RU2669841C1 - Способ получения полимерных материалов - Google Patents

Способ получения полимерных материалов Download PDF

Info

Publication number
RU2669841C1
RU2669841C1 RU2017128425A RU2017128425A RU2669841C1 RU 2669841 C1 RU2669841 C1 RU 2669841C1 RU 2017128425 A RU2017128425 A RU 2017128425A RU 2017128425 A RU2017128425 A RU 2017128425A RU 2669841 C1 RU2669841 C1 RU 2669841C1
Authority
RU
Russia
Prior art keywords
radiation
polymer
ionizing radiation
temperature
irradiation
Prior art date
Application number
RU2017128425A
Other languages
English (en)
Inventor
Сергей Витальевич Слесаренко
Михаил Александрович Арсентьев
Original Assignee
Сергей Витальевич Слесаренко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Витальевич Слесаренко filed Critical Сергей Витальевич Слесаренко
Priority to RU2017128425A priority Critical patent/RU2669841C1/ru
Priority to PCT/RU2018/000513 priority patent/WO2019031988A1/ru
Priority to CN201880010809.9A priority patent/CN110291138A/zh
Priority to EP18845041.5A priority patent/EP3666815A4/en
Priority to US16/484,445 priority patent/US20190345298A1/en
Priority to JP2020530413A priority patent/JP2020534424A/ja
Application granted granted Critical
Publication of RU2669841C1 publication Critical patent/RU2669841C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/247Heating methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Изобретение относится к радиационной химии и химии высоких энергий по получению, с помощью терморадиационной обработки заготовок, полимерных материалов с улучшенными эксплуатационными характеристиками, в частности политетрафторэтилена (ПТФЭ) и других марок фторопластов, используемых в различных областях промышленности. В частности, касается обработки заготовок высокоэнергетическим ионизирующим излучением при температуре строго выше температуры плавления кристаллической фазы полимера в бескислородной среде. Обработку осуществляют с помощью импульсного линейного ускорителя электронов, генерирующего ионизирующее излучение, до поглощенной дозы 0-500 кГр. В процессе облучения температуру полимера понижают не более 0,5°С/10 кГр, а после обработки ионизирующим излучением полимер подвергают термообработке. Для обработки используют альфа-излучение, гамма-излучение, электронное излучение, облучение протонами и нейтронами с высокими энергиями, излучение от природных источников. Способ обработки обеспечивает повышение физико-механических свойств материала с обеспечением их постоянства и программируемости физико-механических характеристик. 7 з.п. ф-лы.

