего сгорания с нагнетателем (1) системы волнового наддува, при котором нагнетатель (1) системы волнового наддува имеет ячеистый ротор (8), проходящий за один оборот по меньшей мере два цикла компрессии, причем поток (4с) отходящих газов высокого давления разделяют на первый и второй частичные потоки (4d, 4е) отходящих газов высокого давления, причем в первом цикле компрессии к ячеистому ротору (8) подводят поток (2с) свежего воздуха, а также первый частичный поток (4d) отходящих газов высокого давления и отводят от ячеистого ротора (8) первый поток (3с) сжатого свежего воздуха и поток (5е) отходящих газов низкого давления, а во втором цикле компрессии к ячеистому ротору (8) подводят поток (2с) свежего воздуха, а также второй частичный поток (4е) отходящих газов высокого давления и отводят от ячеистого ротора (8) второй поток (3d) сжатого свежего воздуха и поток (5е) отходящих газов низкого давления, причем первый и второй потоки (3с, 3d) сжатого свежего воздуха сводят вместе в поток наддувочного воздуха (3е), и наддувочный воздух (3е) подводят к двигателю (39) внутреннего сгорания, причем второй частичный поток (4е) отходящих газов высокого давления подвергают регулированию, чтобы таким образом управлять давлением наддувочного воздуха (3е), причем до соединения первого и второго потоков (3с, 3d) сжатого свежего воздуха в поток наддувочного воздуха (3е) второй поток (3d) сжатого свежего воздуха проводят через обратный клапан (9). Техническим результатом является повышение КПД. 2 н. и 11 з.п. ф-лы, 7 ил.

