RU2654959C2 - Суперконцентрат углеродных нанотрубок и способ его получения - Google Patents

Суперконцентрат углеродных нанотрубок и способ его получения Download PDF

Info

Publication number
RU2654959C2
RU2654959C2 RU2016116139A RU2016116139A RU2654959C2 RU 2654959 C2 RU2654959 C2 RU 2654959C2 RU 2016116139 A RU2016116139 A RU 2016116139A RU 2016116139 A RU2016116139 A RU 2016116139A RU 2654959 C2 RU2654959 C2 RU 2654959C2
Authority
RU
Russia
Prior art keywords
dispersion medium
superconcentrate
carbon nanotubes
dispersed system
mass
Prior art date
Application number
RU2016116139A
Other languages
English (en)
Other versions
RU2016116139A (ru
Inventor
Михаил Рудольфович Предтеченский
Евгений Семёнович Ильин
Дмитрий Семёнович Чебочаков
Original Assignee
МСД Текнолоджис С.а.р.л.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by МСД Текнолоджис С.а.р.л. filed Critical МСД Текнолоджис С.а.р.л.
Priority to RU2016116139A priority Critical patent/RU2654959C2/ru
Publication of RU2016116139A publication Critical patent/RU2016116139A/ru
Application granted granted Critical
Publication of RU2654959C2 publication Critical patent/RU2654959C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0033Manufacture or treatment of substrate-free structures, i.e. not connected to any support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Изобретение относится к химической промышленности и может быть использовано для изготовления композитных материалов. Углеродные нанотрубки и дисперсионную среду, представляющую собой вещество, имеющее угол смачивания по отношению к высокоупорядоченному пиролитическому графиту не более 120°, смешивают путём механической обработки до максимального размера агломератов углеродных нанотрубок не более 50 мкм. В качестве дисперсионной среды можно использовать ионную жидкость, эпоксидную, или полиэфирную, или полиакриловую смолу, пластификатор, органический растворитель, масло из ряда минерального, синтетического, биологического происхождения; а также силикон, или силан, или липид, или эфир. Дисперсионную среду можно использовать в виде жидкости, пасты, геля или порошка. Механическую обработку осуществляют в трехвалковой, или в шаровой, или в бисерной, или в планетарной мельнице. Полученный суперконцентрат углеродных нанотрубок, представляющий собой высокоустойчивую дисперсную систему, включающую не менее 2 мас.% углеродных нанотрубок в качестве дисперсной фазы, может быть в виде пластичной пастообразной массы или мелкодисперсного порошка. 2 н. и 22 з.п. ф-лы, 1 ил., 13 пр.

Description

Изобретение относится к нанодисперсным материалам и может использоваться в химической и других отраслях промышленности для изготовления различных композитных материалов.
Введение углеродных нанотрубок (далее - УНТ) в матрицу сопряжено с такими основными технологическими трудностями, как проблема равномерного распределения УНТ в материале из-за их тенденции к агломерации, а также пылящие свойства порошка УНТ.
Основной подход к решению этих проблем, описанный в литературе, основан на использовании дисперсий УНТ в жидких средах. Как правило, стабильные дисперсии УНТ в жидких - органических или водных средах получают с использованием различных стабилизаторов, таких как, например, поверхностно-активные вещества. Подходы к созданию дисперсии УНТ в органических средах, таких, например, как толуол, тетрагидрофуран, хлороформ и диметилформамид описаны в публикациях [1-4] 1. Т.Р. Chua et al., Effect of surface-functionalized multi-walled carbon nanotubes of the properties of poly(dimethyl siloxane) nanocomposites // Compos. Sci. Technol. 2010, 70, 671-677. 2. J. Hong et al., Effect of dispersion state of carbon nanotube on the thermal conductivity of poly(dimethyl siloxane) composites // Curr. Appl. Phys. 2010, 10, 359-363. 3. R.R. Kohlmeyer et al., Electrical and dielectrical properties of hydroxylated carbon nanotube-elastomer composites // J. Phys. Chem. C, 2009, 113, 17626-17629. 4. U. Subramanyam et al., PVA networks grafted with PDMS branches // J. Polym. Sci. Part A, 2009, 47, 5272-5277.