Description

Изобретение относится к области радиационной химии и химии высоких энергий по получению, с помощью терморадиационной обработки заготовок, полимерных материалов с улучшенными эксплуатационными характеристиками, в частности политетрафторэтилена (ПТФЭ) и других марок фторопластов, широко используемых в различных областях промышленности: автомобильной, авиационной, медицинской, космической, химической и т.д.
Известно, см. Истомин Н.П., Семенов А.П. Антифрикционные свойства композиционных материалов на основе фторполимеров. М., 1981, что воздействие ионизирующего излучения на политетрафторэтилен в воздушной среде при комнатной температуре может приводить к повышению его износостойкости. После облучения политетрафторэтилена гамма-квантами наблюдали уменьшение объемного массового износа при нагрузках 350 и 400 Н и скоростях скольжения 0.5 и 0.01 м/с приблизительно в 20 раз. Зависимость износостойкости политетранафторэтилена от величины поглощенной дозы имела вид кривой с максимумом. Поглощенная доза, при которой достигался максимальный эффект улучшения триботехнических характеристик, составила 50 Мрад. Дальнейшее увеличение поглощенной дозы приводило к увеличению износа, вплоть до охрупчивания образцов и невозможности измерить на них параметры износа при 100 Мрад. Необходимо отметить, что ведущим радиолитическим процессом в политетрафторэтилене в воздушной среде (в присутствии кислорода) является деструкция полимерных цепей (Фторполимеры. / Под ред. Л. Уолла: Пер. с англ. / Под ред. И.Л. Кнунянца и В.А. Пономаренко. - М.: Мир, 1975). Поэтому его облучение в этих условиях, несмотря на увеличение износостойкости приводит к значительному ухудшению других механических характеристик (прочности на разрыв, предела текучести и др.) и с этой точки зрения неприемлемо на практике. Кроме того, повышение износостойкости ПТФЭ в десятки раз в результате радиационной обработки в описанных условиях нельзя признать достаточно высоким, поскольку современные способы, основанные на приготовлении антифрикционных композиций на его основе с использованием оксидов металлов, позволяют увеличить износостойкость от 100 до 1000 раз (Истомин Н.П., Семенов А.П. Антифрикционные свойства композиционных материалов на основе фторполимеров. - М., 1981).
Из авторского свидетельства СССР №1642730 A1, C08J 3/28, 1999, известен способ терморадиационной обработки в инертной среде изделий из политетрафторэтилена для уплотнительных устройств. С целью повышения ресурса уплотнительных устройств изделия из ПТФЭ облучались при повышенной температуре 50-55°C в инертной среде до поглощенной дозы 0.8 Мрад. В результате терморадиационной обработки ресурс уплотнительных устройств был увеличен в несколько десятков раз при сохранении других физико-механических характеристик ПТФЭ.
Из патента РФ №2597913, класс C08J 3/28, опубликован 20.09.2016 (принят в качестве наиболее близкого аналога), известен способ терморадиационной обработки изделий из политетрафторэтилена, при котором заготовки облучают гамма-квантами при повышенной температуре в расплаве в инертной среде. При этом температуру заготовок поддерживают ниже температуры плавления политетрафторэтилена, но выше температуры его кристаллизации. Облучение заготовок осуществляют с помощью импульсного линейного ускорителя, работающего в гамме-моде и конвертера, до поглощенной дозы 50-350 кГр, причем в процессе облучения температуру заготовок понижают на 0.8-1°C 10 кГр, а скорость облучения составляет более 10 Гр/с. После облучения заготовки охлаждают до комнатной температуры со скоростью 30-70°C/ч. Изобретение обеспечивает сокращение времени облучения продукта и повышение коэффициента использования полезного объема ионизационного излучения.
К недостаткам данного технического решения следует отнести непостоянство физико-механических характеристик полимера в процессе облучения, в частности, при указанном режиме терморадиационного облучения («…при этом температуру заготовок поддерживают ниже температуры плавления политетрафторэтилена, но выше температуры его кристаллизации…», что соответствует температурам =<327°C) возможно развитие деструкции участков полимера вследствие наличия твердых кристаллических участков подверженных сильной деструкции при облучении. Кроме того, непостоянство свойств, помимо терморадиационной деструкции, может быть объяснено неверным режимом охлаждения (скорость и время).
Техническим результатом, для получения которого предназначено заявленное изобретение, является повышение физико-механических свойств фторполимерного материала с обеспечением их постоянства и программируемости в процессе получения готового продукта.
Достижение указанного технического результата обеспечивается тем, что заявленный способ заключается в обработке заготовок различными видами высокоэнергетического ионизирующего излучения (альфа-излучение, электронное излучение, облучение протонами, нейтронами и другими ионизирующими частицами, тормозное гамма-излучение и гамма-излучение) при температуре строго выше температуры плавления кристаллической фазы полимера в бескислородной (инертной) среде, при этом обработку политетрафторэтилена осуществляют с помощью импульсного линейного ускорителя электронов, генерирующего тормозное гамма-излучение, до поглощенной дозы 0-500 кГр, или эквивалентного в энергетическом отношении когерентного излучения высоких энергий, причем, для получения определенных физико-механических характеристик (износостойкость, твердость, эластичность), в процессе облучения температуру полимера понижают не более 0,5 град/10 кГр, а для регулировки соотношения твердость/эластичность полимера, после обработки высокоэнергетическим ионизирующим излучением, полимер подвергают термообработке (нагрев/охлаждения) для нормализации свойств и достижения максимальной однородности материала и программируемости физико-механических характеристик.
Следует отметать, что в результате обработки ионизирующим излучением во фторопластах возникают радиационные эффекты вследствие протекания радиационно-химической реакции. Данный эффект возникает и увеличивается с возрастанием поглощенной энергии ионизирующего излучения (поглощенной дозы этого излучения) в единичном объеме. Количественной характеристикой радиационно-химической реакции является радиационно-химический выход (величина изменений физико-механических свойств заготовки в результате поглощения 100 эВ ионизирующего излучения). Качественная характеристика ионизирующего излучения - эффективности ионизирующего излучения, зависит от типа излучения, а именно от величины линейной передачи энергии.
Таким образом, для достижения максимального радиационного эффекта количественно необходимо выбрать наиболее эффективное ионизирующее излучение. Таким является гамма-излучение (как природное, так и искусственное - тормозное), имеющее наибольшую величину линейной передачи энергии, и. как следствие, равномерность величины радиационного эффекта в объеме заготовки. Наиболее предпочтительным источником гамма-излучения выступает импульсный линейный ускоритель.
Заявленный способ реализуется с помощью установки, основными частями которой являются горизонтальный импульсный линейный ускоритель (ИЛУ) и терморадиационная камера (ТРК).
Поэтапная реализация заявленного способа терморадиационной обработки:
Полимерный материал подготавливают согласно стандартным техническим условиям переработки фторполимерных материалов (экструзия, литье, порошковое прессование).
Затем полученные заготовки из полимерного материала направляются в зону подготовки и помещаются в ТРК. В ТРК производится откачка кислорода до остаточного давления, затем ее заполняют инертным газом (аргон, азот) до избыточного давления.
В ТРК заготовки из полимерного материала нагревают до температуры выше температуры плавления кристаллической фазы от 327°C и не более 380°C со скоростью не более 60°C/ч, а также проводят термостатирование при температуре значительно выше температуры плавления кристаллической фазы (не более 380°С), что позволяет провести процесс полного плавления кристаллической фазы полимера и исключить при этом возможное развитие деструкции участков полимера вследствие наличия твердых кристаллических участков, подверженных сильной деструкции при облучении.
На следующем этапе заготовки направляется в зону облучения. Проводится обработка заготовок из полимерного материала, в частности ионизирующим тормозным гамма-излучением импульсного линейного ускорителя, скорость облучения от 0-1000 Гр/с. Облучение проходит до поглощенной дозы 0,5-500 кГр (или эквивалентного в энергетическом отношении когерентного излучения высоких энергий) с понижением температуры изделия в процессе обработки не более 0,5 град/10 кГр. После прекращения облучения, в связи с возможным быстрым набором необходимой дозы облучения и особенностями механизма изменения структуры и, как следствие, физико-механических характеристик заготовок полимерного материала, необходимо провести дополнительную термообработку в режиме нагрев/охлаждение в температурном диапазоне от начала кристаллизации обработанного полимера до 380°С/ч для нормализации и стабилизации свойств.
Финальная стадия процесса обработки - обработанные заготовки из полимерного материала охлаждают до комнатной температуры со скоростью не более 60°С/ч.
Обработка заготовок, помимо указанного выше тормозного гамма излучения, может быть произведена альфа-излучением, гамма-излучением, электронным излучением, протонами и нейтронами с высокими энергиями, излучением от природных источников.
Изобретение обеспечивает значительное повышение качества получаемого полимера с различным набором свойств под разные категории областей его применения.