Description

Область техники
Изобретение относится к способу регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува согласно ограничительной части пункта 1. Изобретение относится, кроме того, к устройству для регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува согласно ограничительной части пункта 11.
Уровень техники
Известна возможность повышения производительности и, соответственно, коэффициента полезного действия двигателя внутреннего сгорания путем применения нагнетателя системы волнового наддува. Нагнетатель системы волнового наддува уплотняет всасываемый свежий воздух и вследствие этого повышает давление наддува двигателя внутреннего сгорания. Двигатель внутреннего сгорания автомобиля во время фазы рабочего цикла, следующей после холодного пуска, эксплуатируется в различных состояниях. Поэтому для эффективной эксплуатации необходимо также в каждом случае адаптировать нагнетатель системы волнового наддува к соответствующему режиму работы двигателя внутреннего сгорания.
Документ DE 102006020522 А1 раскрывает способ управления двигателем внутреннего сгорания, при котором свежий воздух сжимают нагнетателем системы волнового наддува. Недостатком этого нагнетателя системы волнового наддува является то, что для управления им требуется смещение корпуса. Документ WO 2011/100958А1 раскрывает еще один способ регулирования давления наддува двигателя внутреннего сгорания с помощью нагнетателя системы волнового наддува. Недостатком этого нагнетателя системы волнового наддува является то, что для управления им требуется подвижная кулиса в воздушной коробке. Недостаток обоих способов состоит в том, что их осуществление не эффективно при холодном пуске, а также при низкой нагрузке двигателя, или при незначительном объемном потоке, так как создается только слишком незначительное давление. Кроме того, оба известных нагнетателя системы волнового наддува имеют тот недостаток, что требуется относительно большой обусловленный конструкцией зазор между вращаемыми и неподвижными конструктивными элементами, что дополнительно снижает коэффициент полезного действия.
Раскрытие сущности изобретения
Задача изобретения состоит в создании такого способа, а также такого устройства для регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува, которые более предпочтительны в отношении характеристик эмиссии, характеристик срабатывания и коэффициента полезного действия. Способ согласно изобретению и, соответственно, устройство согласно изобретению должны обеспечивать возможность поднятия давления, в частности, также при небольших объемных потоках, и, кроме того, должны обеспечивать более высокий коэффициент полезного действия.
Эта задача решена способом регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува, имеющим признаки пункта 1 формулы изобретения. Зависимые пункты 2-10 относятся к дальнейшим предпочтительным операциям способа. Задача решена, кроме того, устройством для регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува, имеющим признаки пункта 11. Зависимые пункты 12-13 относятся к дальнейшим предпочтительным вариантам исполнения устройства.
Задача решена, в частности, способом регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува, при котором нагнетатель системы волнового наддува имеет ячеистый ротор, проходящий за один оборот по меньшей мере два цикла компрессии, причем поток отходящих газов высокого давления разделяется на первый и второй частичные потоки отходящих газов высокого давления, причем здесь в первом цикле компрессии к ячеистому ротору подводят поток свежего воздуха, а также первый частичный поток отходящих газов высокого давления и отводят от ячеистого ротора первый поток сжатого свежего воздуха и поток отходящих газов низкого давления, а во втором цикле компрессии к ячеистому ротору подводят поток свежего воздуха, а также второй частичный поток отходящих газов высокого давления и отводят от ячеистого ротора второй поток сжатого свежего воздуха и поток отходящих газов низкого давления, причем первый и второй потоки поток сжатого свежего воздуха сводят вместе в поток наддувочного воздуха, и наддувочный воздух подводят к двигателю внутреннего сгорания, причем количества отходящих газов высокого давления в первом и во втором частичных потоках регулируют независимо друг от друга, и таким образом регулируют давление наддувочного воздуха или, в соответствующих случаях, его количество. Предпочтительно первый частичный поток отходящих газов высокого давления подводят к ячеистому ротору без регулирования, а второй частичный поток отходящих газов высокого давления подводят к ячеистому ротору, регулируя его, чтобы таким образом управлять давлением наддувочного воздуха, причем до соединения первого и второго потоков сжатого свежего воздуха в поток наддувочного воздуха второй поток сжатого свежего воздуха проводят через обратный клапан.
Далее, задача решена, в частности, устройством для регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува, причем нагнетатель системы волнового наддува включает в себя ячеистый ротор, всасывающий воздуховод, канал наддувочного воздуха, канал отходящих газов высокого давления, а также выпускной канал, причем всасывающий воздуховод, канал отходящих газов высокого давления, а также канал наддувочного воздуха расположены таким образом, что возможна подача к ячеистому ротору через всасывающий воздуховод потока свежего воздуха, а через канал отходящих газов высокого давления - потока отходящих газов высокого давления и что возможно отведение сжатого свежего воздуха из ячеистого ротора через канал наддувочного воздуха, причем нагнетатель системы волнового наддува выполнен таким образом, что во время одного оборота он совершает по меньшей мере один первый и один второй цикл компрессии, при этом всасывающий воздуховод разветвляется на первый и второй частичные каналы всасываемого воздуха, а канал отходящих газов высокого давления разветвляется на первый и второй частичные каналы отходящих газов высокого давления, при этом канал наддувочного воздуха питается от первого частичного канала наддувочного воздуха и от второго частичного канала наддувочного воздуха, причем во втором частичном канале отходящих газов высокого давления расположен управляемый клапан, чтобы управлять количеством отходящих газов в потоке отходящих газов высокого давления, протекающим через второй частичный канал, причем во втором канале для прохождения воздуха расположен обратный клапан, причем имеется управляющее и регулирующее устройство, которое в зависимости от заданного уровня нагрузки, в частности, от положения педали газа, воздействует на управляемый клапан, чтобы тем самым управлять количеством наддувочного воздуха, подаваемого к двигателю внутреннего сгорания.