Однако большее количество публикаций посвящено водным дисперсиям УНТ [5-7]: 5. V.C. Moore et al., Individually suspended single-walled carbon nanotubes in various surfactants // Nanoletters, 2003, 3, 1379-1382. 6. A.J. Blanch et al., Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solutions // J. Phys. Chem. B, 2010, 114, 9805-9811. 7. N. Minami et al., Cellulose derivatives as excellent dispersants for single-wall carbon nanotubes as demonstrated by absorption and photoluminescence spectroscopy // Appl. Phys. Lett., 2006, 88, 093123-3. Получена, так же, водная дисперсия с концентрацией УНТ - 0.1 масс. % с додецилсульфатом натрия в качестве стабилизатора [Патент США №7999028 МПК С01 В 31/00, C08K 3/04, B82Y 35/00, B01J 8/16].
Общим недостатком указанных выше дисперсий является низкая концентрация УНТ - порядка 0.01-0.1 масс. %, что делает промышленное применение этих дисперсий экономически невыгодным с точки зрения транспортировки, ввиду малого значения массового соотношения УНТ/растворитель. Более того, низкое значение концентрации УНТ в дисперсии ограничивает концентрацию УНТ в конечном продукте, а технология введения УНТ в конечный продукт, как правило, достаточно сложна из-за необходимости удаления из продукта значительной части растворителя. В этой связи, задача создания высококонцентрированных дисперсий УНТ является особенно актуальной.
Известна водная дисперсия УНТ, полученная с использованием натриевой соли сульфинированного производного нафталина и аэросила в качестве поверхностно-активного вещества и стабилизирующей добавки, соответственно [Патент РФ №2494961, МПК С01 В 31/02]. Однако данная дисперсия имеет достаточно узкий потенциальный диапазон применений и может применяться только в качестве модифицирующей добавки для строительных материалов и не может претендовать на использование в композитных материалах из-за необходимости удаления воды, поверхностно-активного вещества и стабилизирующей добавки из этой дисперсии в процессе приготовления композитных материалов.
Также известна гелеобразная дисперсия с концентрацией УНТ порядка 2 масс. %, полученная механической обработкой УНТ с ионными жидкостями с дальнейшим центрифугированием этой смеси с целью удаления избытка ионной жидкости [Патент США №7531114, МПК B05D 1/12, С01В 31/02, Н01В 1/00, Н01В 1/12]. Эта гелеобразная дисперсия является наиболее близкой к настоящему изобретению и принята за его прототип.
Основным недостатком приведенной гелеобразной дисперсии является относительно низкая концентрация углеродных нанотрубок в ней, что подтверждается отделением избытка ионной жидкости в процессе центрифугирования. Данный факт свидетельствует о непредельном насыщении дисперсии углеродными нанотрубками и наличии потенциала для увеличения их концентрации.
В основе настоящего изобретения лежит задача создания суперконцентрата углеродных нанотрубок, который представлял бы собой высокоустойчивую дисперсную систему с содержанием УНТ не менее 2 масс. %.
Поставленная задача решается тем, что предлагается суперконцентрат углеродных нанотрубок, представляющий собой дисперсную систему, включающую углеродные нанотрубки в качестве дисперсной фазы и дисперсионную среду, причем названная дисперсная система получена смешиванием углеродных нанотрубок и дисперсионной среды, названная дисперсная система содержит не менее 2 масс. % углеродных нанотрубок и получена при механической обработке смеси углеродных нанотрубок и дисперсионной среды до максимального размера агломератов углеродных нанотрубок в ней не более 50 мкм, при этом дисперсионная среда является веществом, имеющим угол смачивания в отношении к высокоупорядоченному пиролитическому графиту не более 120°.
Также поставленная задача решается тем, что предлагается способ получения суперконцентрата углеродных нанотрубок, представляющего собой дисперсную систему, включающую углеродные нанотрубки в качестве дисперсной фазы и дисперсионную среду; причем, названную дисперсную систему получают смешиванием углеродных нанотрубок и дисперсионной среды, дисперсная система содержит не менее 2 масс. % углеродных нанотрубок и получена при механической обработке смеси углеродных нанотрубок и дисперсионной среды до максимального размера агломератов углеродных нанотрубок не более 50 мкм, при этом дисперсионная среда представляет собой вещество, имеющее угол смачивания в отношении к высокоупорядоченному пиролитическому графиту не более 120°.
Механическая обработка УНТ осуществляется путем приложения сдвиговых усилий, достаточных для получения максимальных размеров агломератов УНТ порядка 50 мкм. Сдвиговые усилия, достаточные для диспергирования УНТ, могут быть получены с помощью таких инструментов, но не ограничены ими, как трехвалковая, бисерная, шаровая или планетарная мельница.