Claims (8)

1. Способ терморадиационной обработки изделий из фторопластов, в частности политетрафторэтилена, при котором заготовки обрабатывают высокоэнергетическим ионизирующим излучением при температуре строго выше температуры плавления кристаллической фазы полимера в бескислородной среде, при этом обработку полимера осуществляют с помощью импульсного линейного ускорителя электронов, генерирующего ионизирующее излучение, до поглощенной дозы 0,5-500 кГр, причем в процессе облучения температуру полимера понижают не более 0,5°С/10 кГр, а после обработки ионизирующим излучением полимер подвергают термообработке.
2. Способ по п. 1, отличающийся тем, что в качестве высокоэнергетического ионизирующего излучения применяют альфа-излучение.
3. Способ по п. 1, отличающийся тем, что в качестве высокоэнергетического ионизирующего излучения применяют гамма-излучение.
4. Способ по п. 1, отличающийся тем, что в качестве высокоэнергетического ионизирующего излучения применяют электронное излучение.
5. Способ по п. 1, отличающийся тем, что в качестве высокоэнергетического ионизирующего излучения применяют облучение протонами и нейтронами с высокими энергиями.
6. Способ по п. 1, отличающийся тем, что в качестве высокоэнергетического ионизирующего излучения применяют излучение от природных источников.
7. Способ по п. 1, отличающийся тем, что заготовку обрабатывают при температуре выше 327°, но не более 380°С.
8. Способ по п. 1, отличающийся тем, что после прекращения облучения осуществляют дополнительную термообработку заготовки в режиме нагрев/охлаждение в температурном диапазоне от начала кристаллизации обработанного полимера до 380°С/ч.
RU2017128425A 2017-08-09 2017-08-09 Способ получения полимерных материалов RU2669841C1 (ru)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2017128425A RU2669841C1 (ru) 2017-08-09 2017-08-09 Способ получения полимерных материалов
PCT/RU2018/000513 WO2019031988A1 (ru) 2017-08-09 2018-08-01 Способ получения полимерных материалов
CN201880010809.9A CN110291138A (zh) 2017-08-09 2018-08-01 生产聚合物材料的方法
EP18845041.5A EP3666815A4 (en) 2017-08-09 2018-08-01 POLYMERIC MATERIAL PRODUCTION PROCESS
US16/484,445 US20190345298A1 (en) 2017-08-09 2018-08-01 Process for producing polymer materials
JP2020530413A JP2020534424A (ja) 2017-08-09 2018-08-01 高分子材料を製造するための方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017128425A RU2669841C1 (ru) 2017-08-09 2017-08-09 Способ получения полимерных материалов

