RU2671024C2 - Способ вдувания альтернативных восстановителей в доменную печь - Google Patents

Способ вдувания альтернативных восстановителей в доменную печь Download PDF

Info

Publication number
RU2671024C2
RU2671024C2 RU2017108912A RU2017108912A RU2671024C2 RU 2671024 C2 RU2671024 C2 RU 2671024C2 RU 2017108912 A RU2017108912 A RU 2017108912A RU 2017108912 A RU2017108912 A RU 2017108912A RU 2671024 C2 RU2671024 C2 RU 2671024C2
Authority
RU
Russia
Prior art keywords
reducing agent
gas
alternative reducing
carrier gas
oxygen
Prior art date
Application number
RU2017108912A
Other languages
English (en)
Other versions
RU2017108912A3 (ru
RU2017108912A (ru
Inventor
Робин ШОТТ
ФАРНБЮЛЕР ФОН УНД ЦУ ХЕММИНГЕН Кристиан БАРТЕЛС-ФРАЙХЕРР
Original Assignee
Кюттнер Холдинг Гмбх Унд Ко. Кг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53539693&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2671024(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Кюттнер Холдинг Гмбх Унд Ко. Кг filed Critical Кюттнер Холдинг Гмбх Унд Ко. Кг
Publication of RU2017108912A3 publication Critical patent/RU2017108912A3/ru
Publication of RU2017108912A publication Critical patent/RU2017108912A/ru
Application granted granted Critical
Publication of RU2671024C2 publication Critical patent/RU2671024C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • C21B7/163Blowpipe assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/04Conveying materials in bulk pneumatically through pipes or tubes; Air slides
    • B65G53/16Gas pressure systems operating with fluidisation of the materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B2005/005Selection or treatment of the reducing gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/162Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel
    • F27D2003/163Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel the fluid being an oxidant
    • F27D2003/164Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/162Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel
    • F27D2003/165Introducing a fluid jet or current into the charge the fluid being an oxidant or a fuel the fluid being a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • F27D2003/168Introducing a fluid jet or current into the charge through a lance
    • F27D2003/169Construction of the lance, e.g. lances for injecting particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/18Charging particulate material using a fluid carrier
    • F27D2003/185Conveying particles in a conduct using a fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Группа изобретений относится к способу вдувания восстановителя в реактор-газификатор или в доменную печь. Способ пневматического вдувания порошкообразного альтернативного восстановителя посредством пневмотранспорта порошков в плотном слое, при котором плотность слоя порошкообразного альтернативного восстановителя составляет 60% или более плотности упаковки в неуплотненном состоянии сыпучего материала, с помощью газа-носителя в реактор, в частности в реактор-газификатор или через воздушную фурму в доменную печь, причем альтернативный восстановитель подвергают газификации в реакции газификации, а газ-носитель содержит горючий газ, а именно монооксид углерода, водород, водяной пар, кислород, углеводород, колошниковый газ, природный газ, коксовый газ, конвертерный газ, другой отходящий газ или их смесь. Повышается скорость введения альтернативного восстановителя и степень его использования. 4 н. и 13 з.п. ф-лы, 5 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к способу пневматического вдувания порошкообразного альтернативного восстановителя посредством пневмотранспорта порошков в плотном слое с помощью газа-носителя в реактор-газификатор или через воздушную фурму в доменную печь таким образом, что альтернативный восстановитель подвергается газификации в процессе реакции. Согласно одному дополнительному аспекту, изобретение относится к такому способу, причем альтернативный восстановитель вдувают с газом-носителем через первую дутьевую трубку, через которую, в дополнение к альтернативному восстановителю и газу-носителю, подают еще и кислород, который объединяется с альтернативным восстановителем и газом-носителем в области выхода дутьевой трубки. Кроме того, настоящее изобретение относится к устройству для осуществления такого способа.
УРОВЕНЬ ТЕХНИКИ
Например, из публикации в «Stahl und Eisen», 133 (2013), № 1, стр.49-62, известно, и в принципе является обычным, что при производстве чугуна в доменной печи в доменный процесс через воздушные фурмы (также: дутьевые фурмы) вводят жидкие, газообразные и/или твердые альтернативные восстановители и, соответственно, горючие материалы, с целью заменить сравнительно дорогостоящий доменный кокс. В данном тексте единообразно применяется термин «альтернативный восстановитель», который должен охватывать все восстановители и также углеродсодержащие горючие материалы, такие как уголь. В качестве твердых альтернативных восстановителей, также в связи с настоящим изобретением, наряду с угольной и коксовой пылью могут также применяться измельченные полимерные отходы, как описано, например, в DE 198 59 354 А1. При этом является особенно важным, чтобы в коксовую засыпку по возможности не могли проникать твердые частицы, так как в противном случае могут возникать нарушения газопроницаемости и тем самым технологические неполадки в доменной печи. Зачастую альтернативный восстановитель вдувается в доменную печь посредством дутьевой трубки через воздушную фурму. В результате в горячем воздушном дутье образуется вихревая зона, в которой вдуваемый альтернативный восстановитель смешивается с потоком горячего дутья фурмы. Для предотвращения возможности проникновения твердых частиц в коксовую засыпку весь вдуваемый твердый альтернативный восстановитель должен был бы подвергнут газификации в фазе полета после выхода из дутьевой трубки до конца вихревой зоны, то есть, прежде чем он мог бы попадать в коксовую засыпку.
В данном контексте «газификация» означает неполное сгорание, результатом которого являются предпочтительно СО и/или Н2. В отличие от этого, «сгорание» означает полное сгорание, которое приводит, например, к СО2 и Н2О. Поскольку для доменного процесса особенно нужными являются СО и Н2, целью вдувания альтернативного восстановителя является реакция газификации, посредством продуктов которой может быть сэкономлено в особенности гораздо более дорогостоящее коксовое топливо.
В области реакторов-газификаторов назначение реакции газификации обычно состоит в генерировании восстановительного газа, который как продукт выводится из реактора-газификатора. Напротив, в доменном процессе восстановительный газ используется для получения чугуна из железной руды.
Углеродсодержащий порошкообразный альтернативный восстановитель, например, такой как угольная пыль, известным образом подается пневматически посредством пневмотранспорта порошков в плотном слое или проточного кипящего слоя с помощью азота в качестве газа-носителя через один или несколько подводящих трубопроводов в воздушные фурмы доменной печи, как описано, например, в публикации «STEEL & METALS Magazine», том 27, № 4, 1989, стр. 272-277, и в патентном документе DE 36 03 078 C1. Здесь альтернативный восстановитель вдувается либо с помощью по меньшей мере одного выступающей внутрь воздушной фурмы и состоящей из одной трубы обычной дутьевой трубки, либо с помощью по меньшей мере одной выступающего внутрь воздушной фурмы и коаксиальной дутьевой трубки с использованием кислорода.
Из публикации «Chemie Ingenieur Technik», 84 (2012), № 7, стр. 1076-1084, известна, например, коаксиальная дутьевая трубка, причем коаксиальная дутьевая трубка предпочтительно состоит из подающей уголь внутренней трубы и концентрически окружающей ее с образованием кольцевого зазора наружной трубы. Кислород подается через кольцевой зазор, как описано также в патентном документе DE 40 08 963 C1.
Кроме того, из документа JPH-1192809 (A) вместо обычной коаксиальной дутьевой трубки известна дутьевая трубка, состоящая из трех вставленных друг в друга труб, причем угольная пыль подводится через внутреннюю трубу, кислород подается через коаксиальный зазор между внутренней трубой и трубой, окружающей внутреннюю трубу, и пар или смесь пара и диоксида углерода подводится через второй коаксиальный зазор между второй трубой и окружающей вторую трубу третьей трубой.
В качестве газа-носителя при этом всегда применяется чистый азот, который является инертным и тем самым благоприятным в отношении обеспечения взрывобезопасности внутри подающей и дутьевой установки, и к тому же, как правило, является легкодоступным в доменных цехах.
Кроме того, из патентных документов CN 101000141(A), CN 102382915(A) и CN 102060197(A) известно, что вместо азота для пневматической подачи и вдувания угольной пыли могут найти применение по большей части инертные отходящие газы или диоксид углерода. Эти идеи имеют своей целью улучшение защиты окружающей среды и экономию энергии. В этих случаях могут использоваться либо отходящие газы горелок горячего дутья, либо по возможности чистый диоксид углерода.
Кроме того, из других областей техники известно, что при получении синтез-газов газификацией угольной пыли под давлением в систему пневматического транспорта угольной пыли подается чистый диоксид углерода или смесь диоксида углерода и азота в качестве инертизирующей, флюидизирующей и транспортирующей среды. В этом плане следует сделать ссылку, например, на патентный документ DE 10 2007 020 294 A1.