Для получения суперконцентрата количество УНТ в дисперсной системе может бытьне менее 5, или 10 масс. %, или значительно больше.
Для получения суперконцентрата дисперсионная среда должна представлять собой вещество, имеющее значение угла смачивания в отношении к высокоупорядоченному пиролитическому графиту не более 120°. Такая дисперсионная среда может быть выбрана из ряда, но не ограничена им, таких веществ как ионные жидкости, эпоксидные, полиэфирные, полиакриловые, полифенилсилоксановые или полиуретановые смолы минерального, синтетического или биологического происхождения масел, силиконов, силанов, липидов, эфиров, жирных кислот, а также из ряда композиций веществ, применяемых в качестве пластификаторов, активных разбавителей и деаэраторов, а также в качестве дисперсионной среды могут выступать двух- и многокомпонентные смеси перечисленных веществ. Дисперсионная среда может представлять собой жидкость, или гель, или пасту, или порошок.
Суперконцентрат, приготовленный так, как описано выше, может представлять собой, в зависимости от концентрации УНТ и свойств дисперсионной среды, пастообразную массу или порошок.
Снимок просвечивающей электронной микроскопии суперконцентрата представлен на фиг. 1.
Особенности представленного изобретения будут описаны более подробно с использованием следующих примеров, которые не ограничивают представленное изобретение.
Пример 1
Изготовление суперконцентрата УНТ в ионной жидкости.
Для приготовления суперконцентрата, содержащего 2 масс. % УНТ Tuball, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 2 г УНТ Tuball и 98 г ионной жидкости 1-бутил-3-метилимидазолия тетрафторбората. Смесь обработали на трехвалковой мельнице ЕХАКТ 80Е с зазором между валами 13 мкм и 5 мкм до выхода значения линейного давления между валами на постоянную величину 1 Н/мм2, что свидетельствует о достижении максимальной степени дисперсности для данных условий. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 10 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную пастообразную массу черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Tuball - 2 масс. %, ионная жидкость 1-бутил-3-метилимидазолия тетрафторборат - 98 масс. %.
Таким же образом суперконцентрат был получен с использованием других ионных жидкостей, таких как 1-этил-метилимидазолия тетрафторборат, 1-гексил-3-метилимидазолия тетрафторборат, 1-аллил-3-метилимидазолия хлорид и др.
Пример 2
Изготовление суперконцентрата УНТ в ионной жидкости.
Для приготовления суперконцентрата, содержащего 5 масс. % УНТ Nanocyl NC7000, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 5 г УНТ Nanocyl NC7000 и 95 г ионной жидкости 1-аллил-3-метилимидазолия хлорида. Смесь обработали на трехвалковой мельнице ЕХАКТ 80Е с зазором между валами 40 мкм и 13 мкм до выхода значения линейного давления между валами на постоянную величину 2,5 Н/мм2, что свидетельствует о достижении максимальной степени дисперсности для данных условий. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 15 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную пастообразную массу черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Nanocyl NC7000 - 5 масс. %, ионная жидкость 1-аллил-3-метилимидазолия хлорид - 95 масс. %.
Таким же образом суперконцентрат был получен с использованием других ионных жидкостей, таких как 1-этил-метилимидазолия тетрафторборат, 1-бутил-3-метилимидазолия тетрафторборат, 1-гексил-3-метилимидазолия тетрафторборат и др.
Пример 3
Изготовление суперконцентрата УНТ в ионной жидкости.
Для приготовления суперконцентрата, содержащего 50 масс. % УНТ Tuball, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 50 г УНТ Tuball и 50 г ионной жидкости 1-этил-метилимидазолия тетрафторбората. Смесь обработали на шаровой мельнице. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой мелкодисперсный порошок черного цвета.
В данной дисперсии содержание компонентов было следующим:
УНТ Tuball - 50 масс. %, ионная жидкость 1-этил-метилимидазолия тетрафторборат - 50 масс. %.
Таким же образом суперконцентрат был получен с использованием других ионных жидкостей, таких как 1-гексил-3-метилимидазолий тетрафторборат, 1-бутил-3-метилимидазолия тетрафторборат, 1-аллил-3-метилимидазолия хлорид и др.
Пример 4
Изготовление суперконцентрата УНТ в алифатической эпоксидной смоле.