Publications (1)

Publication Number Publication Date
RU2669841C1 true RU2669841C1 (ru) 2018-10-16

Family

ID=63862574

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017128425A RU2669841C1 (ru) 2017-08-09 2017-08-09 Способ получения полимерных материалов

Country Status (6)

Country Link
US (1) US20190345298A1 (ru)
EP (1) EP3666815A4 (ru)
JP (1) JP2020534424A (ru)
CN (1) CN110291138A (ru)
RU (1) RU2669841C1 (ru)
WO (1) WO2019031988A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2734608C2 (ru) * 2018-12-19 2020-10-21 Общество с ограниченной ответственностью "Научно-производственное предприятие "Арфлон" Способ получения блочных изделий из политетрафторэтилена и композитов на его основе
RU2766553C1 (ru) * 2020-10-03 2022-03-15 Сергей Витальевич Слесаренко Эндопротез тазобедренного сустава и способ получения модифицированного политетрафторэтилена для эндопротеза тазобедренного сустава
RU2786795C1 (ru) * 2022-04-08 2022-12-26 Сергей Витальевич Слесаренко Применение полимерного материала
WO2023195880A1 (ru) * 2022-04-08 2023-10-12 Сергей Витальевич СЛЕСАРЕНКО Применение полимерного материала

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753477C1 (ru) * 2020-10-05 2021-08-17 Общество с ограниченной ответственностью "КВАНТ Р" Способ получения полимерных композиционных материалов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139204A (ja) * 1988-11-21 1990-05-29 Osaka Gas Co Ltd フッ素樹脂微粉の製法
JPH06116423A (ja) * 1992-10-05 1994-04-26 Rei Tec:Kk 改質ポリテトラフルオロエチレンとその製造方法
RU2207351C2 (ru) * 2000-12-22 2003-06-27 Больбит Николай Михайлович Способ получения износостойкого политетрафторэтилена
RU2211228C2 (ru) * 2001-02-20 2003-08-27 Научно-исследовательский физико-химический институт им. Л.Я.Карпова Способ терморадиационной обработки изделий из политетрафторэтилена
CN101824158A (zh) * 2009-03-03 2010-09-08 中国科学院上海应用物理研究所 一种用电子束辐照制备交联聚四氟乙烯的方法
RU2597913C1 (ru) * 2015-06-03 2016-09-20 Общество с ограниченной ответственностью "Инновационные Фторопластовые Технологии" Способ терморадиационной обработки изделий из политетрафторэтилена

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1642730A (en) 1925-08-15 1927-09-20 Hudson Motor Car Co Automobile body
JP3337785B2 (ja) * 1993-10-26 2002-10-21 日本原子力研究所 改質ポリテトラフルオロエチレンの製造方法
JP2000260223A (ja) * 1999-03-09 2000-09-22 Asahi Chem Ind Co Ltd 高強度電解質膜前駆体
JP2002256080A (ja) * 2001-02-28 2002-09-11 Japan Atom Energy Res Inst 放射線改質四フッ化エチレン樹脂原料及びその製造方法
JP3913535B2 (ja) * 2001-11-30 2007-05-09 住友重機械工業株式会社 改質フッ素樹脂の製造方法
JP4501660B2 (ja) * 2004-12-03 2010-07-14 日立電線株式会社 ふっ素樹脂シートの製造方法及び製造装置
CN1900154A (zh) * 2005-07-01 2007-01-24 株式会社西铁城电子 生产耐热带电氟树脂材料的方法和使用该材料生产驻极体电容麦克风的方法
US20070023690A1 (en) * 2005-07-01 2007-02-01 Yuki Tsuchiya Method of producing heat-resistant electrically charged fluororesin material and method of producing electret condenser microphone using heat-resistant electrically charged fluororesin material
JP6471545B2 (ja) * 2015-03-10 2019-02-20 日立金属株式会社 架橋フッ素樹脂粉体の製造方法
CN106957391A (zh) * 2017-03-15 2017-07-18 刘金财 一种亲水耐热的聚四氟乙烯微粉及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139204A (ja) * 1988-11-21 1990-05-29 Osaka Gas Co Ltd フッ素樹脂微粉の製法
JPH06116423A (ja) * 1992-10-05 1994-04-26 Rei Tec:Kk 改質ポリテトラフルオロエチレンとその製造方法
RU2207351C2 (ru) * 2000-12-22 2003-06-27 Больбит Николай Михайлович Способ получения износостойкого политетрафторэтилена
RU2211228C2 (ru) * 2001-02-20 2003-08-27 Научно-исследовательский физико-химический институт им. Л.Я.Карпова Способ терморадиационной обработки изделий из политетрафторэтилена
CN101824158A (zh) * 2009-03-03 2010-09-08 中国科学院上海应用物理研究所 一种用电子束辐照制备交联聚四氟乙烯的方法
RU2597913C1 (ru) * 2015-06-03 2016-09-20 Общество с ограниченной ответственностью "Инновационные Фторопластовые Технологии" Способ терморадиационной обработки изделий из политетрафторэтилена