При способе согласно изобретению нагнетатель системы волнового наддува включает в себя по меньшей мере два контура компрессии, причем в по меньшей мере одном из контуров компрессии расположен клапан, выполненный, например, как направляющий распределитель, позволяющий открывать поток отходящих газов высокого давления или закрывать его, или позволяющий регулировать проходящее через него количество газа и соответственно давление потока отходящих газов высокого давления. Положение направляющего распределителя определяет площадь подпора, действительную для второго частичного потока 4е отходящих газов высокого давления, или, соответственно, расход газа, проходящего через направляющий распределитель, так что положение направляющего распределителя определяет давление, действующее на второй поток сжатого свежего воздуха. Регулирование потока отходящих газов высокого давления влечет за собой возможность регулирования давления, или количества наддувочного воздуха, отдаваемого нагнетателем системы волнового наддува. Преимущество этого способа состоит в том, что при низкой нагрузке двигателя, или при незначительном объемном потоке отходящих газов, второй цикл компрессии остается полностью отключенным, и клапан во втором цикле компрессии остается полностью закрытым. Вследствие отключения одного потока отходящих газов высокого давления в нагнетателе системы волнового наддува имеется меньшее количество газопроводящих каналов, в результате получено преимущество, состоящее в том, что даже при небольшом объемном потоке создается соответствующее давление наддувочного воздуха. Отключение одного контура компрессии влечет за собой действие потока отходящих газов высокого давления в этом рабочем режиме устройства согласно изобретению только с половинной площадью подпора, так что свободное поперечное сечение, по сравнению с эксплуатацией без отключения контура, вдвое меньше, поэтому имеется возможность даже при низких объемных потоках создавать достаточно высокое давление или подпор, чтобы в результате производить наддувочный воздух с соответствующим давлением. Способ согласно изобретению имеет то преимущество, что при холодном пуске нагнетатель системы волнового наддува имеет существенно лучшую характеристику срабатывания, то есть что нагнетатель системы волнового наддува при холодном пуске может относительно быстро создавать достаточное давление наддува, чтобы снабжать двигатель внутреннего сгорания наддувочным воздухом под давлением и, соответственно, чтобы эксплуатировать двигатель внутреннего сгорания с более высокой производительностью. В следующем предпочтительном варианте осуществления способ имеет то преимущество, что имеется возможность эксплуатировать нагнетатель системы волнового наддува примерно до половины его общей мощности на единственном контуре компрессии и что при мощности, превышающей половину общей мощности, возможна эксплуатация нагнетателя системы волнового наддува на двух контурах компрессии, причем при включении второго контура компрессии требуется лишь незначительное изменение числа оборотов нагнетателя системы волнового наддува, что предпочтительно. Таким образом, нагнетатель системы волнового наддува работает большей частью в верхнем диапазоне частоты вращения, что в итоге дает преимущество, так как больше нет необходимости в передвижных кулисах или направляющих кромках, как они известны из уровня техники, например из публикации ЕР 2562381А.
Способ согласно изобретению предпочтительно осуществляется таким образом, что нагнетатель системы волнового наддува эксплуатируют в первом рабочем режиме, при котором во время первого цикла компрессии к ячеистому ротору подводят первый частичный поток отходящих газов высокого давления, а во время второго цикла компрессии к ячеистому ротору не подводят второй частичный поток отходящих газов высокого давления, что нагнетатель системы волнового наддува эксплуатируют во втором рабочем режиме, при котором к ячеистому ротору подводят как первый частичный поток отходящих газов высокого давления во время первого цикла компрессии, так и второй частичный поток отходящих газов высокого давления во время второго цикла компрессии, и что переключение между первым и вторым рабочими режимами производят в зависимости от измеренного значения характеристики рабочего режима и от заданного значения для переключения. В качестве измеренного значения характеристики рабочего режима, как величина, характеризующая рабочий режим во время эксплуатации нагнетателя системы волнового наддува, подходит, в частности, количество наддувочного воздуха, подведенное к двигателю внутреннего сгорания, или давление наддувочного воздуха, или число оборотов двигателя. В качестве заданного значения для переключения подходит, в частности, значение в диапазоне от 40% до 50% максимально возможного значения характеристики рабочего режима.
Преимущество способа согласно изобретению состоит в том, что он позволяет особенно предпочтительным образом использовать поток отходящих газов высокого давления, приходящий из двигателя внутреннего сгорания, для создания такого давления наддувочного воздуха, которое адаптировано для соответствующего рабочего диапазона двигателя, или для подачи на двигатель внутреннего сгорания такого регулируемого количества наддувочного воздуха, которое адаптировано для соответствующего рабочего диапазона двигателя. Количество подводимого наддувочного воздуха определяют, в частности, для положения дроссельной заслонки наддувочного воздуха.
Согласно следующему предпочтительному варианту осуществления способа согласно изобретению в первом рабочем режиме во время второго цикла компрессии второй частичный поток отходящих газов высокого давления, или основную ветвь второго частичного потока отходящих газов высокого давления, не прерывают полностью. Поэтому этот следующий предпочтительный вариант осуществления способа проходит таким образом: нагнетатель системы волнового наддува эксплуатируют в первом рабочем режиме, при котором во время первого цикла компрессии к ячеистому ротору подводят первый частичный поток отходящих газов высокого давления, а во время второго цикла компрессии - второй частичный поток отходящих газов высокого давления, или основную ветвь второго частичного потока отходящих газов высокого давления, редуцируют посредством клапана, и вследствие этого к ячеистому ротору подводят второй, сокращенный частичный поток отходящих газов высокого давления, и что нагнетатель системы волнового наддува эксплуатируют во втором рабочем режиме, при котором как первый частичный поток отходящих газов высокого давления во время первого цикла компрессии, так и второй частичный поток отходящих газов высокого давления во время второго цикла компрессии подводят к ячеистому ротору, не сокращая их, и что переключение между первым и вторым рабочим режимом производят в зависимости от измеренного значения характеристики рабочего режима и от заданного значения для переключения.