Если в качестве газа-носителя используется азот, проявляется тот недостаток, что азот оказывает подавляющее реакцию и ингибирующее действие на реакцию газификации альтернативного восстановителя. Поскольку частицы альтернативного восстановителя окружены азотом, реакция может начинаться, только когда азот был вытеснен. Это приводит к замедлению реакции и тем самым к сокращению имеющегося в распоряжении для реакции времени, по сравнению сравнительно с продолжительностью полета альтернативного восстановителя, после того как он покидает дутьевую трубку.
Очень короткие доступные продолжительности реакции для газификации альтернативного восстановителя при вдувании в воздушную фурму и в вихревую зону доменной печи в пределах только нескольких миллисекунд ясно показывают, что в результате применения азота в качестве инертного газа-носителя теряется важное время реакции, и возможный потенциал газификации альтернативного восстановителя при вдувании в доменную печь будет использоваться не столь оптимально.
При применении диоксида углерода в качестве газа-носителя подавление реакции наблюдается в меньшей степени. Правда, известные из предшествующего уровня техники способы применения диоксида углерода в качестве газа-носителя по сравнению с использованием азота являются сравнительно дорогостоящими и поэтому невыгодными. Кроме того, диоксид углерода в процессе газификации также неоптимально может связывать альтернативный восстановитель, так как должно быть подведено сравнительно большое количество энергии, чтобы вовлекать диоксид углерода в реакцию с альтернативным восстановителем.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В общем и целом, задача изобретения состоит в том, чтобы вдувание альтернативного восстановителя в реактор-газификатор, в доменную печь или в другой реактор технологически осуществить таким образом, чтобы реакция газификации альтернативного восстановителя могла протекать эффективно и как можно быстрее, чтобы тем самым дополнительно повысить достижимую скорость вдувания альтернативного восстановителя в реактор, в частности, в доменную печь, при одновременном снижении расхода кокса и, соответственно, расхода топлива согласно коэффициенту замены кокс/уголь или топливо/альтернативный восстановитель, и, в общем, иметь возможность дополнительно снизить расходы на топливо.
Эта задача решается благодаря изобретению с помощью способа согласно пункту 1, пункту 2 или пункту 8, и устройства согласно пункту 15 формулы изобретения. Предпочтительные варианты осуществления изобретения следуют из зависимых пунктов формулы изобретения.
Согласно первому аспекту, изобретение заключается в создании способа пневматического вдувания порошкообразного альтернативного восстановителя посредством пневмотранспорта порошков в плотном слое с помощью газа-носителя в реактор, в частности, в реактор-газификатор, или через воздушную фурму в доменную печь, таким образом, что альтернативный восстановитель преобразуется в газ в реакции газификации. В связи с настоящим изобретением, пневмотранспортом порошков в плотном слое понимается способ, как описанный в публикации «STEEL & METALS Magazine», 27, № 4, 1989, стр. 272-277. В связи с настоящим изобретением, способ пневмотранспорта порошков в плотном слое (потоке) отличается от способа проточного кипящего слоя высокой плотностью потока порошкообразного материала (аэросмеси порошкообразный материала - газ-носитель) на уровне 60% или более, в особенности предпочтительно 80% или более плотности упаковки в неуплотненном состоянии сыпучего материала (то есть насыпной плотности упомянутого порошкообразного материала). Напротив, способ проточного кипящего слоя действует с плотностями потока менее 25%.
Согласно этому аспекту изобретения, газ-носитель состоит из горючего газа, компоненты которого (например, О2, Н2О или СО2) или окислительные компоненты которого (то есть, компоненты, которые перед реакцией газификации еще участвуют в реакции окисления: например, СО, Н2, СН4), по меньшей мере частично, вовлекаются в реакцию газификации альтернативного восстановителя, и другого газа или газовой смеси. Другой газ/газовая смесь отличается от горючего газа так, что газ-носитель согласно этому первому аспекту не полностью состоит из горючего газа.
Согласно дополнительному аспекту изобретения, газ-носитель содержит монооксид углерода, водород, водяной пар, кислород, углеводороды или их смесь, в частности, природный газ, колошниковый газ, коксовый газ или газ коксовальных печей, конвертерный газ, или другой отходящий газ, или их смесь, причем согласно этому дополнительному аспекту газ-носитель также может полностью состоять из горючего газа.
В принципе, газом-носителем при вдувании, то есть, в отношении состава, следует считать такой, какой вдувается в реактор-газификатор или через воздушную фурму в доменную печь.
Под горючим газом в связи с настоящим изобретением следует понимать газ, который во время газификации альтернативного восстановителя сам имеет горючие компоненты, или такие компоненты, окислительные компоненты которых участвуют в газификации альтернативного восстановителя. Горючий газ включает монооксид углерода, при необходимости диоксид углерода, водород, водяной пар, кислород, углеводороды или их смесь, в частности, природный газ, колошниковый газ, коксовый газ или газ коксовальных печей, конвертерный газ, или другой отходящий газ, или их смесь. Горючий газ приводит к значительному ускорению реакции газификации альтернативного восстановителя, поскольку составляющие основу газификации реакции инициируются уже на ранней стадии, и для этого имеется в наличии большее время, нежели когда альтернативный восстановитель окружен азотом. В случае некоторых горючих газов применение горючего газа в газе-носителе приводит также к тому, что при необходимости доменный процесс или другой реакционный процесс может быть проведен еще более эффективно. Когда, например, газ, который содержит углерод, вводится в качестве горючего газа в рамках вдувания альтернативного восстановителя в доменную печь, это приводит к экономии дорогостоящего кокса, пусть даже только очень ограниченной. Однако горючие газы в смысле настоящего изобретения - независимо от возможного дополнительного участия в реакционном процессе в реакторе, в частности, в доменном процессе - представляют собой такие газы, которые непосредственно или косвенно участвуют в газификации альтернативного восстановителя.
Уже подача 2 вес.% горючего газа обусловливает предпочтительное раннее зажигание и ускоренную газификацию альтернативного восстановителя, причем повышение содержания горючего газа в газе-носителе может приводить к дополнительному повышению эффективности. Для момента времени зажигания, наряду с содержанием горючего газа, значение имеют также температура и давление в окружении места вдувания, в частности, в вихревой зоне. В зависимости от имеющихся условий может быть предпочтительным дополнительное повышение содержания горючего газа. Тем самым можно вдувать большее количество альтернативного восстановителя в единицу времени, чем при применении традиционного азота.
Газ-носитель предпочтительно состоит из горючего газа по меньшей мере на 2 вес.%, предпочтительно по меньшей мере на 5 вес.%, более предпочтительно по меньшей мере на 10 вес.%, причем более предпочтительно, чтобы газ-носитель состоял из горючего газа максимально в количестве 90 вес.%, более предпочтительно максимально 50 вес.%, более предпочтительно максимально 25 вес.%, более предпочтительно максимально 20 вес.%. Таким образом, предпочтительное весовое содержание горючего газа в газе-носителе варьирует между 2 и 90%, более предпочтительно между 2 и 50%, 2 и 25% или 2 и 20%, более предпочтительно между 5 и 90%, 5 и 50%, 5 и 25%, 5 и 20%, или 10 и 90%, 10 и 50%, 10 и 25%, и особенно предпочтительно между 10 и 20%.
В остальном газ-носитель согласно первому аспекту изобретения состоит из других газа или газовой смеси, нежели горючий газ, причем другие газ или газовая смесь предпочтительно содержат азот. Но в газе-носителе могут содержаться также другие газы, кроме горючего газа. При этом предпочтительно обращать внимание на то, чтобы эти другие газы обеспечивали достаточную взрывобезопасность и не оказывали никаких вредных воздействий на доменный процесс и, в частности, реакцию газификации альтернативного восстановителя.
В частности, в рамках настоящего изобретения нижеследующие реакции следует рассматривать как реакции газификации альтернативного восстановителя (реакции газификации угольной пыли):
окисление летучих веществ: летучие вещества+О2→СО+Н2+N2
частичное выгорание кокса: С+½О2→СО
окисление СО/диссоциация диоксида углерода:
2СО+О2↔2СО2
реакция Будуара: С+СО2→2СО
реакция водяного газа (гетерогенная): С+Н2О→СО+Н2
реакция водяного газа (гомогенная): СО+Н2О↔СО22
реакция гремучего газа/диссоциация водяного пара:
22↔2Н2О
реакция природного газа: СН4+2О2→СО2+2Н2О
Изобретение, которое в особенности относится к способу вдувания углеродсодержащих порошкообразных альтернативных восстановителей и, соответственно, горючих материалов в реактор-газификатор или доменную печь, по своей сути может найти применение во всех областях техники в таких процессах, которые оказывают благоприятное влияние в технологическом, энергетическом или экономическом отношении тем, что в реактор вводятся используемые в процессе порошкообразные альтернативные восстановители и, соответственно, горючие материалы. Тогда благоприятное воздействие от применения альтернативного восстановителя и, соответственно, горючего материала может быть усилено возможным возрастанием скорости вдувания альтернативного восстановителя и, соответственно, горючего материала. Таким образом, изобретение не ограничивается доменной печью или реактором-газификатором, но относится также к другим подобным реакторам. Такие реакторы, кроме доменной печи или реактора-газификатора, могут представлять собой, например, шахтные печи и вагранки, псевдоожиженные слои, генераторы горячего газа и камеры сгорания, при необходимости при содействии электрической энергии, например, в случае установок SAF (печи с погруженной дугой) или EAF (электрической дуговой печи). Однако реакторы-газификаторы, и наиболее предпочтительно доменные печи, являются особенно выгодными вариантами применения соответствующего изобретению способа, поскольку здесь простой модификацией существующих установок может достигаться большое повышение эффективности.
