RU2678858C1 - Способ получения порошка на основе тугоплавких соединений - Google Patents
Способ получения порошка на основе тугоплавких соединений Download PDFInfo
- Publication number
- RU2678858C1 RU2678858C1 RU2017143336A RU2017143336A RU2678858C1 RU 2678858 C1 RU2678858 C1 RU 2678858C1 RU 2017143336 A RU2017143336 A RU 2017143336A RU 2017143336 A RU2017143336 A RU 2017143336A RU 2678858 C1 RU2678858 C1 RU 2678858C1
- Authority
- RU
- Russia
- Prior art keywords
- powder
- refractory compounds
- combustion
- shear deformation
- synthesis
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 38
- 150000001875 compounds Chemical class 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title description 6
- 238000000034 method Methods 0.000 claims abstract description 38
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 33
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 32
- 238000002485 combustion reaction Methods 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 229910052755 nonmetal Inorganic materials 0.000 claims abstract description 9
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 6
- 150000003624 transition metals Chemical class 0.000 claims abstract description 6
- 230000000977 initiatory effect Effects 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 abstract description 8
- 230000008569 process Effects 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000000227 grinding Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 150000002484 inorganic compounds Chemical class 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005272 metallurgy Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/16—Both compacting and sintering in successive or repeated steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/23—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/005—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Изобретение относится к получению порошка на основе тугоплавких соединений. Способ включает приготовление экзотермической смеси переходного металла и неметалла, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) тугоплавких соединений, сдвиговое деформирование продуктов горения с получением порошка. Сдвиговое деформирование продуктов горения ведут сразу после прохождения волны реакции горения посредством вращающегося с частотой 600-3000 об/мин ротора, который опускают в цилиндрический реактор до основания. Обеспечивается увеличение производительности. 1 ил., 1 табл., 4 пр.
Description
Изобретение относится к области порошковой металлургии, в частности для получения порошковых материалов тугоплавких соединений способами, сочетающими горение в режиме самораспространяющегося высокотемпературного синтеза (СВС) и высокотемпературное сдвиговое деформирование продуктов синтеза. Полученные предлагаемым способом материалы могут быть использованы в металлургии, химической и инструментальной промышленности, авиадвигателестроении и других областях.
Известен традиционный способ синтеза тугоплавких неорганических соединений методом СВС (SU 255221 A1, C01G 1/00, 00.00.1969 г.), способ синтеза тугоплавких неорганических соединений / Мержанов А. Г., Шкиро В.М., Боровинская И.П. // БИ. 1971. N 10; патент Франции N 2088668, 1972; патент США N 3726643, 1973; патент Великобритании N 1321084, 1973; патент Японии N 1098839, 1981.), который заключается в экзотермической реакции исходных компонент в реакторах горения, с последующим остыванием продуктов синтеза и их размолом в шаровых мельницах и аттриторах. При этом, недостатком указанного способа, ввиду высокой твердости и прочности синтезированных материалов, является операция измельчения, которая требует больших усилий и времени, при этом порошок загрязняется металлом.
Известен способ (SU 1815934 A1, С01В 31/30, С01В 21/06, 20.09.2003 г.) получения порошков неорганических соединений в режиме самораспространяющегося высокотемпературного синтеза из реакционной смеси, включающей составляющие соединение элементы, в замкнутом объеме с последующим измельчением полученного продукта и его химической обработкой, с целью увеличения удельной поверхности порошка
соединения и повышения его чистоты, химическую обработку ведут при 40-100°С и непрерывном перемешивании в растворах кислот с концентрацией 5-30 мас. % либо в растворах щелочей с концентрацией 2-40 мас. %, либо в растворах солей с концентрацией 10-30 мас. %. Недостатком данного способа является сложность и длительность химической обработке синтезированного материала.
Известен способ (RU 2163180 C1, B22F 9/16, B22F 9/04, 20.02.2001 г. ) получения тугоплавких порошковых продуктов, который включает приготовление шихты реакционноспособного состава, самораспространяющийся высокотемпературный синтез и измельчение продуктов синтеза до порошкообразного состояния, при этом измельчение осуществляют путем пропускания продукта между валками прокатного стана в режиме пробуксовывания одного валка относительно другого в паре со ступенчатым изменением диаметров по длине, причем диаметры пары валков каждой ступени связаны между собой. Недостатком указанного способа является сложность и повышенные требования к используемому оборудованию, многостадийность при диспергировании.