Для способа согласно изобретению и соответственно для устройства согласно изобретению требуется нагнетатель системы волнового наддува с по меньшей мере двумя циклами компрессии, причем могут быть предусмотрены также более двух циклов компрессии, причем по меньшей мере в одном из циклов компрессии имеется управляемый клапан, который позволяет с целью регулирования давления потока свежего воздуха, или соответственно количества свежего воздуха в этом потоке, осуществлять в соответствующем цикле компрессии управление потоком отходящих газов высокого давления и отключение этого потока и тем самым осуществлять управление количеством и давлением наддувочного воздуха.
В предпочтительном варианте осуществления клапан выполнен с обеспечением возможности регулирования как частичного потока отходящих газов высокого давления, подводимого к ячеистому ротору нагнетателя системы волнового наддува, так и количества отходящих газов, подводимого к изменяемому газовой камере. В особенно предпочтительном варианте осуществления клапан выполнен как направляющий распределитель.
Ниже изобретение подробно описывается на основе примеров.
Краткое описание чертежей
На чертежах, используемых для пояснения вариантов осуществления, показаны:
фиг. 1 схематичное изображение двигателя внутреннего сгорания с нагнетателем системы волнового наддува;
фиг. 2 давление наддувочного воздуха, производимое нагнетателем системы волнового наддува, как функция от объемного потока;
фиг. 3 схематично показанный продольный разрез нагнетателя системы волнового наддува;
фиг. 4 вариант осуществления поворотной заслонки в разрезе;
фиг. 5 вариант осуществления обратного клапана в разрезе;
фиг. 6 аксонометрическое изображение поворотной части поворотной заслонки;
фиг. 7 аксонометрическое изображение наружной обоймы для поворотной заслонки, изображенной на фигуре 6.
На чертежах по существу одинаковые детали снабжены одними и теми же обозначениями.
Осуществление изобретения
На фигуре 1 показано устройство для регулирования давления наддува в двигателе 39 внутреннего сгорания. Двигатель 39 внутреннего сгорания включает в себя множество цилиндров 30, из которых на фигуре 1 представлен только один. В цилиндре 30 расположен поршень 31. В цилиндре 30 имеются впускной клапан 34, выпускной клапан 35, а также свечи 33 зажигания. К цилиндру 30 по каналу 3 наддувочного воздуха подводят наддувочный воздух 3е, причем, кроме того, к наддувочному воздуху 3е посредством форсунки 36 примешивают топливо. Отходящие газы, выходящие из цилиндра 30 после сгорания, отводят в виде потока 4с отходящих газов высокого давления через канал 4 отходящих газов. При помощи по меньшей мере одного датчика 10, например, датчика 10а давления для измерения давления наддувочного воздуха 3е, или при помощи датчика 10b для измерения количества наддувочного воздуха 3е, например, датчика на основе нагреваемой нити, устройство 40 управления и регулирования обеспечивает возможность измерения характеристики В рабочего режима двигателя 39 внутреннего сгорания или нагнетателя 1 системы волнового наддува, или определять рабочий режим В исходя из измеренных значений.
Кроме того, на фигуре 1 показан нагнетатель 1 системы волнового наддува, включающий в себя воздушную коробку 6, расположенный внутри нее газовый корпус 7, выполненный с возможностью поворота ячеистый ротор 8, а также множество подводов, отводов и приводов. На фигуре 1 показана развертка цилиндрического разреза ячеистого ротора 8 на угол 360° и соответствующие выводы, отводы и приводы, причем нагнетатель 1 системы волнового наддува и соответственно ячеистый ротор 8 рассчитан на прохождение двух циклов компрессии за один оборот.
Поток 2c свежего воздуха проводят сквозь воздушный фильтр 16 через всасывающий воздуховод 2, а затем разделяют на два частичных потока и через первый частичный канал 2а всасываемого воздуха и второй частичный канал 2b всасываемого воздуха через вход ба свежего воздуха подводят к ячеистому ротору 8. Отходящие газы низкого давления через выход 5c отходящих газов и через выход 5d отходящих газов выходят из ячеистого ротора 8, затем проходят через катализатор 17 окисления и выпускной канал 5, и после этого их выпускают в окружающую среду в виде потока 5е отходящих газов низкого давления. Поток 4с отходящих газов высокого давления через канал 4 отходящих газов подводят к трехкомпонентному катализатору 19, а после этого, направляясь через первый частичный канал 4а отходящих газов высокого давления и второй частичный канал 4b отходящих газов высокого давления разделяют на первый частичный поток 4d отходящих газов высокого давления и второй частичный поток 4е отходящих газов высокого давления. Первый частичный поток 4d отходящих газов высокого давления разделяется на основную ветвь 4g первого частичного потока отходящих газов высокого давления и первый поток 4f газовой камеры. Основную ветвь 4g первого частичного потока отходящих газов высокого давления подводят через впуск 7а для отходящих газов к ячеистому ротору 8, а первый поток 4f газовой камеры подводят к газовой камере 7е. На основной ветви 4g первого частичного потока отходящих газов высокого давления к ячеистому ротору 8 не предусмотрен клапан, так что основная ветвь 4g первого частичного потока отходящих газов высокого давления подводится к ячеистому ротору 8 в нерегулируемом виде. Посредством первого клапана 20 газовой камеры, включающего в себя привод 20а клапана газовой камеры, возможно регулирование той доли первого частичного потока 4d отходящих газов высокого давления, которая подводится к газовой камере 7е в виде первого потока 4f газовой камеры. В предпочтительном варианте осуществления способа, например, после холодного пуска двигателя, клапан 20 газовой камеры остается закрытым, например, во время фазы разогрева, так что основная ветвь 4g частичного потока отходящих газов высокого давления соответствует первому частичному потоку 4d отходящих газов высокого давления.
Второй частичный поток 4b отходящих газов высокого давления разделяется на основную ветвь 4i второго частичного потока отходящих газов высокого давления и на второй поток 4h газовой камеры. Основную ветвь 4i второго частичного потока отходящих газов высокого давления через управляемый клапан 21b основного потока газа подводят к входу отходящих газов 7d и после этого к ячеистому ротору 8. Второй поток 4h газовой камеры подводят к газовой камере 7е. Посредством клапана 21а второго газовой камеры, включающего в себя привод 21с клапана газовой камеры, а также посредством клапана 21b основного потока газа с приводом 21d возможно управление разделением первого частичного потока 4d отходящих газов высокого давления на второй поток 4h газовой камеры и на основную ветвь 4i второго частичного потока отходящих газов высокого давления. Клапан 21b основного потока газа и второй клапан 21а газовой камеры могут быть связаны друг с другом или могут также управляться независимо друг от друга и, таким образом, принимать также различные положения, в частности, могут быть также полностью открытыми или полностью закрытыми. Клапан 21а газовой камеры и клапан 21b основного потока газа могут быть выполнены также в виде единого клапана 21, образующего как клапан газовой камеры, так и клапан основного потока газа. В предпочтительном варианте осуществления способа, например, после холодного пуска двигателя, клапан 21а газовой камеры остается закрытым, например, во время фазы разогрева, так что основная ветвь 4i второго частичного потока отходящих газов высокого давления соответствует второму частичному потоку 4е отходящих газов высокого давления.