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2734608C2 (ru) * 2018-12-19 2020-10-21 Общество с ограниченной ответственностью "Научно-производственное предприятие "Арфлон" Способ получения блочных изделий из политетрафторэтилена и композитов на его основе
RU2766553C1 (ru) * 2020-10-03 2022-03-15 Сергей Витальевич Слесаренко Эндопротез тазобедренного сустава и способ получения модифицированного политетрафторэтилена для эндопротеза тазобедренного сустава
RU2810570C2 (ru) * 2021-09-30 2023-12-27 Общество с ограниченной ответственностью «Квант Р» Способ терморадиационной обработки фторполимеров
RU2786795C1 (ru) * 2022-04-08 2022-12-26 Сергей Витальевич Слесаренко Применение полимерного материала
WO2023195880A1 (ru) * 2022-04-08 2023-10-12 Сергей Витальевич СЛЕСАРЕНКО Применение полимерного материала

Also Published As

Publication number Publication date
EP3666815A4 (en) 2021-04-21
EP3666815A1 (en) 2020-06-17
JP2020534424A (ja) 2020-11-26
CN110291138A (zh) 2019-09-27
US20190345298A1 (en) 2019-11-14
WO2019031988A1 (ru) 2019-02-14

Similar Documents

Publication Publication Date Title
RU2669841C1 (ru) Способ получения полимерных материалов
WO2014007346A1 (ja) 改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法
WO2014007350A1 (ja) 改質フッ素樹脂混合物、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法
RU2597913C1 (ru) Способ терморадиационной обработки изделий из политетрафторэтилена
RU2657089C1 (ru) Способ получения полимерных нанокомпозиционных материалов
Meissner et al. Technological parameters of pyrolysis of waste polytetrafluoroethylene
Senna et al. Structure–property behaviour of electron beam irradiated polytetrafluoroethylene and polytetrafluoroethylene-co-hexafluoropropylene
WO2014007348A1 (ja) 改質含フッ素共重合体、フッ素樹脂成形品、及び、フッ素樹脂成形品の製造方法
Kim et al. Synergistic effect of polyurethane‐coated carbon fiber and electron beam irradiation on the thermal/mechanical properties and long‐term durability of polyamide‐based thermoplastic composites
Allayarov et al. Kinetic features of the laser ablation of gamma-irradiated polyvinylidene fluoride
Vorob’ev et al. Radiation processing of natural latex using a wide-aperture electron accelerator with a plasma emitter
US3116226A (en) Irradiation of fluorocarbon copoluymers
Allayarov et al. Effect of Gamma-Ray Pre-Irradiation on the Ablation of Polyethylene and Ethylene-Propylene Copolymer Under Continuous CO 2 Laser Radiation
Frolov et al. Impact of γ-Irradiation on the Kinetics of Laser Ablation of Polyamide Under Continuous CO 2 Laser Beam
Pavlenko et al. Gamma modification of radiation-resistant fluoroplastic composite
CN113956528B (zh) 一种高交联超高分子量聚乙烯及其制备方法、应用
Allayarov et al. Effect of MeV protons on the phase behaviour and thermal stability of polytetrafluoroethylene
Alavi et al. A study on plasma polymerization of acrylic acid using APF plasma focus device
JP2007314645A (ja) 高強度高結晶性四フッ化エチレン樹脂圧縮成形体
JP2020147821A (ja) プラズマ窒化処理方法
RU2211228C2 (ru) Способ терморадиационной обработки изделий из политетрафторэтилена
Zhovtyansky et al. Kinetics of plasma chemical reactions producing nitrogen atoms in the glow discharge in a nitrogen–argon gas mixture
RU2810570C2 (ru) Способ терморадиационной обработки фторполимеров
US3231481A (en) Process for cross-linking high polymers with high energy ionizing irradiation in the presence of nitrous oxide
Malkov et al. Combined effect of high-temperature shear grinding and gamma-radiation on the thermal properties of polyethylene

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20191118