Для приготовления суперконцентрата, содержащего 10 масс. % УНТ Tuball, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 10 г УНТ Tuball и 90 г диглицидилового эфира 1,4-бутандиола. Смесь обработали на трехвалковой мельнице ЕХАКТ 80Е с зазором между валами 13 мкм и 5 мкм до выхода значения линейного давления между валами на постоянную величину 1,5 Н/мм2, что свидетельствует о достижении максимальной степени дисперсности для данных условий. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную пастообразную массу черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Tuball - 10 масс. %, диглицидиловый эфир 1,4-бутандиола - 90 масс. %.
Таким же образом суперконцентрат был получен с использованием других алифатических эпоксидных смол, таких как моноглицидиловый эфир н-бутанола, моноглицидиловый эфир 2-этилгексанола, моноглицидиловый эфир алкилфенола, диглицидиловый эфир диэтиленгликоля, диглицидиловый эфир полиоксипропиленгликоля и др.
Пример 5
Изготовление суперконцентрата УНТ в алифатической эпоксидной смоле.
Для приготовления суперконцентрата, содержащего 50 масс. % УНТ Kumho K-Nanos 100Р, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 50 г многостенных УНТ Kumho K-Nanos 100Р и 50 г диглицидилового эфира 1,4-бутандиола. Смесь обработали на трехвалковой мельнице ЕХАКТ 80Е с зазором между валами 40 мкм и 13 мкм до выхода значения линейного давления между валами на постоянную величину 3,5 Н/мм2, что свидетельствует о достижении максимальной степени дисперсности для данных условий. Смесь обработали на шаровой мельнице. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой мелкодисперсный порошок черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Kumho K-Nanos 100Р - 50 масс. %, диглицидиловый эфир 1,4-бутандиола - 50 масс. %.
Таким же образом суперконцентрат был получен с использованием других алифатических эпоксидных смол, таких как моноглицидиловый эфир н-бутанола, моноглицидиловый эфир 2-этилгексанола, моноглицидиловый эфир алкилфенола, диглицидиловый эфир диэтиленгликоля, диглицидиловый эфир полиоксипропиленгликоля и др.
Пример 6
Изготовление суперконцентрата УНТ в пластификаторе.
Для приготовления суперконцентрата, содержащего 20 масс. % УНТ Tuball, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 20 г УНТ Tuball и 80 г дибутилфталата. Смесь обработали на шаровой мельнице. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную пастообразную массу черного цвета.
В данной дисперсии содержание компонентов было следующим:
УНТ Tuball - 20 масс. %, дибутилфталат - 80 масс. %.
Таким же образом суперконцентрат был получен с использованием других пластификаторов, таких как сложные эфиры (диоктилфталат, диметилфталат, дибутилсебацинат, диоктиладипинат, диоктилсебацинат, диизобутилфталат, три(2-этилгексил)фосфат), эфиры фталевой и тримеллитовой кислоты, сложные эфиры ортофосфорной кислоты, а также минеральные и невысыхающие растительные масла, эпоксидированное соевое масло, хлорированные парафины и др.
Пример 7
Изготовление суперконцентрата УНТ в органическом растворителе.
Для приготовления суперконцентрата, содержащего 5 масс. %УНТ Tuball, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 5 г УНТ Tuball и 95 г монофенилового эфира этиленгликоля. Смесь обработали на планетарной мельнице. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную пастообразную массу черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Tuball - 5 масс. %, монофениловый эфир этиленгликоля - 95 масс. %.
Таким же образом суперконцентрат был получен с использованием других органических растворителей, таких как дифениловый эфир, бутилцетат, пропиленкарбонат, дибутилфталат, диметилфталат, диметилсульфоксид, о-ксилол и др.
Пример 8
Изготовление суперконцентрата УНТ в органическом растворителе.
Для приготовления суперконцентрата, содержащего 30 масс. % УНТ Kumho K-Nanos 100Р, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 30 г УНТ Kumho K-Nanos 100Р и 70 г о-ксилола. Смесь обработали на шаровой мельнице. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную рассыпчатую массу черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Kumho K-Nanos 100Р - 30 масс. %, о-ксилол - 70 масс. %.
Таким же образом суперконцентрат был получен с использованием других органических растворителей, таких как дифениловый эфир, бутилцетат, монофениловый эфира этиленгликоля, дибутилфталат, диметилфталат, диметилсульфоксид и др.
Пример 9
Изготовление суперконцентрата УНТ в растворе ПАВ.
Для приготовления суперконцентрата, содержащего 10 масс. % УНТ Tuball, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 10 г УНТ Tuball и 90 г 10%-ного водного раствора додецилбензосульфоната натрия. Смесь обработали на шаровой мельнице. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную пастообразную массу черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Tuball - 10 масс. %, додецилбензосульфонат натрия - 10 масс. %, вода - 80 масс. %.