Поток 2 свежего воздуха, проникающий через впуск 6а свежего воздуха в ячеистый ротор 8, сжимается в ячеистом роторе 8, и через устройства 6b выпуска наддувочного воздуха его подводят, в виде первого и второго потоков 3с, 3d сжатого свежего воздуха, к охладителю 18 наддувочного воздуха посредством первого частичного канала 3а наддувочного воздуха и второго частичного канала 3b наддувочного воздуха, чтобы затем в виде наддувочного воздуха 3e подавать на цилиндр 30. Во втором частичном канале 3b наддувочного воздуха расположен обратный клапан 9. Обратный клапан 9 необходим для того, чтобы препятствовать прохождению наддувочного воздуха 3e назад в ячеистый ротор 8, в частности, тогда, когда клапан 21 или 21b полностью закрыт.
Кроме того, нагнетатель 1 системы волнового наддува включает в себя управляющее и регулирующее устройство 40, которое посредством линий передачи сигнала соединено с устройством 38 задания нагрузки, предпочтительно выполненным в виде педали газа, а также с дроссельной заслонкой 37 наддувочного воздуха, с электродвигателем 15 и с приводами 20а, 21с, 21d. Электродвигатель 15 посредством вала 12 ротора соединен с ячеистым ротором 8, чтобы приводить его в движение. В другом варианте осуществления вместо электродвигателя 15 возможен привод ротора 8 от двигателя 39 внутреннего сгорания посредством соответствующего приводного механизма.
Способ регулирования давления наддува в двигателе 39 внутреннего сгорания с нагнетателем 1 системы волнового наддува осуществляется таким образом, что ячеистый ротор 8 за один оборот проходит два цикла компрессии, причем поток 4с отходящих газов высокого давления подразделяется на первый и второй частичные потоки 4d, 4е отходящих газов высокого давления, причем в первом цикле компрессии к ячеистому ротору 8 подводят поток 2с свежего воздуха, а также первый частичный поток 4d отходящих газов высокого давления, а от ячеистого ротора 8 отводят первый поток 3c сжатого свежего воздуха и поток 5е отходящих газов низкого давления, причем во втором цикле компрессии к ячеистому ротору 8 подводят поток 2 с свежего воздуха, а также второй частичный поток 4е отходящих газов высокого давления, а от ячеистого ротора 8 отводят второй поток 3d сжатого свежего воздуха и поток 5е отходящих газов низкого давления, причем первый и второй потоки сжатого свежего воздуха 2с, 3d соединяются в поток наддувочного воздуха 3е, причем наддувочный воздух 3е подводят к двигателю 39 внутреннего сгорания. Расходом первого и второго частичных потоков 4d отходящих газов высокого давления, 4е управляют независимо друг от друга, чтобы в результате этого создавать необходимое давление наддувочного воздуха 3e. Предпочтительно первый частичный поток 4d отходящих газов высокого давления подводят к ячеистому ротору 8, не управляя им, а второй частичный поток 4е отходящих газов высокого давления подводят к ячеистому ротору 8 посредством клапана 21, 21b, чтобы управлять давлением наддувочного воздуха. Обоими клапанами 20 и 21 предпочтительно управляют независимо друг от друга, причем эти клапаны 20 и 21 предпочтительно механически разделены, так что имеется возможность перемещать их независимо друг от друга.
На фигуре 2 показан объемный поток V наддувочного воздуха 3е, или соответственно количество наддувочного воздуха, как функция от степени Pd сжатия наддувочного воздуха 3е. Под количеством понимается весовой поток, т.е. под количеством наддувочного воздуха подразумевается весовой поток наддувочного воздуха, в килограммах в секунду. Объемный поток V указан в процентах от максимального объемного потока, который максимально возможен при соответствующей комбинации двигателя 39 внутреннего сгорания и нагнетателя 1 системы волнового наддува. Степень сжатия Pd представляет собой отношение значения давления Р наддувочного воздуха 3е к значению давления окружающей среды. В нижнем рабочем диапазоне, или в первом рабочем режиме L1, двигатель 39 внутреннего сгорания нуждается только в небольшом количестве наддувочного воздуха 3е. Возможна подача к двигателю 39 внутреннего сгорания максимального количества LMax наддувочного воздуха. При актуальной подаче количества наддувочного воздуха 3е, составляющего не более примерно 40%-50% от максимального количества LMax наддувочного воздуха, во время первого цикла компрессии к ячеистому ротору 8 подводят первый частичный поток 4d отходящих газов высокого давления; во время второго цикла компрессии, напротив, второй частичный поток 4е отходящих газов высокого давления не подводится, поскольку клапан 21b основного потока газа и второй клапан 21а газовой камеры полностью закрыты. Когда двигатель 39 внутреннего сгорания работает в верхнем рабочем диапазоне и соответственно во втором рабочем режиме L2, для этого требуется большее количество наддувочного воздуха 3е. В этом рабочем режиме нагнетатель системы волнового наддува приводят в действие в соответствии с графиком L2, и к ячеистому ротору 8 подводят как первый частичный поток 4d отходящих газов высокого давления во время первого цикла компрессии, так и второй частичный поток 4е отходящих газов высокого давления во время второго цикла компрессии, при этом во время второго цикла компрессии клапан 21b основного потока газа и, при необходимости, также второй клапан 21а газовой камеры по меньшей мере частично открывается.
В нижнем рабочем диапазоне, или соответственно в первом рабочем режиме L1, возможен также такой режим работы нагнетателя 1 системы волнового наддува, при котором подводятся как первый частичный поток 4d отходящих газов высокого давления во время первого цикла компрессии, так и второй частичный поток отходящих газов высокого давления 4е во время второго цикла компрессии, когда управление обоими частичными потоками 4d, 4е отходящих газов высокого давления производят посредством отдельно управляемого клапана основного потока газа и в любом случае дополнительно посредством клапана газовой камеры.