Газ-носитель и альтернативный восстановитель предпочтительно вдуваются с помощью по меньшей мере одного, предпочтительно выступающего для этого внутрь фурмы или в соответствующую зону реактора или газопровода, первой дутьевой трубки. Посредством такой дутьевой трубки альтернативный восстановитель и газ-носитель могут хорошо смешиваться с потоком горячего дутья. Но в альтернативном варианте также возможно, что альтернативный восстановитель с газом-носителем вдувается, например, через простое отверстие в воздушной фурме.
Кроме того, при этом в реактор, в частности, в доменную печь, предпочтительно может вдуваться газообразный кислород или кислородсодержащая газовая смесь таким образом, что газ-носитель и альтернативный восстановитель объединяются с кислородом или с кислородсодержащей газовой смесью в области выхода первой(-ых) дутьевой(-ых) трубки (-ок).
Один предпочтительный вариант осуществления изобретения состоит в том, что первая дутьевая трубка имеет внутреннюю трубу и окружающую внутреннюю трубу наружную трубу с образованием кольцевого зазора, причем альтернативный восстановитель вместе с газом-носителем подается через внутреннюю трубу, и кислород или кислородсодержащая газовая смесь подводится через кольцевой зазор.
Этим путем вдуваемый альтернативный восстановитель непосредственно после выхода из первой дутьевой трубки окружается чистым кислородом или кислородсодержащим газом. Благодаря этому кислород, альтернативный восстановитель и находящийся в газе-носителе горючий газ как важные для реакции газификации реакционные компоненты объединяются на важной для начала реакции граничной поверхности между вдуваемой струей альтернативного восстановителя с газом-носителем и кислородом в области выхода первой дутьево1 трубки.
Необходимая энергия реакции подводится, с одной стороны, обратным излучением из реакционного пространства реактора, в частности, доменной печи, и, с другой стороны, самой начинающейся затем реакцией газификации. При этом особенно предпочтителен горючий газ, потребность в энергии которого для инициирования реакции газификации является по возможности незначительной. В этой связи предпочтительны монооксид углерода и водород в сравнении с диоксидом углерода и водяным паром, так как они требуют более низкой температуры для инициирования реакции газификации.
Согласно одному альтернативному предпочтительному варианту исполнения, первая дутьевая трубка состоит из одной простой трубы, через которую подается альтернативный восстановитель вместе с газом-носителем. Тогда кислород или кислородсодержащий газ предпочтительно подводится к альтернативному восстановителю внутри воздушной фурмы другим путем подачи, например, через дополнительную дутьевую трубку, вторую дутьевую трубку, или через поток горячего дутья воздушной фурмы.
Этим путем все реакционные компоненты реакции газификации также могут быть объединены в области выхода дутьевой трубки, даже когда ранее описанный предпочтительный вариант исполнения с концентрическими трубами позволяет лучше регулировать и эффективно подавать альтернативный восстановитель, газ-носитель и кислород.
Согласно второму аспекту изобретения, оно относится к способу пневматического вдувания порошкообразного альтернативного восстановителя посредством пневмотранспорта порошков в плотном слое с помощью газа-носителя в реактор, в частности, в реактор-газификатор или через воздушную фурму в доменную печь, так, что альтернативный восстановитель преобразуется в газ в реакции газификации, причем альтернативный восстановитель вдувается с газом-носителем через первую дутьевую трубку, причем в реактор через первую дутьевую трубку в дополнение к альтернативному восстановителю и газу-носителю подается еще и кислород, который в области выхода первой дутьевой трубки объединяется с альтернативным восстановителем и газом-носителем. При этом первая дутьевая трубка имеет внутреннюю первую трубу и размещенную вокруг нее вторую трубу, посредством чего образуется охватывающий первую трубу кольцевой зазор между первой и второй трубами, причем альтернативный восстановитель и газ-носитель подаются через первую трубу, и кислород подводится через кольцевой зазор. При этом газ-носитель согласно этому аспекту имеет горючий газ, компоненты которого или его окислительные компоненты, по меньшей мере частично, участвуют в реакции газификации. Для способа согласно второму аспекту настоящего изобретения необходимый для зажигания энергетический порог является более низким сравнительно со всеми вышеописанными способами, так как горючий газ сразу же приходит в контакт с кислородом. В этом случае в качестве горючего газа могут быть также эффективно использованы, например, водяной пар или диоксид углерода.
В случае дополнительной подачи кислорода через образующую кольцевой зазор вторую трубу обеспечивается возможность особенно хорошей газификации альтернативного восстановителя.
Благоприятным образом также могут быть применены многочисленные первые дутьевые трубки. Альтернативно или дополнительно, предпочтительно могут быть использованы многочисленные вторые дутьевые трубки. При этом многочисленные первые и/или вторые дутьевые трубки могут быть предусмотрены в одной воздушной фурме или во многих воздушных фурмах.
Кроме того, предпочтительно, когда поток подаваемого кислорода или, соответственно, кислородсодержащего газа и/или подводимого альтернативного восстановителя смешиваются в области выхода первой дутьевого трубки и, соответственно, завихряются. Для этого предпочтительно, чтобы смешению альтернативного восстановителя и газа-носителя с кислородом содействовала завихряющая конструкция.
Благодаря турбулентности в реакционной камере реакционные компоненты еще лучше соединяются друг с другом, следствием чего является еще более быстрая и эффективная газификация вдуваемого альтернативного восстановителя.
Для этого первая дутьевая трубка предпочтительно имеет завихряющую конструкцию, с помощью которой в области выхода первой дутьевой трубки интенсифицируется смешение альтернативного восстановителя и горючего газа с кислородом. Такая завихряющая конструкция представляет собой, например, устройство в виде направляющих перегородок в области выхода первой дутьевой трубки. Возможны также другие завихряющие конструкции, посредством которых, альтернативно кислороду или в дополнение к нему, завихряются альтернативный восстановитель или поток горячего дутья. Однако такие конструкции, в принципе независимо от дутьевой трубки, особенно эффективно могут применяться в сочетании с дутьевыми трубками.
С помощью настоящего изобретения, особенно в его предпочтительных вариантах осуществления, избегается подавляющее реакцию и ингибирующее действие до сих пор используемого азота в качестве инертного газа-носителя на реакцию газификации альтернативного восстановителя. Благодаря этому повышается скорость реакций газификации альтернативного восстановителя. Этот эффект может быть дополнительно усилен дополнительным применением подаваемых в область выхода дутьевой трубки чистого кислорода или кислородсодержащей газовой смеси, и скорость реакции еще больше возрастает. Дополнительным важным основанием для ускорения реакций газификации является раннее зажигание вдуваемого альтернативного восстановителя непосредственно после выхода из дутьевой трубки, например, в потоке горячего дутья доменной печи. Для достижения этого целенаправленно используется такой физический факт, что оболочка из кислорода или, соответственно, кислородсодержащей газовой смеси вокруг вдуваемого альтернативного восстановителя пропускает тепловое излучение, тогда как газ-носитель поглощает излучение. Из этого следует, что тепловое излучение из реактора, например, от горячего дутья, стенки фурмы и из зоны завихрения доменной печи, почти беспрепятственно проходит через кислородную оболочку, и на поверхности раздела между кислородом и альтернативным восстановителем плюс горючим газом отдает свою энергию, которая нужна для зажигания альтернативного восстановителя. Необходимая для зажигания альтернативного восстановителя энергия тем самым передается точно в нужном месте, а именно, на этой поверхности раздела, на пылевидные частицы альтернативного восстановителя и участвующий в реакциях газификации горючий газ в результате происходящего там поглощения излучения.
Вследствие неизменного времени пребывания альтернативного восстановителя для его газификации при вдувании в реактор, в частности, в фурму и вихревую зону доменной печи, с помощью изобретения и в особенности его предпочтительных вариантов осуществления в целом получается возрастание максимально возможной скорости вдувания при одновременном сокращении расхода кокса согласно коэффициенту замены кокс/уголь, и тем самым снижение затрат на топливо доменного цеха.
Дополнительный предпочтительный вариант исполнения способа состоит в том, что подаваемый альтернативный восстановитель, и/или газ-носитель, и/или предпочтительно подаваемый кислород или, соответственно, кислородсодержащий газ, предварительно нагревается или, соответственно, нагреваются до температур между 100°С и 950°С.
Благодаря предварительному нагреванию реакционных компонентов газификация альтернативного восстановителя дополнительно ускоряется, поскольку экономится время на разогревание после вдувания реакционных компонентов в реакционную камеру (фурму и зону завихрения), и тем самым реакции газификации в целом протекают быстрее, что опять же делает возможным повышение скорости вдувания преобразуемого альтернативного восстановителя.