Известен способ получения порошков тугоплавких соединений (RU 2161548 С2, B22F 9/16, B22F 3/23, 10.01.2001 г. ), который включает приготовление экзотермической смеси порошков переходного металла и неметалла, сжигание экзотермической смеси в режиме самораспространяющегося высокотемпературного синтеза при направленной фильтрации примесных газов. При этом экзотермическую смесь предварительно гранулируют, синтез ведут в полузакрытом реакторе, в качестве неметалла используют углерод, бор, кремний и др. Недостатком указанного способа является наличие дополнительных технологических операций предварительного гранулирования исходных реагентов и химического обогащения, что снижает производительность процесса получения порошков.
Известны способы получения порошков тугоплавких соединений (RU 2161548, B22F 9/16, B22F 3/23, 10.01.2001 г.; RU 98100315А, B22F 9/16, 27.10.1999 г. ). Способы получения порошков тугоплавких соединений, включающие сжигание экзотермической смеси переходного металла и неметалла (углерода, бора, кремния и др.) в режиме самораспространяющегося высокотемпературного синтеза при направленной фильтрации примесных газов, что исключает разбавление исходной шихты конечным продуктом, и при этом продукт получается в виде легкоразрушающейся пористой массы, что снижает загрязнение целевых порошков материалом мелющих тел на стадиях окончательного передела. Недостатком данного способа является сложность аппаратного оформления, необходимость предварительного гранулирования исходных реагентов, а также необходимость последующей очистки конечных продуктов синтеза от непрореагировавших компонент.
Наиболее близким по технической сущности к заявляемому изобретению является способ синтеза порошковых материалов в условиях СВС и сдвигового деформирования (П.М. Бажин, A.M. Столин, М.В. Михеев, чл.-корр. РАН М.И. Алымов. Самораспространяющийся высокотемпературный синтез в условиях совместного действия давления со сдвигом).
Доклады академии наук, Химическая технология. 2017. Т. 473. №5. С. 568-571. DOI: 10.7868/S0869565217110135), который включает приготовление экзотермической смеси переходного металла и неметалла (углерода, бора, кремния, алюминия и др.), инициирование реакции, самораспространяющийся высокотемпературный синтез и последующее сдвиговое деформирование продуктов горения. Недостатком прототипа является низкий выход продукта дисперсностью менее 400 мкм, что говорит о низкой производительности процесса.
Техническим результатом предлагаемого способа является усовершенствование способа и увеличение производительности процесса получения порошковых материалов.
Технический результат достигается тем, что способ получения порошка на основе тугоплавких соединений включает приготовление экзотермической смеси переходного металла и неметалла, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) тугоплавких соединений, сдвиговое деформирование продуктов горения с получением порошка, отличающийся тем что, сдвиговое деформирование продуктов горения ведут сразу после прохождения волны реакции горения посредством вращающегося с частотой 600-3000 об/мин. ротора, который опускают в цилиндрический реактор до основания.
Сущность предложенного способа заключается в проведении синтеза исходных компонент металла и неметалла в режиме самораспространяющегося высокотемпературного синтеза в сочетании с высокотемпературным сдвиговым деформированием. Способ осуществляют следующим образом. В графитовый или металлический цилиндрический реактор 1 помещают предварительно перемешанную шихту 2 из исходных компонент металла (титан, алюминий, железо и др.) и неметалла (углерод, бор, кремний и др.) в насыпном виде или в виде компактной цилиндрической заготовки (фиг.). Инициируют вольфрамовой спиралью 3 реакцию, и после заданного времени производят опускание вращающегося ротора 4 до основания реактора. Измельчение предложенным способом продуктов горения происходит сразу после синтеза, когда в материале не успевают пройти процессы консолидации и агломерирования. Реализация предложенного способа базируется на способности горячей массы синтезированного продукта к макроскопической деформации, которая приводит к перемешиванию зарождающейся мелкодисперсной структуры
при горении и подавляет развитие процессов кристаллизации и рекристаллизации. Управление процессом высокотемпературного сдвигового деформирования (величина, время, скорость, интенсивность) позволяет получить в одну технологическую стадию порошок заданной дисперсности, оказывать влияние на процессы горения и структурообразования синтезированных материалов, повысить физико-механические характеристики получаемого порошка, управлять его морфологией. После синтеза порошков традиционным способом СВС без приложения сдвигового деформирования, синтезированный материал состоит из спека и для его последующего размола требуются дополнительные технологические операции диспергирования и большие усилия. Так, например, при синтезе порошка карбида титана с увеличением частоты вращения ротора от 120 до 3000 об/мин доля частиц с размерами менее 400 мкм увеличивается с 52 до 97 масс. % (табл.).