Согласно предпочтительному способу нагнетатель 1 системы волнового наддува приводят в действие в первом рабочем режиме L1, при котором к ячеистому ротору 8 во время первого цикла компрессии подводят первый частичный поток 4d отходящих газов высокого давления, а во время второго цикла компрессии не подводят второй частичный поток отходящих газов высокого давления 4е, и во втором рабочем режиме L2, при котором к ячеистому ротору 8 подводят как первый частичный поток 4d отходящих газов высокого давления во время первого цикла компрессии, так и второй частичный поток 4е отходящих газов высокого давления во время второго цикла компрессии, и переключение между первым и вторым рабочими режимами L1, L2 производят в зависимости от измеренного значения В характеристики рабочего режима и от заданного значения S для переключения.
В качестве значения В характеристики рабочего режима предпочтительно используют значение подводимого количества наддувочного воздуха 3е, или значение давления Р наддувочного воздуха 3е, или число оборотов U двигателя внутреннего сгорания. В качестве заданного значения S для переключения предпочтительно задают референтное значение, соответствующее рабочему режиму. Заданное значение S для переключения выбирается, например, таким образом, что возможна подача на двигатель 39 внутреннего сгорания максимального количества LMax наддувочного воздуха и что заданное значение S для переключения представляет собой значение расхода в области S1 от 40% до 50% максимального количества LMax наддувочного воздуха. Возможен, например, также такой выбор заданного значения S для переключения, что подводимый к двигателю 39 внутреннего сгорания наддувочный воздух 3е имеет максимальное давление PMax наддувочного воздуха и что заданное значения S для переключения представляет собой значение давления в области от 40% до 50% максимального давления PMax наддувочного воздуха, например, 40%, или 45% или 50%.
При актуальной подаче количества наддувочного воздуха 3е, которое составляет больше заданного значения S для переключения, предпочтительно от 40% до 50% максимального количества наддувочного воздуха LMax, к ячеистому ротору 8 во втором рабочем режиме L2 подводят как первый частичный поток 4d отходящих газов высокого давления во время первого цикла компрессии, так и второй частичный поток отходящих газов высокого давления 4е во время второго цикла компрессии, при этом открывается клапан 21b основного потока газа и в соответствующих случаях также второй клапан 21а газовой камеры. Переключение между обоими рабочими режимами L1, L2 предпочтительно происходит в пределах области S1, как показано на фигуре 2, причем область S1 в представленном варианте осуществления имеет ширину 10%. Для переключения между обоими режимами работы предпочтительно устанавливают заданное значение S для переключения - например, 40%, или 45%, или 50%, - при превышении которого, в процессе изменения в направлении повышения, происходит смена режима работы на режим L2, в котором как во время первого цикла компрессии, так и во время второго цикла компрессии к ротору подводят первый или второй частичные потоки 4d, 4е отходящих газов высокого давления, а при значении, не превышающем его, для изменения в направлении понижения, происходит смена режима работы на режим L1, в котором к ротору подводят только во время первого цикла компрессии первый частичный поток 4d отходящих газов высокого давления.
Как видно из фигуры 2, способ согласно изобретению имеет очевидное преимущество, состоящее в том, что имеется возможность даже при меньшем объемном потоке удерживать давление наддувочного воздуха 3е в области кривой L1, то есть на относительно высоком уровне значений.
Нагнетатель 1 системы волнового наддува, представленный на фигуре 1, может быть выполнен и таким образом, что он включает в себя более двух циклов компрессии, например, 3, 4, 5 или 6 циклов компрессии, причем для достижения эффекта, описанного на фигурах 1 и 2, необходима возможность управления по меньшей мере одним частичным потоком 4е отходящих газов высокого давления независимо от других частичных потоков 4d отходящих газов высокого давления.
На фигуре 3 показан в продольном разрезе особенно предпочтительный вариант исполнения нагнетателя 1 системы волнового наддува, включающий в себя воздушную коробку 6, ячеистый ротор 8 с окружающей его камерой 11 ротора, а также газовый корпус 7. Ячеистый ротор 8 помещен с двух сторон на подшипниках 13, 14 посредством вала 12 ротора и приводится в движение электродвигателем 15 или посредством приводного механизма. Поток 2 с свежего воздуха подводят через всасывающий воздуховод 2, сжимают в ячеистом роторе 8 и снова отводят посредством канала 3 наддувочного воздуха в виде потока 3с сжатого свежего воздуха. Поток 4 с отходящих газов высокого давления подводят к ячеистому ротору 8 через канал 4 отходящих газов и снова отводят от него посредством выпускного канала 5 в виде потока 5е отходящих газов низкого давления. Газовый корпус 7 включает в себя устройство 7b, 7с жидкостного охлаждения, что в результате дает преимущество, т.к. понижает температуру газового корпуса 7. Это позволяет устанавливать в газовом корпусе 7 надежно функционирующий клапан 21, несмотря на высокие температуры потока 4 с отходящих газов высокого давления.
На фигуре 4 схематично показан расположенный в газовом корпусе 7 клапан 21. Второй частичный поток отходящих газов высокого давления 4е через второй частичный канал 4b отходящих газов высокого давления подводят к клапану 21 и подводят к ячеистому ротору 8 в виде основной ветви 4i второго частичного потока отходящих газов высокого давления через вход 7d для отходящих газов. Кроме того, в зависимости от положения клапана 21, второй поток 4h газовой камеры подводится к газовой камере 7е. В предпочтительном варианте осуществления клапан 21 включает в себя втулку 21е, в которой помещена поворотная заслонка 21f, выполненная с возможностью поворота. Втулка 21е предпочтительно состоит из стали и предпочтительно расположена в газовом корпусе 7.
На фигуре 5 показан в качестве примера обратный клапан 9, который находится в воздушной коробке 6 во втором частичном канале 3b наддувочного воздуха и препятствует обратному течению второго потока 3d сжатого свежего воздуха к выходу наддувочного воздуха 6b и соответственно в ячеистый ротор 8.
На фигурах 6 и 7 показан вариант осуществления клапана 21, включающий в себя стальную втулку 21е, а также выполненную с возможностью поворота в ней деталь 21g клапана. Во втулке 21е имеются впускное отверстие 7f, а также выпускные окна 7d, 7е. Деталь 21g клапана, выполненная с возможностью поворота, включает в себя поворотную заслонку 21f, причем выполненная с возможностью поворота деталь 21g клапана помещена с возможностью поворота во втулке 21е таким образом, что поворотная заслонка 21f в зависимости от ее положения может частично или полностью закрывать выпускные окна 7d, 7е или полностью открывать их.