Кроме того, предпочтительно, чтобы содержание альтернативного восстановителя в газе-носителе при вдувании в реактор, в частности, в доменную печь, было изменяемым в широких пределах, и регулироваться в зависимости от реакции. Вариацией отношения количества альтернативного восстановителя к количеству горючего газа может быть отрегулировано оптимальное для газификации альтернативного восстановителя соотношение, которое может быть различным в зависимости от данного конкретного эксплуатационного состояния реактора, в частности, доменной печи или реактора-газификатора, их индивидуальной конструкции, используемых сырьевых материалов и условий окружающей среды.
Кроме того, для соответствующего изобретению способа предпочтительно, когда скорость истечения и/или количество вдуваемого альтернативного восстановителя, и/или, по обстоятельствам, скорость истечения и/или количество кислорода, из дутьевой трубки являются изменяемыми в широких пределах, и регулируются в зависимости от реакции. Этим путем, альтернативно или дополнительно к вышеописанной вариации содержания альтернативного восстановителя в газе-носителе в комбинации с горючим газом и, по обстоятельствам, с кислородом, может быть отрегулировано оптимальное соотношение, которое может быть различным в зависимости от данного конкретного эксплуатационного состояния реактора, в частности, доменной печи или реактора-газификатора. В частности, это означает, что скорость истечения и/или количество кислорода с учетом реакции при предварительно отрегулированных скорости истечения и/или количестве кислорода могут быть изменяемыми, чтобы устанавливать оптимальный параметр для реакции газификации альтернативного восстановителя.
В зависимости от типа конструкции реактора, например, доменной печи, в частности, воздушной фурмы и вдувающего устройства, или реактора-газификатора, а также в зависимости от применяемого горючего газа, можно визуально оптимизировать загрузку газа-носителя, то есть, массовое соотношение между горючим газом и альтернативным восстановителем. Когда альтернативный восстановитель реагирует вместе с горючим газом, в реакционной камере, в особенности при введении кислорода, возникает свечение. Можно подавать столько альтернативного восстановителя, пока не будет обнаруживаться это свечение. Чтобы максимизировать количество подаваемого альтернативного восстановителя, количество подводимого горючего газа и/или, по обстоятельствам, кислорода, но также скорость истечения альтернативного восстановителя, горючего газа и/или, при необходимости, кислорода, регулируются так, чтобы свечение наблюдалось при как можно более высоком количестве подводимого альтернативного восстановителя.
В вариантах исполнения, в которых свечение не появляется или не может наблюдаться, в принципе можно с помощью эксплуатационных параметров реакционного процесса, в частности, доменного процесса, выявить оптимум необходимых для максимального количества вводимого альтернативного восстановителя регулирований в отношении подаваемого количества горючего газа и/или, при необходимости, кислорода, и скорости истечения альтернативного восстановителя, горючего газа и/или, по обстоятельствам, кислорода.
Горючий газ предпочтительно состоит из природного газа, коксового газа или газа коксовальных установок, конвертерного газа или другого отходящего газа, или их смеси. Прежде всего колошниковый газ и коксовый газ являются легко и в больших количествах доступными из окружения доменной установки горючими газами, которые по этим соображениям в особенности пригодны в качестве горючего газа сообразно специфике технологического оборудования. Кроме того, эти газы содержат слишком большие количества компонентов, которые сами или вследствие своих окислительных компонентов участвуют в реакции газификации альтернативного восстановителя.
В частности, диоксид углерода и водяной пар для их применения в качестве горючего газа предъявляют повышенные требования к реакционным условиям. Тогда для этих компонентов, например, сравнительно с монооксидом углерода или водородом, имеет место более высокая потребность в энергии, чтобы удалить из этих молекул содержащийся кислород и тем самым создать благоприятную для газификации альтернативного восстановителя газовую среду. Поэтому эти горючие газы, если имеются, предпочтительно используются тогда, когда дополнительно подается кислород при как можно более высокой концентрации, в частности, в области выхода дутьевой трубки.
В общем и целом, соответствующий изобретению способ, в особенности в его предпочтительных вариантах осуществления, приводит к технологическому, энергетическому и экономическому улучшению доменного процесса и, соответственно, обсуждаемого процесса.
Соответствующее изобретению устройство для исполнения способа, как он был описан выше, включает дутьевую трубку для вдувания альтернативного восстановителя в реактор, в частности, в реактор-газификатор или воздушную фурму доменной печи, резервуар для принятия газа-носителя и/или альтернативного восстановителя, и подводящий трубопровод для подачи альтернативного восстановителя от резервуара к дутьевой трубке. Устройство отличается тем, что оно, кроме того, предусматривает подвод для горючего газа, через который горючий газ может быть подведен в газ-носитель выше по потоку относительно дутьевой трубки.
Таким образом, соответствующее изобретению устройство имеет подвод для горючего газа, через который, в дополнение к другому газу для транспорта альтернативного восстановителя, в газ-носитель может быть подведен горючий газ с определенным весовым содержанием. Этот подвод для горючего газа при эксплуатации размещается выше по потоку относительно дутьевой трубки так, что через дутьевую трубку газ-носитель вместе с горючим газом может вдуваться в реактор, в частности, воздушную фурму доменной печи или реактор-газификатор. В принципе возможно подведение горючего газа в газ-носитель везде вдоль подводящего трубопровода выше по потоку относительно дутьевой трубки или в резервуар. Чем ближе к дутьевой трубке размещается подвод для горючего газа, тем благоприятнее его расположение, но с учетом при этом требований техники безопасности. К тому же необходимое для подачи давление является тем меньшим, чем ближе подвод находится к дутьевой трубке. При этом подвод для горючего газа предпочтительно располагается на подводящем трубопроводе, и при этом расстояние вдоль подводящего трубопровода от подвода для горючего газа до дутьевой трубки особенно предпочтительно является меньшим, чем расстояние вдоль подводящего трубопровода до резервуара, в котором хранится альтернативный восстановитель, при необходимости с другим газом газа-носителя. Предпочтительно подвод для горючего газа размещается непосредственно перед дутьевой трубкой. Кроме того, подвод для горючего газа в случае системы подводящего трубопровода с распределительным устройством предпочтительно располагается ниже по потоку относительно распределительного устройства.
Дополнительные признаки и преимущества изобретения следуют из совокупности пунктов формулы изобретения и нижеследующего описания фигур.
КРАТКОЕ ОПИСАНИЕ ФИГУР
Фигуры от 1а до 1с схематически показывают предпочтительную дутьевую установку для доменной печи, а также некоторые детали дутьевой трубки.
Фигура 2 показывает дополнительную предпочтительную дутьевую установку, которая имеет статический распределитель.
Фигура 3 показывает еще одну предпочтительную дутьевую установку, которая имеет распределительный резервуар вместо статического распределителя.
ВАРИАНТЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Одинаковые или соответственные элементы в нижеследующем описании фигур обозначены одинаковыми номерами позиций, и повторное описание их не приводится. В принципе, признаки, которые были описаны в связи с одним вариантом осуществления, также могут быть применены в другом варианте. Это справедливо, в частности, для расположения и конфигурации обусловливающих течение элементов, таких как вентили, дроссели или распределители, а также для конструкции устройства для вдувания альтернативного восстановителя в фурму.
Фигура 1 представляет схематическое изображение первой предпочтительной дутьевой установки 100. Дутьевая установка 100 включает воздушную фурму 7, через которую горячее дутье из кольцевого воздуховода 8 может вдуваться в доменную печь. В фурме 7 размещена дутьевая трубка 6, предпочтительно выполненная в виде коаксиальной дутьевой трубки для подачи пыли и газа, через которую в поток горячего дутья посредством пневмотранспорта порошков в плотном слое может одновременно подаваться первый поток, состоящий из альтернативного восстановителя и газа-носителя, который содержит горючий газ, и второй поток, который содержит кислород или кислородсодержащий газ.
Дутьевая трубка 6 в представленном варианте осуществления соединена с отдельным подводящим трубопроводом 5, по которому из дутьевого резервуара 3 через флюидизирующий резервуар 4 к дутьевой трубке 6 может транспортироваться альтернативный восстановитель. В доменной установке предпочтительно могут присутствовать многочисленные дутьевые трубки 6, отдельные подводящие трубопроводы 5 и при необходимости также флюидизирующие резервуары 4, чтобы вдувать по возможности большое количество альтернативного восстановителя, по возможности равномерно распределяемого в доменной печи.
Выше по потоку относительно дутьевого резервуара 3 в изображении согласно Фигуре 1а находится шлюзовая камера 2, через которую в находящийся под давлением дутьевой резервуар 3 по выбору вводится альтернативный восстановитель, и тем самым он может пополняться. Например, шлюзовая камера 2 под давлением окружающей среды может заполняться угольной пылью или другими альтернативными восстановителями, затем шлюзовая камера 2 доводится до давления нагнетания дутьевого резервуара 3, и затем альтернативный восстановитель выпускается в дутьевой резервуар 3. Для регулирования этого на Фигуре 1а в каждом случае ниже по потоку и выше по потоку относительно шлюзовой камеры 2 размещается запорный клапан 1, причем упомянутые в данном описании в каждом случае примера клапаны и другие регулирующие течение элементы также могут быть добавлены, изменены, заменены, а также частично исключены.