Таким же образом суперконцентрат был получен с использованием других водных растворов ПАВ, таких как водные растворы поливинилпироллидона, карбоксиметилцеллюлозы, алкилбензосульфонтатов и др.
Пример 10
Изготовление суперконцентрата УНТ в жидком неионогенном ПАВ.
Для приготовления суперконцентрата, содержащего 5 масс. % УНТ Tuball, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 5 г Tuball и 95 г неионогенного ПАВ коммерческой марки Brij 35. Смесь обработали на трехвалковой мельнице EXAKT 80Е с зазором между валами 13 мкм и 5 мкм до выхода значения линейного давления между валами на постоянную величину 1,5 Н/мм2, что свидетельствует о достижении максимальной степени дисперсности для данных условий. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную пастообразную массу черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Tuball - 5 масс. %, неионогенный ПАВ Brij 35-95 масс. %.
Таким же образом суперконцентрат был получен с использованием других ПАВ в жидкой форме, таких как полиоксиэтилированные алифатические спирты (аминоспирты, полиэтиленгликоль, полипропиленгликоль) и алкилфенолы, включая коммерческие марки неионогенных ПАВ Triton Х-100, Brij L23, Plurafac LF 403, Lutensol ТО3, ОП-10 и др.
Пример 11
Изготовление суперконцентратов УНТ в жидком неионогенном ПАВ.
Для приготовления суперконцентрата, содержащего 30 масс. % УНТ Nanocyl NC7000, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 30 г УНТ Nanocyl NC7000 и 70 г неионогенного ПАВ Triton X-100. Смесь обработали на шаровой мельнице до получения размера агломератов УНТ менее 50 мкм, определенной с помощью гриндометра типа «Клин». Полученный суперконцентрат представляет собой пластичную рассыпчатую массу черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Nanocyl NC7000 - 30 масс. %, неионогенный ПАВ Brij 35 - 70 масс. %.
Таким же образом суперконцентрат был получен с использованием других ПАВ в жидкой форме, таких как полиоксиэтилированные алифатические спирты (аминоспирты, полиэтиленгликоль, полипропиленгликоль) и алкилфенолы, включая коммерческие марки неионогенных Brij L23, Plurafac LF 403, Lutensol ТО3, ОП-10 и др.
Пример 12
Изготовление суперконцентрата УНТ в жидком силане.
Для приготовления суперконцентрата, содержащего 10 масс. % УНТ Tuball, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 10 г УНТ Tuball и 90 г аминопропилтриэтоксисилана. Смесь обработали на трехвалковой мельнице EXAKT 80Е с зазором между валами 40 мкм и 13 мкм до выхода значения линейного давления между валами на постоянную величину 2 Н/мм2, что свидетельствует о достижении максимальной степени дисперсности для данных условий. Полученный суперконцентрат имеет максимальный размер агломератов УНТ, равный 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную пастообразную массу черного цвета.
В данной дисперсии содержание компонентов было следующим:
УНТ Tuball - 10 масс. %, аминопропилтриэтоксисилан - 90 масс. %.
Таким же образом суперконцентрат был получен с использованием других кремнийорганических соединений, таких как винилтриметоксисилан, метакрилоксипропилтриметоксисилан, силиконовые жидкости и др.
Пример 13
Изготовление суперконцентрата УНТ в жирной кислоте.
Для приготовления суперконцентрата, содержащего 5 масс. % УНТ Tuball, в стеклянном стакане емкостью 500 мл провели смешивание с помощью металлического шпателя 5 г УНТ Tuball и 95 г олеиновой кислоты. Смесь обработали на трехвалковой мельнице ЕХАКТ 80Е с зазором между валами 13 мкм и 5 мкм до выхода значения линейного давления между валами на постоянную величину 1,2 Н/мм2, что свидетельствует о достижении максимальной степени дисперсности для данных условий. Полученный суперконцентрат имеет размер агломератов УНТ менее 50 мкм. Размер агломератов определялся с помощью гриндометра типа «Клин». Суперконцентрат представляет собой пластичную пастообразную массу черного цвета.
В данной дисперсии содержание компонентов было следующим: УНТ Tuball - 5 масс. %, олеиновая кислота - 95 масс. %.
Таким же образом суперконцентрат был получен с использованием других жирных кислот, масел и липидов, таких как масла на основе полициклических ароматических углеводородов, минеральных и синтетических масел, насыщенных и ненасыщенных триглицеридов жирных кислот и др.