Сущность предлагаемого изобретения подтверждается следующими примерами.
Пример 1. Приготавливают экзотермическую смесь порошков исходных компонент в соотношении масс. %: (80) Ti - (20) С, помещают ее в реактор для СВС-измельчения, проводят СВС, после прохождения волны горения опускают вращающий ротор с частотой вращения 600 об/мин. После охлаждения просеивают порошок через сита и строят кривые распределения частиц по размерам (табл.). Полученный порошок состоит из 78 масс. % частиц дисперсностью менее 400 мкм, что в 1,2-1,5 раза больше, чем для прототипа и 78 раз больше, чем для традиционного способа получения.
Пример 2. В условиях примера 1, отличающийся тем, что после прохождения волны горения опускают вращающий ротор с частотой вращения 1200 об/мин. После охлаждения просеивают синтезированный порошок через сита и строят кривые распределения частиц по размерам. Полученный порошок состоит из 89 масс. % частиц дисперсностью менее 400
мкм, что в 1,3-1,7 раза больше, чем для прототипа и 89 раз больше, чем для традиционного способа получения.
Пример 3. В условиях примера 1, отличающийся тем, что после прохождения волны горения опускают вращающий ротор с частотой вращения 2400 об/мин. После охлаждения просеивают синтезированный порошок через сита и строят кривые распределения частиц по размерам. Полученный порошок состоит из 92 масс. % частиц дисперсностью менее 400 мкм, что в 1,4-1,8 раза больше, чем для прототипа и 92 раза больше, чем для традиционного способа получения.
Пример 4. В условиях примера 1, отличающийся тем, что после прохождения волны горения опускают вращающий ротор с частотой вращения 3000 об/мин. После охлаждения просеивают синтезированный порошок через сита и строят кривые распределения частиц по размерам. Полученный порошок состоит из 97 масс. % частиц дисперсностью менее 400 мкм, что в 1,4-1,9 раза больше, чем для прототипа и 97 раз больше, чем для традиционного способа получения.
Распределения частиц по размерам в сравнении с порошком, полученным традиционным методом СВС и по прототипу представлены в таблице.
Таким образом, предлагаемая совокупность признаков изобретения позволяет получать порошки на основе тугоплавких соединений в одну технологическую стадию с размерами частиц менее 400 мкм с массовой долей более 97%., при этом производительность процесса получения порошка возрастает в 2-4 раза по сравнению с традиционным способом получения и в 1,5-2 раза по сравнению с прототипом. Полученные порошки могут быть использованы в металлургии, химической и инструментальной промышленности, авиадвигателестроении и других областях при изготовлении изделий различного функционального назначения, работающих при абразивном износе, повышенных температурах и в агрессивных средах.