Фигура 1а показывает обозначенные буквой «А» местоположения, в которых, например, газ-носитель и/или горючий газ может вводиться в систему. В обозначенном буквой «В» месте выше по потоку относительно первого запорного клапана 1 предусматривается эскизно представленный на Фигуре 1а вариант реализации пути введения в систему альтернативного восстановителя или горючего материала.
В области мест «А» отдельного подводящего трубопровода 5 в газ-носитель может подаваться предпочтительно горючий газ таким образом, что газ-носитель, например, состоит из горючего газа по меньшей мере на 2 вес.%, компоненты которого или другие окислительные компоненты, по меньшей мере частично, участвуют в реакции газификации альтернативного восстановителя в воздушной фурме 7 и доменной печи. Горючий газ предпочтительно может быть введен в систему в одном или обоих обозначенных буквой «А» местах отдельного подводящего трубопровода 5 так, что находящийся ниже по потоку относительно этого места газ-носитель по меньшей мере на 2 вес.% состоит из горючего газа, и в остальном из другого газа или газовой смеси, и тем самым ведет к особенно эффективному вдуванию альтернативного восстановителя в плане его последующей газификации.
В обозначенном буквой «С» месте непосредственно выше по потоку относительно дутьевой трубки 6 в показанном в Фигуре 1а варианте исполнения предусматривается, что в дутьевую трубку 6 подается кислород. В случае дутьевой трубки 6 в показанном в Фигуре 1а варианте речь предпочтительно идет о конструкции, в которой альтернативный восстановитель вводится с газом-носителем, который по меньшей мере на 2 вес.% состоит из горючего газа, через центральную трубу в воздушную фурму 7, причем указанная труба окружена кольцевым зазором, через который в воздушную фурму 7 вдувается кислород или кислородсодержащий газ в виде потока, окружающего оболочкой газ-носитель.
Такая конфигурация дутьевой трубки 6 приводит к особенно эффективной реакции газификации, которая поэтому протекает особенно быстро и инициируется особенно рано, и тем самым позволяет добавлять особенно большие количества альтернативного восстановителя и экономить особенно большие количества высокоценного и дорогостоящего доменного кокса.
Фигура 1b показывает альтернативный вариант исполнения дутьевого устройства, которое имеет обычную дутьевую трубку 16 для вдувания пыли и обычную дутьевую трубку 17 для вдувания газа. Через дутьевую трубку 16 для вдувания пыли в фурму вдувается альтернативный восстановитель с газом-носителем, и через дутьевую трубку 17 для вдувания газа вдувается кислород.
Предпочтительно непосредственно перед обычной дутьевой трубкой 16 для вдувания пыли в обозначенном буквой «А» месте в альтернативный восстановитель и газ-носитель подводится горючий газ. Однако также возможно, что горючий газ содержится уже заранее в системе подачи, и альтернативный восстановитель подается уже существенно дальше выше по потоку от показанного в Фигуре 1b места посредством уже частично или полностью содержащего горючий газ газа-носителя.
Фигура 1с иллюстрирует дополнительный предпочтительный вариант осуществления, в котором предусматривается только одна обычная дутьевая трубка 16 для вдувания пыли, тогда как вдувание для подачи кислорода не предусмотрено. При этом кислород может подводиться через кольцевой воздуховод 8 посредством соответствующего обогащения потока горючего дутья, или отбираться из горючего дутья без отдельного обогащения, чтобы проводить реакцию газификации альтернативного восстановителя.
Фигура 2 показывает альтернативный вариант осуществления дутьевой установки 200.
В отличие от дутьевой установки согласно Фигуре 1а, Фигура 2 показывает дутьевую установку 200 без отдельной шлюзовой камеры. Однако такая отдельная шлюзовая камера может быть также предусмотрена в варианте исполнения согласно Фигуре 2. В дутьевой установке 200 предусматриваются, в частности, два отдельных дутьевых резервуара 3, причем также могут иметься больше, чем два дутьевых резервуара 3. От дутьевых резервуаров 3 альтернативный восстановитель и газ-носитель попадают в трубопроводную систему подобно тому, как в варианте исполнения из Фигуры 1а, в каждом случае через флюидизирующий резервуар 4.
Дутьевая установка 200 включает, например, два магистральных подводящих трубопровода 9. В принципе может быть предусмотрен только один отдельный магистральный подводящий трубопровод 9, или могут быть предусмотрены более чем два магистральных подводящих трубопровода 9. Через магистральные подводящие трубопроводы 9 альтернативный восстановитель вместе с газом-носителем из флюидизирующего резервуара 4 попадает в статический распределитель 10, в котором он распределяется на многочисленные отдельные подводящие трубопроводы 5. Тогда отдельные подводящие трубопроводы 5 в каждом случае ведут к дутьевой трубке 6, причем они в случае дутьевой установке 200 также могут быть сформированы и модифицированы, как описано в связи с Фигурой 1.
Отдельные подводящие трубопроводы 5 в каждом случае предпочтительно включают дроссель 20, чтобы иметь возможность надежно регулировать распределение вдуваемого альтернативного восстановителя. Альтернативно или дополнительно, отдельные подводящие трубопроводы 5 также могут быть оснащены регулировочными клапанами.
Особенно предпочтительно горючий газ подводится в газ-носитель в обозначенных буквой «А» местах отдельных подводящих трубопроводов 5. Хотя в принципе также возможно, что горючий газ подводится выше по потоку относительно этих мест, а именно, например, в области магистральных подводящих трубопроводов 9 или непосредственно в дутьевые резервуары 3. Однако по соображениям техники безопасности предпочтительно, чтобы горючий газ подводился в газ-носитель лишь настолько далеко ниже по потоку, насколько возможно. В частности, тем самым риск взрыва дутьевой установки может выдерживаться очень малым.
Фигура 3 показывает дополнительный предпочтительный вариант исполнения дутьевой установки 300, причем дутьевая установка 300 согласно Фигуре 3 вместо дутьевого резервуара 3 обоих до сих пор описанных вариантов исполнения имеет три промежуточных подводящих резервуара 11.
От промежуточных подводящих резервуаров 11 альтернативный восстановитель и газ-носитель через магистральный подводящий трубопровод 9 поступают в распределительный резервуар 12. Из распределительного резервуара 12 альтернативный восстановитель с газом-носителем через флюидизирующий резервуар 4, аналогично вышеописанным вариантам исполнения, может через отдельный подводящий трубопровод 5 подаваться в дутьевую трубку 6 для вдувания в воздушную фурму 7. Вместо дутьевой трубки 6 в этом варианте исполнения могут быть использованы также другие устройства для вдувания альтернативного восстановителя в фурму 7.
Из распределительного резервуара 12 избыточный газ может быть выпущен в окружающую среду через газовый регулировочный клапан 14, который размещается после первого фильтра 13. В остальном третий предпочтительный вариант исполнения дутьевой установки 300 содержит также несколько вентилей, в частности, запорные вентили 1 и пылевые регулировочные вентили 15, чтобы иметь возможность надежно регулировать поток альтернативного восстановителя и газа-носителя. Полноты ради следует упомянуть, что подобные вентили, в частности, также пылевые регулировочные вентили 15, могут быть предусмотрены на отдельных подводящих трубопроводах 5 и также на магистральном подводящем трубопроводе 9 или магистральных подводящих трубопроводах 9. В отношении размещения и конструкции вентилей, резервуаров и подобных компонентов, как и конфигурации газотранспортной системы, в связи с настоящим изобретением не предъявляются какие-то особенные требования, но они следуют из профессионального представления о дутьевой установке, как она в принципе известна.
В показанном в Фигуре 3 варианте исполнения горючий газ также особенно предпочтительно подается в газ-носитель в обозначенных буквой «А» местах отдельного подводящего трубопровода 5. Однако, аналогично описанным до сих пор вариантам исполнения согласно Фигурам 1 и 2, также возможно, что горючий газ вводится в систему в других местах. Например, на Фигуре 3 также обозначены различные места «А», в которых горючий газ может подводиться в систему.
Вышеописанные варианты исполнения показывают три примерных возможности, как соответствующий изобретению способ может быть реализован в плане конфигурации оборудования. Однако изобретение не ограничивается этими конкретными конструкциями дутьевой установки, но также может быть применено на устройствах иного типа.
В частности, конструкция дутьевой(-ых) трубки (-ок) может быть индивидуально выбрана и скомбинирована для каждой дутьевой установки, причем иллюстрированные в связи в Фигурой 1 примерные варианты исполнения, разумеется, также могут быть применены в вариантах исполнения согласно Фигуре 2 и Фигуре 3 и скомбинированы любым путем.
С помощью вышеописанных дутьевых установок может быть эффективно применен соответствующий изобретению способ. Этим путем возможно достижение значительной экономии на стоимости топлива в доменном процессе или при реакциях газификации, для чего большее количество альтернативного восстановителя вдувается в доменную печь или в реактор, нежели это возможно в способах согласно прототипу, поскольку реакция газификации согласно изобретению может протекать быстрее и раньше инициироваться.