Claims (54)

1. Способ регулирования давления наддува в двигателе (39) внутреннего сгорания с нагнетателем (1) системы волнового наддува, имеющем ячеистый ротор (8), проходящий за один оборот по меньшей мере два цикла компрессии, причем
поток (4с) отходящих газов высокого давления разделяют на первый и второй частичные потоки (4d, 4е) отходящих газов высокого давления,
в первом цикле компрессии к ячеистому ротору (8) подводят поток (2с) свежего воздуха, а также первый частичный поток (4d) отходящих газов высокого давления и отводят от ячеистого ротора (8) первый поток (3с) сжатого свежего воздуха и поток (5е) отходящих газов низкого давления,
во втором цикле компрессии к ячеистому ротору (8) подводят поток (2с) свежего воздуха, а также второй частичный поток (4е) отходящих газов высокого давления и отводят от ячеистого ротора (8) второй поток (3d) сжатого свежего воздуха и поток (5е) отходящих газов низкого давления,
при этом первый и второй потоки (3с, 3d) сжатого свежего воздуха сводят вместе в поток наддувочного воздуха (3е), и
наддувочный воздух (3е) подводят к двигателю (39) внутреннего сгорания,
отличающийся тем, что
второй частичный поток (4е) отходящих газов высокого давления регулируют так, чтобы таким образом управлять давлением наддувочного воздуха (3е),
причем до соединения первого и второго потоков (3с, 3d) сжатого свежего воздуха в поток наддувочного воздуха (3е) второй поток (3d) сжатого свежего воздуха проводят через обратный клапан (9).
2. Способ по п. 1, отличающийся тем, что
нагнетатель (1) системы волнового наддува приводят в действие в первом рабочем режиме (L1), при котором во время первого цикла компрессии к ячеистому ротору (8) подводят первый частичный поток (4d) отходящих газов высокого давления, а во время второго цикла компрессии к ячеистому ротору (8) не подводят второй частичный поток (4е) отходящих газов высокого давления, причем
нагнетатель (1) системы волнового наддува приводят в действие во втором рабочем режиме (L2), при котором к ячеистому ротору (8) подводят как первый частичный поток (4d) отходящих газов высокого давления во время первого цикла компрессии, так и второй частичный поток (4е) отходящих газов высокого давления во время второго цикла компрессии, а переключение между первым и вторым рабочими режимами (L1, L2) производят в зависимости от измеренного значения (В) характеристики рабочего режима и от заданного значения (S) для переключения.
3. Способ по п. 1, отличающийся тем, что
нагнетатель (1) системы волнового наддува приводят в действие в первом рабочем режиме (L1), при котором во время первого цикла компрессии к ячеистому ротору (8) подводят первый частичный поток (4d) отходящих газов высокого давления, а во время второго цикла компрессии второй частичный поток (4е) отходящих газов высокого давления редуцируют посредством клапана (21) и вследствие этого осуществляют подвод уменьшенного второго частичного потока (4е) отходящих газов высокого давления, причем
нагнетатель (1) системы волнового наддува приводят в действие во втором рабочем режиме (L2), при котором к ячеистому ротору (8) подводят как первый частичный поток (4d) отходящих газов высокого давления во время первого цикла компрессии, так и не подвергнутый редуцированию второй частичный поток (4е) отходящих газов высокого давления во время второго цикла компрессии, а
переключение между первым и вторым рабочими режимами (L1, L2) производят в зависимости от измеренного значения (В) характеристики рабочего режима и от заданного значения (S) для переключения.
4. Способ по п. 2 или 3, отличающийся тем, что
значение (В) характеристики рабочего режима представляет собой определенное значение количества наддувочного воздуха (3е), подведенного к двигателю внутреннего сгорания, или давления (Р) наддувочного воздуха, или числа (U) оборотов двигателя,
причем заданное значение (S) для переключения представляет собой предписанное референтное значение, соответствующее значению (В) характеристики рабочего режима.
5. Способ по п. 4, отличающийся тем, что
обеспечена возможность подачи на двигатель (39) внутреннего сгорания максимального количества LMax наддувочного воздуха,
причем заданное значение (S) для переключения представляет собой значение, составляющее от 40% до 50% максимального количества LMax наддувочного воздуха.
6. Способ по п. 4, отличающийся тем, что
обеспечена возможность подачи на двигатель (39) внутреннего сгорания наддувочного воздуха (3е), имеющего максимальное давление PMax наддувочного воздуха,
причем заданное значение (S) для переключения представляет собой значение, составляющее от 40% до 50% максимального давления PMax наддувочного воздуха.
7. Способ по одному из предшествующих пунктов, отличающийся тем, что
во время первого цикла компрессии первый частичный поток (4d) отходящих газов высокого давления подводят, не регулируя его, к ячеистому ротору (8а),
причем во время второго цикла компрессии второй частичный поток (4с) отходящих газов высокого давления подводят к ячеистому ротору (8), управляя этим потоком посредством клапана (21).
8. Способ по п. 2 или 3, отличающийся тем, что
первый частичный поток (4d) отходящих газов высокого давления разделяют на первый поток (4f) газовой камеры и основную ветвь (4g) первого частичного потока отходящих газов высокого давления, причем
первым потоком (4f) газовой камеры управляют в зависимости от необходимого давления наддувочного воздуха (3е).
9. Способ по п. 2 или 3, отличающийся тем, что
второй частичный поток (4е) отходящих газов высокого давления разделяют на второй поток (4h) газовой камеры и основную ветвь (4i) второго частичного потока отходящих газов высокого давления,
причем вторым потоком (4h) газовой камеры и/или основной ветвью (4i) второго частичного потока отходящих газов высокого давления управляют в зависимости от необходимого давления наддувочного воздуха (3е).
10. Способ по п. 2 или 3, отличающийся тем, что
число оборотов ячеистого ротора (8) сокращают, когда нагнетатель (1) системы волнового наддува приводят в действие во втором рабочем режиме (L2), и
число оборотов ячеистого ротора (8) повышают, когда нагнетатель (1) системы волнового наддува приводят в действие в первом рабочем режиме (L1).
11. Устройство для регулирования давления наддува в двигателе (39) внутреннего сгорания с нагнетателем (1) системы волнового наддува, в котором
нагнетатель (1) системы волнового наддува включает в себя ячеистый ротор (8), всасывающий воздуховод (2), канал (3) наддувочного воздуха, канал (4) отходящих газов высокого давления, а также выпускной канал (5), причем
всасывающий воздуховод (2), канал (4) отходящих газов высокого давления и канал (3) наддувочного воздуха расположены таким образом, что обеспечена возможность подачи на ячеистый ротор (8) потока (2с) свежего воздуха через всасывающий воздуховод (2) и потока (4с) отходящих газов высокого давления через канал (4) отходящих газов высокого давления и возможность отвода от ячеистого ротора (8) сжатого свежего воздуха через канал (3) наддувочного воздуха,
нагнетатель (1) системы волнового наддува выполнен таким образом, что во время одного оборота он выполняет по меньшей мере один первый и один второй цикл компрессии, причем
всасывающий воздуховод (2) разветвлен на первый и второй частичные всасывающие воздуховоды (2а, 2b),
канал (4) отходящих газов высокого давления разветвлен на первый и второй частичные каналы (4а, 4b) отходящих газов высокого давления, а
канал (3) наддувочного воздуха сводится из первого и второго частичных каналов (3а, 3b) наддувочного воздуха,
отличающееся тем, что
- во втором частичном канале (4b) отходящих газов высокого давления расположен клапан (21), выполненный с возможностью его регулирования с целью регулирования количества (4с) отходящих газов высокого давления, проходящего через второй частичный канал (4b) отходящих газов высокого давления,
- во втором канале (3b) подвода воздуха расположен обратный клапан (9), и
- имеется управляющее и регулирующее устройство (40), которое в зависимости от заданной нагрузки (38) воздействует на управляемый клапан (21), чтобы в результате этого управлять давлением наддувочного воздуха (3е), подводимого к двигателю (39) внутреннего сгорания.
12. Устройство по п. 11, отличающееся тем, что
управляемый клапан (21) выполнен в виде клапана на основе поворотной заслонки.
13. Устройство по п. 12, отличающееся тем, что
клапан (21) включает в себя два частичных клапана:
первый частичный клапан (21а), который далее по потоку текучей среды соединен с газовой камерой, и
второй частичный клапан (21b), который далее по потоку текучей среды соединен с основным каналом (8а) ячеистого ротора (8).
RU2017110869A 2014-10-13 2015-10-13 Способ и устройство для регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува RU2682208C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14188661.4 2014-10-13
EP14188661.4A EP3009629B1 (de) 2014-10-13 2014-10-13 Verfahren und Vorrichtung zur Einstellung eines Ladedruckes in einer Brennkraftmaschine mit einem Druckwellenlader
PCT/EP2015/073644 WO2016059034A1 (de) 2014-10-13 2015-10-13 Verfahren und vorrichtung zur einstellung eines ladedruckes in einer brennkraftmaschine mit einem druckwellenlader