Claims (1)
- Способ получения порошка на основе тугоплавких соединений, включающий приготовление экзотермической смеси переходного металла и неметалла, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) тугоплавких соединений, сдвиговое деформирование продуктов горения с получением порошка, отличающийся тем, что сдвиговое деформирование продуктов горения ведут сразу после прохождения волны реакции горения посредством вращающегося с частотой 600-3000 об/мин ротора, который опускают в цилиндрический реактор до основания.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017143336A RU2678858C1 (ru) | 2017-12-12 | 2017-12-12 | Способ получения порошка на основе тугоплавких соединений |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017143336A RU2678858C1 (ru) | 2017-12-12 | 2017-12-12 | Способ получения порошка на основе тугоплавких соединений |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2678858C1 true RU2678858C1 (ru) | 2019-02-04 |
Family
ID=65273474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017143336A RU2678858C1 (ru) | 2017-12-12 | 2017-12-12 | Способ получения порошка на основе тугоплавких соединений |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2678858C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2779580C1 (ru) * | 2021-12-13 | 2022-09-09 | Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук | Способ получения электродов для электроискрового легирования на основе композиционного материала TiB2-Co2B |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA15340A (ru) * | 1995-04-19 | 1997-06-30 | Ганна Вікторівна Дрозденко | Способ получения карбида титана |
RU2161548C2 (ru) * | 1998-01-05 | 2001-01-10 | Самарский государственный технический университет | Способ получения порошков тугоплавких соединений |
US9138806B2 (en) * | 2012-12-19 | 2015-09-22 | King Saud University | In-situ combustion synthesis of titanium carbide (TiC) reinforced aluminum matrix composite |
-
2017
- 2017-12-12 RU RU2017143336A patent/RU2678858C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA15340A (ru) * | 1995-04-19 | 1997-06-30 | Ганна Вікторівна Дрозденко | Способ получения карбида титана |
RU2161548C2 (ru) * | 1998-01-05 | 2001-01-10 | Самарский государственный технический университет | Способ получения порошков тугоплавких соединений |
US9138806B2 (en) * | 2012-12-19 | 2015-09-22 | King Saud University | In-situ combustion synthesis of titanium carbide (TiC) reinforced aluminum matrix composite |
Non-Patent Citations (1)
Title |
---|
БАЖИН П.М. Самораспространяющийся высокотемпературный синтез в условиях совместного действия давления со сдвигом. Доклады академии наук, 2017, том.473, N5, с.568-571. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2779580C1 (ru) * | 2021-12-13 | 2022-09-09 | Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения им. А.Г. Мержанова Российской академии наук | Способ получения электродов для электроискрового легирования на основе композиционного материала TiB2-Co2B |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101484339B1 (ko) | 미세 다이아몬드 분말을 수집하기 위한 방법 | |
CN107805489B (zh) | 一种微纳米级立方氮化硼磨料及其制备方法 | |
US2853401A (en) | Method of incorporating a metal binder or matrix phase in mixes of metals and/or metals and metal compounds | |
CN102248178B (zh) | 机械合金化热处理法制备6Al4V钛合金粉的工艺 | |
JP6483722B2 (ja) | 酸性官能基を有するナノダイヤモンド、及びその製造方法 | |
RU2678858C1 (ru) | Способ получения порошка на основе тугоплавких соединений | |
JP6902015B2 (ja) | ナノダイヤモンド分散液、及びその製造方法 | |
CN103143716B (zh) | 一种钨粉的制备方法 | |
RU2681022C1 (ru) | Способ получения узкофракционных сферических порошков из жаропрочных сплавов на основе алюминида никеля | |
RU2354501C1 (ru) | Способ получения порошковых материалов на основе алюминида никеля или алюминида титана | |
Peddarasi et al. | Mechanochemical effect on synthesis and sintering behavior of MgAl2O4 spinel | |
RU2697140C1 (ru) | Способ получения порошка на основе тугоплавких соединений | |
JP2782665B2 (ja) | チタンまたはチタン合金粉末の製造方法 | |
RU2593061C1 (ru) | Способ получения ультрадисперсных порошков титана | |
CN108640144B (zh) | 一种氧化钇双级纳米球及其制备方法 | |
RU2763814C1 (ru) | Способ получения нанодисперсных порошков | |
US20210139334A1 (en) | System and method for preparing graphene oxide and reduced graphene oxide | |
RU2697139C1 (ru) | Способ получения магнитно-абразивного порошка | |
JP2018165235A (ja) | 微粒炭化タングステン粉末 | |
JPS6117403A (ja) | 金属硼化物、炭化物、窒化物、珪化物、酸化物系物質およびそれらの製造方法 | |
CN103418799B (zh) | 一种Ni-Al系金属间化合物粉末的制备方法 | |
Gaffet et al. | Mechanical milling | |
RU2667452C1 (ru) | Способ получения наноразмерного порошка карбида вольфрама | |
RU2072320C1 (ru) | Способ получения тугоплавкого материала | |
RU2766956C1 (ru) | Способ получения порошков карбидов титана и вольфрама |