Claims (31)

1. Способ пневматического вдувания порошкообразного альтернативного восстановителя посредством пневмотранспорта порошков в плотном слое, при котором плотность слоя порошкообразного альтернативного восстановителя составляет 60% или более плотности упаковки в неуплотненном состоянии сыпучего материала, с помощью газа-носителя в реактор, в частности в реактор-газификатор или через воздушную фурму (7) в доменную печь,
причем альтернативный восстановитель подвергают газификации в реакции газификации,
причем газ-носитель содержит горючий газ в виде монооксида углерода, водорода, водяного пара, кислорода, углеводорода, колошникового газа, природного газа, коксового газа, конвертерного газа, другого отходящего газа или их смеси.
2. Способ пневматического вдувания порошкообразного альтернативного восстановителя посредством пневмотранспорта порошков в плотном слое, при котором плотность слоя порошкообразного альтернативного восстановителя составляет 60% или более плотности упаковки в неуплотненном состоянии сыпучего материала, с помощью газа-носителя в реактор, в частности в реактор-газификатор или через фурму (7) в доменную печь,
так, что альтернативный восстановитель подвергается газификации в реакции газификации,
причем газ-носитель состоит из горючего газа, его компонентов или его окислительных компонентов, которые, по меньшей мере частично, участвуют в реакции газификации, и из другого газа или газовой смеси, отличных от горючего газа.
3. Способ по п.1 или 2, причем газ-носитель по меньшей мере на 2 вес.%, предпочтительно по меньшей мере на 5 вес.%, предпочтительно по меньшей мере на 10 вес.%, состоит из горючего газа, или газ-носитель, в частности, состоит из горючего газа максимально на 90 вес.%, предпочтительно максимально на 50 вес.%, более предпочтительно максимально на 25 вес.%, более предпочтительно максимально на 20 вес.%.
4. Способ по п. 2 или 3, причем упомянутый другой газ содержит азот.
5. Способ по одному из пп.1-4, причем альтернативный восстановитель с газом-носителем вдувают через первую дутьевую трубку (6, 16),
причем первая дутьевая трубка (6, 16) предпочтительно выступает внутрь воздушной фурмы (7).
6. Способ по п.5, причем в реактор через первую дутьевую трубку (6, 16) дополнительно к альтернативному восстановителю и газу-носителю подводят кислород, который объединяется с альтернативным восстановителем и газом-носителем в области выхода первой дутьевой трубки (6, 16),
причем первая дутьевая трубка (6, 16) предпочтительно имеет внутреннюю первую трубу и размещенную вокруг нее вторую трубу, в результате чего образуется окружающий первую трубу кольцевой зазор между первой и второй трубами, причем альтернативный восстановитель и газ-носитель подают через первую трубу, а кислород - через кольцевой зазор.
7. Способ по п.5, причем первая дутьевая трубка (6, 16) представляет собой трубу, а кислород подводят через вторую дутьевую трубку (17) в реактор, предпочтительно в воздушную фурму (7) доменной печи.
8. Способ пневматического вдувания порошкообразного альтернативного восстановителя посредством пневмотранспорта порошков в плотном слое, при котором плотность слоя порошкообразного альтернативного восстановителя составляет 60% или более плотности упаковки в неуплотненном состоянии сыпучего материала, с помощью газа-носителя в реактор, в частности в реактор-газификатор или через воздушную фурму (7) в доменную печь,
причем альтернативный восстановитель подвергают газификации в реакции газификации,
при этом альтернативный восстановитель с газом-носителем вдувают через первую дутьевую трубку (6),
причем в реактор через первую дутьевую трубку (6) дополнительно к альтернативному восстановителю и газу-носителю подводят кислород, который объединяется с альтернативным восстановителем и газом-носителем в области выхода первой дутьевой трубки (6),
причем первая дутьевая трубка (6) имеет внутреннюю первую трубу и размещенную вокруг нее вторую трубу, в результате чего образуется окружающий первую трубу кольцевой зазор между первой и второй трубами, причем альтернативный восстановитель и газ-носитель подают через первую трубу, а кислород через упомянутый кольцевой зазор, причем газ-носитель содержит горючий газ, компоненты которого или его окислительные компоненты, по меньшей мере частично, участвуют в реакции газификации.
9. Способ по одному из пп. 6-8, причем альтернативный восстановитель с горючим газом и/или кислородом подводят через множество первых и/или вторых дутьевых трубок через воздушную фурму в реактор, в частности в доменную печь.
10. Способ по одному из пп. 6-9, причем скорость истечения и/или количество кислорода регулируют в зависимости от реакции.
11. Способ по одному из пп. 1-10, причем смешение альтернативного восстановителя и газа-носителя с кислородом стимулируют использованием завихряющей конструкции.
12. Способ по одному из пп. 1-11, причем отношение между альтернативным восстановителем и горючим газом, и/или скорость истечения и/или вдуваемое количество альтернативного восстановителя и газа-носителя регулируют в зависимости от реакции.
13. Способ по одному из пп. 1-12, причем газ-носитель, и/или альтернативный восстановитель, и/или кислород имеют температуру от 100°С до 950°С.
14. Способ по одному из пп. 2-13, причем горючий газ состоит из монооксида углерода, диоксида углерода, водорода, водяного пара, кислорода, углеводорода, или их смеси, в частности, из колошникового газа, природного газа, коксового газа, конвертерного газа, другого отходящего газа, или их смеси.
15. Устройство (100, 200, 300) для пневматического вдувания порошкообразного восстановителя способом по одному из пп.1-14, содержащее
дутьевую трубку (6, 16) для вдувания альтернативного восстановителя в реактор, в частности в реактор-газификатор или в воздушную фурму (7) доменной печи,
резервуар (3, 11) для вмещения газа-носителя и/или альтернативного восстановителя, и
подводящий трубопровод (5, 9) для подачи альтернативного восстановителя от резервуара (3, 11) к дутьевой трубке (6, 16),
причем устройство имеет подвод (А) для горючего газа, который выполнен с возможностью подведения горючего газа в газ-носитель выше по потоку относительно дутьевой трубки (6, 16).
16. Устройство по п.15, причем подвод (А) для горючего газа размещается на подводящем трубопроводе (5, 9), причем, в частности, расстояние вдоль подводящего трубопровода (5, 9) от подвода (А) для горючего газа до дутьевой трубки (6, 16) является меньшим, чем расстояние вдоль подводящего трубопровода (5, 9) до резервуара (3, 11).
17. Устройство по п. 15 или 16, причем подвод для горючего газа размещается выше по потоку относительно дутьевой трубки (6, 16) и ниже по потоку относительно распределительного устройства (10, 12).
RU2017108912A 2014-08-18 2015-07-03 Способ вдувания альтернативных восстановителей в доменную печь RU2671024C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014216336.6A DE102014216336A1 (de) 2014-08-18 2014-08-18 Verfahren zum Einblasen von Ersatzreduktionsmitteln in einen Hochofen
DE102014216336.6 2014-08-18
PCT/EP2015/065207 WO2016026604A1 (de) 2014-08-18 2015-07-03 Verfahren zum einblasen von ersatzreduktionsmitteln in einen hochofen