Publications (3)

Publication Number Publication Date
RU2017110869A RU2017110869A (ru) 2018-11-15
RU2017110869A3 RU2017110869A3 (ru) 2019-01-09
RU2682208C2 true RU2682208C2 (ru) 2019-03-15

Family

ID=51687970

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017110869A RU2682208C2 (ru) 2014-10-13 2015-10-13 Способ и устройство для регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува

Country Status (13)

Country Link
US (1) US10227913B2 (ru)
EP (1) EP3009629B1 (ru)
JP (1) JP6636020B2 (ru)
KR (1) KR102203038B1 (ru)
CN (1) CN107002580B (ru)
BR (1) BR112017005364B1 (ru)
CA (1) CA2963031C (ru)
ES (1) ES2729605T3 (ru)
MX (1) MX2017003913A (ru)
PL (1) PL3009629T3 (ru)
RU (1) RU2682208C2 (ru)
WO (1) WO2016059034A1 (ru)
ZA (1) ZA201701880B (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2534840A (en) * 2015-01-04 2016-08-10 Leslie Winter Christopher Static supercharger
CN107975472B (zh) * 2017-11-23 2024-09-13 宁波杭州湾新区祥源动力供应有限公司 一种高低压空气压缩联用系统
DE102019208045B4 (de) * 2019-06-03 2023-05-11 Ford Global Technologies, Llc Mittels Comprex-Lader aufgeladene Brennkraftmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800120A (en) * 1953-11-30 1957-07-23 Jendrassik Developments Ltd Pressure exchangers
CH342414A (de) * 1955-03-09 1959-11-15 Brian Spalding Dudley Verfahren zur Veränderung des Druckes eines Fluidums und Druckwandler zur Durchführung des Verfahrens
SU883571A1 (ru) * 1980-03-26 1981-11-23 Харьковский Автомобильно-Дорожный Институт Им. Комсомола Украины Волновой обменник давлени
SU1622600A1 (ru) * 1989-09-30 1991-01-23 Владимирский политехнический институт Трубопровод системы газообмена двигател внутреннего сгорани
US20060037907A1 (en) * 2004-08-20 2006-02-23 Scott Shumway Pressure exchange apparatus with dynamic sealing mechanism

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH666521A5 (de) * 1985-04-30 1988-07-29 Bbc Brown Boveri & Cie Druckwellenlader fuer einen verbrennungsmotor mit einer einrichtung zur steuerung des hochdruckabgasstromes.
EP0235609B1 (de) * 1986-02-28 1990-05-02 BBC Brown Boveri AG Durch die Gaskräfte angetriebener, freilaufender Druckwellenlader
JPH07122408B2 (ja) * 1986-10-28 1995-12-25 マツダ株式会社 圧力波過給機付エンジンの排気装置
US4910959A (en) * 1988-10-11 1990-03-27 Pulso Catalytic Superchargers Corporation Pulsed catalytic supercharger silencer
DE59700932D1 (de) * 1996-03-05 2000-02-03 Swissauto Eng Sa Otto-motor mit druckwellenlader
ATE306014T1 (de) * 2002-06-28 2005-10-15 Verfahren zur regelung einer verbrennungsmaschine mit einer gasdynamischen druckwellenmaschine
FR2890688A3 (fr) * 2005-09-13 2007-03-16 Renault Sas Moteur de vehicule comprenant un compresseur a ondes de pression
DE102006020522A1 (de) * 2006-05-03 2007-11-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
CN102686845A (zh) * 2009-10-06 2012-09-19 丰田自动车株式会社 内燃机的增压系统
JP2011111907A (ja) * 2009-11-24 2011-06-09 Toyota Motor Corp 圧力波過給機を備えた内燃機関
DE102010008385A1 (de) 2010-02-17 2011-08-18 Benteler Automobiltechnik GmbH, 33102 Verfahren zur Einstellung eines Ladedruckes
CN102439270B (zh) * 2010-04-20 2013-07-10 丰田自动车株式会社 气波增压器
CN203035295U (zh) * 2013-01-27 2013-07-03 杨灵芝 一种改进型机油滤清器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800120A (en) * 1953-11-30 1957-07-23 Jendrassik Developments Ltd Pressure exchangers
CH342414A (de) * 1955-03-09 1959-11-15 Brian Spalding Dudley Verfahren zur Veränderung des Druckes eines Fluidums und Druckwandler zur Durchführung des Verfahrens
SU883571A1 (ru) * 1980-03-26 1981-11-23 Харьковский Автомобильно-Дорожный Институт Им. Комсомола Украины Волновой обменник давлени
SU1622600A1 (ru) * 1989-09-30 1991-01-23 Владимирский политехнический институт Трубопровод системы газообмена двигател внутреннего сгорани
US20060037907A1 (en) * 2004-08-20 2006-02-23 Scott Shumway Pressure exchange apparatus with dynamic sealing mechanism

Also Published As

Publication number Publication date
RU2017110869A3 (ru) 2019-01-09
PL3009629T3 (pl) 2019-08-30
ES2729605T3 (es) 2019-11-05
JP6636020B2 (ja) 2020-01-29
CN107002580A (zh) 2017-08-01
US20170298809A1 (en) 2017-10-19
WO2016059034A1 (de) 2016-04-21
CA2963031C (en) 2021-01-05
EP3009629A1 (de) 2016-04-20
US10227913B2 (en) 2019-03-12
JP2017531133A (ja) 2017-10-19
CA2963031A1 (en) 2016-04-21
CN107002580B (zh) 2020-04-24
MX2017003913A (es) 2017-09-15
EP3009629B1 (de) 2019-03-06
BR112017005364A2 (pt) 2017-12-12
KR102203038B1 (ko) 2021-01-14
RU2017110869A (ru) 2018-11-15
KR20170067761A (ko) 2017-06-16
ZA201701880B (en) 2018-05-30
BR112017005364B1 (pt) 2022-01-25

Similar Documents

Publication Publication Date Title
EP1711699B1 (en) An internal combustion engine
RU140186U1 (ru) Система двигателя с двойным независимым наддувом цилиндров
JP5342146B2 (ja) 直列に接続された2つの排気ターボチャージャを有する内燃機関のためのエンジンブレーキ方法
KR101518013B1 (ko) 터보차징과 배기 가스 재순환 사이의 분배된 배기 가스 흐름의 제어
EP1275833B1 (en) IC engine-turbocharger unit for a motor vehicle, in particular an industrial vehicle, with turbine power control
JP5027165B2 (ja) 排気温度制御装置を備える過給装置
JP6059299B2 (ja) 燃焼機関用強制導入装置、燃焼機関及び燃焼機関の動作方法
CN106014607B (zh) 排气涡轮增压内燃发动机及其运转方法
CN101142385B (zh) 用于操作内燃机的方法和相关的内燃机
US8469000B2 (en) Supercharger with continuously variable drive system
MXPA01003078A (es) Sistema de recirculacion de gas de escape para un motor turbocargado.
RU2682208C2 (ru) Способ и устройство для регулирования давления наддува в двигателе внутреннего сгорания с нагнетателем системы волнового наддува
CN103422980A (zh) 涡轮增压器
EP2726726B1 (en) An internal combustion engine and method of operating an internal combustion engine
GB2420377A (en) Turbo-charged internal combustion engine
CN106870176B (zh) 用于运行机动车用的驱动系统的方法和相应的驱动系统
CN110832179B (zh) 内燃机的增压器剩余动力回收装置及船舶

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20210810