Publications (3)

Publication Number Publication Date
RU2017108912A3 RU2017108912A3 (ru) 2018-09-21
RU2017108912A RU2017108912A (ru) 2018-09-21
RU2671024C2 true RU2671024C2 (ru) 2018-10-29

Family

ID=53539693

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017108912A RU2671024C2 (ru) 2014-08-18 2015-07-03 Способ вдувания альтернативных восстановителей в доменную печь

Country Status (15)

Country Link
US (1) US10472689B2 (ru)
EP (1) EP3183369B1 (ru)
JP (1) JP6356347B2 (ru)
KR (1) KR101978862B1 (ru)
CN (1) CN106795572A (ru)
BR (1) BR112017003187B1 (ru)
CA (1) CA2958270C (ru)
DE (1) DE102014216336A1 (ru)
PL (1) PL3183369T3 (ru)
RU (1) RU2671024C2 (ru)
TR (1) TR201901637T4 (ru)
TW (1) TWI596212B (ru)
UA (1) UA117308C2 (ru)
WO (1) WO2016026604A1 (ru)
ZA (1) ZA201701215B (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377612B2 (en) * 2016-10-13 2022-07-05 Omnis Advanced Technologies, LLC Gaseous combustible fuel containing suspended solid fuel particles
DE102018113774A1 (de) * 2018-06-08 2019-12-12 Aktien-Gesellschaft der Dillinger Hüttenwerke Vorrichtung und Verfahren zum Einbringen eines Ersatzreduktionsmittels in einen Hochofen
JP7105708B2 (ja) * 2019-02-18 2022-07-25 日本製鉄株式会社 還元ガスの吹込み量決定方法及び高炉の操業方法
JP7365575B2 (ja) * 2019-08-09 2023-10-20 三菱マテリアル株式会社 鉱石連続供給装置
KR20220129625A (ko) * 2020-04-24 2022-09-23 제이에프이 스틸 가부시키가이샤 고로의 조업 방법 및 고로 부대 설비
DE102021202698A1 (de) 2021-03-19 2022-09-22 Küttner Gmbh & Co. Kg Verfahren zum Einblasen eines pulverförmigen Ersatzreduktionsmittels und eines Reduktionsgases in einen Hochofen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981002584A1 (en) * 1980-03-11 1981-09-17 R Jordan Carbonaceous fines in an oxygen-blown blast furnace
SU1103799A3 (ru) * 1980-06-05 1984-07-15 Сантр Де Решерш Металлюржик (Фирма) Способ управлени доменной плавкой
SU1157061A1 (ru) * 1983-07-01 1985-05-23 Институт черной металлургии Способ доменной плавки
UA18362A (ru) * 1990-10-16 1997-12-25 Донецький Політехнічний Інститут StarWriterСПОСОБ ВЫПЛАВКИ ЧУГУНА В ДОМЕННОЙ ПЕЧИ
EP2653565A1 (en) * 2011-01-18 2013-10-23 JFE Steel Corporation Blast furnace operation method

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE225447C (de) 1909-04-02 1910-09-10 Maschinenfabrik Imp Gmbh Trockentrommel
US3236629A (en) 1962-12-19 1966-02-22 United States Steel Corp Method of introducing fluid fuel into a blast furnace
JPS5297046U (ru) 1976-01-19 1977-07-20
DE2702422A1 (de) * 1976-01-26 1977-07-28 Exxon France Verfahren und vorrichtung zum einspritzen von brennstoff in eine blasform
DE2912441C2 (de) 1979-03-29 1982-09-23 ARBED S.A., 2930 Luxembourg Verfahren zum kontinuierlichen Einblasen von feinkörniger Braunkohle in das Gestell eines Hochofens
DE3109111A1 (de) * 1981-03-11 1982-09-23 Fried. Krupp Gmbh, 4300 Essen "anlage zum eingeben von kohle in metallurgische prozessgefaesse mit einer vielzahl von einblasstellen und verfahren zum betreiben der anlage"
DD225447A1 (de) 1984-07-04 1985-07-31 Maxhuette Unterwellenborn Dichtstromfoerderleitung zur zufuehrung staubfoermiger brennstoffe in schachtoefen zur roheisenerzeugung
JPS62142706A (ja) * 1985-12-17 1987-06-26 Kawasaki Steel Corp 高炉内への粉粒体吹込み方法
DE3603078C1 (de) 1986-02-01 1987-10-22 Kuettner Gmbh & Co Kg Dr Verfahren und Vorrichtung zum dosierten Einfuehren feinkoerniger Feststoffe in einen Industrieofen,insbesondere Hochofen oder Kupolofen
JPS63171807A (ja) * 1987-01-09 1988-07-15 Nkk Corp 酸素高炉の操業方法
BE1001238A6 (fr) 1987-12-03 1989-08-29 Centre Rech Metallurgique Procede de reduction des minerais dans un four a cuve.
DE4008963C1 (ru) 1990-03-20 1991-11-14 Hoesch Stahl Ag, 4600 Dortmund, De
JPH0826370B2 (ja) 1990-11-30 1996-03-13 住友金属工業株式会社 高炉への粉体燃料吹込方法
JPH0694564B2 (ja) * 1990-11-30 1994-11-24 住友金属工業株式会社 高炉への粉体燃料吹込方法
JPH0694564A (ja) 1992-09-10 1994-04-05 Keihin Seiki Mfg Co Ltd ワークの気密検出装置及びその気密検出方法
DE19606575C2 (de) 1996-02-22 1998-02-12 Noell Krc Energie & Umwelt Verfahren zur gleichzeitigen stofflichen und energetischen Verwertung von Rest- und Abfallstoffen in einem Hoch- oder Kupolofen
JP3796021B2 (ja) 1997-09-17 2006-07-12 新日本製鐵株式会社 高炉羽口からの微粉炭吹き込み方法及び吹き込みランス
JP3379946B2 (ja) 1998-08-13 2003-02-24 ポハング アイアン アンド スチール カンパニイ リミテッド 粉砕石炭の導入装置
KR100380747B1 (ko) * 1999-07-19 2003-04-18 주식회사 포스코 이중관을 이용한 미분탄 취입장치
DE19859354A1 (de) 1998-12-22 2000-07-06 Der Gruene Punkt Duales Syst Verfahren und Vorrichtung zur Erzeugung von Metall aus Metallerzen
JP4074467B2 (ja) * 2002-03-29 2008-04-09 新日本製鐵株式会社 高炉での低揮発分微粉炭の燃焼性向上方法
DE10356480B4 (de) 2003-12-03 2005-10-27 Loesche Gmbh Verfahren und Vorrichtung zur pneumatischen Förderung von Feststoffen
LU91264B1 (en) * 2006-07-12 2008-01-14 Wurth Paul Sa Pulverized coal injection lance
CN100489393C (zh) 2006-12-28 2009-05-20 鞍钢股份有限公司 一种用热风炉烟道废气作载体的高炉喷煤方法
DE102007020294A1 (de) 2007-04-30 2008-11-13 Siemens Ag Gemeinsamer Einsatz von Kohlendioxid und Stickstoff in einer Komponente eines Staubeintragsystems für die Kohlenstaubdruckvergasung
DE102009048961B4 (de) * 2009-10-10 2014-04-24 Linde Ag Dosiervorrichtung, Dichtstromförderanlage und Verfahren zum Zuführen von staubförmigen Schüttgut
JP5824810B2 (ja) 2010-01-29 2015-12-02 Jfeスチール株式会社 高炉操業方法
EP2407742B1 (de) 2010-07-13 2016-11-09 Thorsten Kutsch Verfahren und vorrichtung zum betreiben eines schachtofens
CN102382915A (zh) 2010-08-30 2012-03-21 上海国冶工程技术有限公司 使用二氧化碳作传输介质进行高炉喷煤的方法
CN102060197A (zh) 2010-12-15 2011-05-18 中冶赛迪工程技术股份有限公司 一种采用气力输送煤粉的方法和系统
BR112014015336B1 (pt) 2011-12-21 2019-05-14 Jfe Steel Corporation Método de operação de alto-forno
CN102605119B (zh) 2012-04-13 2016-08-03 孙慕文 一种高炉喷吹煤粉过程中的煤粉输送及预热工艺装置
JP5949653B2 (ja) * 2012-07-09 2016-07-13 Jfeスチール株式会社 固体還元剤の吹き込み方法
JP6015915B2 (ja) 2012-09-20 2016-10-26 三菱重工業株式会社 高炉設備
JP6094564B2 (ja) * 2014-11-12 2017-03-15 トヨタ自動車株式会社 燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1981002584A1 (en) * 1980-03-11 1981-09-17 R Jordan Carbonaceous fines in an oxygen-blown blast furnace
SU1103799A3 (ru) * 1980-06-05 1984-07-15 Сантр Де Решерш Металлюржик (Фирма) Способ управлени доменной плавкой
SU1157061A1 (ru) * 1983-07-01 1985-05-23 Институт черной металлургии Способ доменной плавки
UA18362A (ru) * 1990-10-16 1997-12-25 Донецький Політехнічний Інститут StarWriterСПОСОБ ВЫПЛАВКИ ЧУГУНА В ДОМЕННОЙ ПЕЧИ
EP2653565A1 (en) * 2011-01-18 2013-10-23 JFE Steel Corporation Blast furnace operation method

Also Published As

Publication number Publication date
CA2958270A1 (en) 2016-02-25
US20170234619A1 (en) 2017-08-17
KR20170083023A (ko) 2017-07-17
BR112017003187B1 (pt) 2021-06-01
DE102014216336A1 (de) 2016-02-18
TR201901637T4 (tr) 2019-02-21
RU2017108912A3 (ru) 2018-09-21
TW201612320A (en) 2016-04-01
US10472689B2 (en) 2019-11-12
RU2017108912A (ru) 2018-09-21
JP2017525857A (ja) 2017-09-07
CA2958270C (en) 2019-12-31
ZA201701215B (en) 2019-07-31
EP3183369B1 (de) 2018-11-07
JP6356347B2 (ja) 2018-07-11
CN106795572A (zh) 2017-05-31
TWI596212B (zh) 2017-08-21
WO2016026604A1 (de) 2016-02-25
EP3183369A1 (de) 2017-06-28
UA117308C2 (uk) 2018-07-10
BR112017003187A2 (pt) 2017-11-28
PL3183369T3 (pl) 2019-04-30
KR101978862B1 (ko) 2019-05-15

Similar Documents

Publication Publication Date Title
RU2671024C2 (ru) Способ вдувания альтернативных восстановителей в доменную печь
US4153426A (en) Synthetic gas production
US20120210645A1 (en) Multi-ring Plasma Pyrolysis Chamber
CN102316974B (zh) 等离子体气化反应器
CS253561B2 (en) Method of gas production
BRPI0814561B1 (pt) processo e fábrica para reduzir sólidos que contêm óxido de ferro
CA2798009C (en) Method and device for carbon injection and recirculation of synthesis gas when producing synthesis gas
PL116358B1 (en) Method of and apparatus for coal gasification
NO844800L (no) Fremgangsmaate og anordning for partsiell forbrenning og forgassing av et karbonholdig materiale.
KR20090130471A (ko) 연료취입장치 및 이를 포함하는 용철제조장치
RU2325423C2 (ru) Энерготехнологическая установка для термической переработки твердого топлива
US20050151307A1 (en) Method and apparatus for producing molten iron
JPH11256211A (ja) 溶鉱炉中の鉄鉱石を還元する方法と装置
CN102878797A (zh) 竖炉及其操作方法
Zarzycki et al. Fuel processing in a swirl flow: numerical modelling of combustion and gasification
CN109312918A (zh) 用于均匀分配固体燃料材料的方法和设备
RU2062287C1 (ru) Способ газификации углей и установка для его осуществления
CN117802280A (zh) 一种高炉复合喷吹料的双碳式还原清洁预处理系统及方法
Gao 99100667 OCF (oxygen-coal-flux injection) blast furnace process
JPS59107011A (ja) たて型溶融還元炉の操業方法
JP2004183004A (ja) 高炉への木材と微粉炭の吹込み操業方法
TW201508225A (zh) 用於操作多氣體燃燒器的方法與多氣體燃燒器