Claims (24)

1. Суперконцентрат углеродных нанотрубок, представляющий собой дисперсную систему, включающую углеродные нанотрубки в качестве дисперсной фазы и дисперсионную среду, причем названная дисперсная система получена смешиванием углеродных нанотрубок и дисперсионной среды, отличающийся тем, что названная дисперсная система содержит не менее 2 мас.% углеродных нанотрубок и получена при механической обработке смеси углеродных нанотрубок и дисперсионной среды до максимального размера агломератов углеродных нанотрубок в ней не более 50 мкм, при этом дисперсионная среда является веществом, имеющим угол смачивания по отношению к высокоупорядоченному пиролитическому графиту не более 120°.
2. Суперконцентрат по п. 1, отличающийся тем, что дисперсная система содержит не менее 5 мас.% углеродных нанотрубок.
3. Суперконцентрат по п. 1, отличающийся тем, что дисперсная система содержит не менее 10 мас.% углеродных нанотрубок.
4. Суперконцентрат по п. 1, отличающийся тем, что дисперсионной средой является ионная жидкость.
5. Суперконцентрат по п. 1, отличающийся тем, что дисперсионная среда выбрана из ряда: эпоксидная смола, или полиэфирная смола, или полиакриловая смола.
6. Суперконцентрат по п. 1, отличающийся тем, что дисперсионная среда является пластификатором.
7. Суперконцентрат по п. 1, отличающийся тем, что дисперсионная среда является органическим растворителем.
8. Суперконцентрат по п. 1, отличающийся тем, что дисперсионная среда выбрана из ряда: масло минеральное, или масло синтетическое, или масло биологического происхождения.
9. Суперконцентрат по п. 1, отличающийся тем, что дисперсионная среда выбрана из ряда: силикон, или силан, или липид, или эфир.
10. Суперконцентрат по п. 1, отличающийся тем, что он представляет собой пластичную пастообразную массу.
11. Суперконцентрат по п. 1, отличающийся тем, что он представляет собой мелкодисперсный порошок.
12. Способ получения суперконцентрата углеродных нанотрубок, представляющего собой дисперсную систему, включающую углеродные нанотрубки в качестве дисперсной фазы и дисперсионную среду; причем дисперсную систему получают смешиванием углеродных нанотрубок и дисперсионной среды, отличающийся тем, что дисперсная система содержит не менее 2 мас.% углеродных нанотрубок и получена при механической обработке смеси углеродных нанотрубок и дисперсионной среды до максимального размера агломератов углеродных нанотрубок не более 50 мкм, при этом дисперсионная среда представляет собой вещество, имеющее угол смачивания по отношению к высокоупорядоченному пиролитическому графиту не более 120°.
13. Способ по п. 12, отличающийся тем, что дисперсная система содержит не менее 5 мас.% углеродных нанотрубок.
14. Способ по п. 12, отличающийся тем, что дисперсная система содержит не менее 10 мас.% углеродных нанотрубок.
15. Способ по п. 12, отличающийся тем, что дисперсионная среда представляет собой ионную жидкость.
16. Способ по п. 12, отличающийся тем, что дисперсионная среда выбрана из ряда: эпоксидная смола, или полиэфирная смола, или полиакриловая смола.
17. Способ по п. 12, отличающийся тем, что дисперсионная среда представляет собой пластификатор.
18. Способ по п. 12, отличающийся тем, что дисперсионная среда представляет собой органический растворитель.
19. Способ по п. 12, отличающийся тем, что дисперсионная среда выбрана из ряда: масло минеральное, или масло синтетическое, или масло биологического происхождения.
20. Способ по п. 12, отличающийся тем, что дисперсионная среда выбрана из ряда: силикон, или силан, или липид, или эфир.
21. Способ по п. 12, отличающийся тем, что используют дисперсионную среду в жидком виде.
22. Способ по п. 12, отличающийся тем, что используют дисперсионную среду в виде пасты или геля.
23. Способ по п. 12, отличающийся тем, что используют дисперсионную среду в виде порошка.
24. Способ по п. 12, отличающийся тем, что механическую обработку смеси углеродных нанотрубок и дисперсионной среды осуществляют в трехвалковой мельнице, или в шаровой мельнице, или в бисерной мельнице, или в планетарной мельнице.
RU2016116139A 2016-04-25 2016-04-25 Суперконцентрат углеродных нанотрубок и способ его получения RU2654959C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016116139A RU2654959C2 (ru) 2016-04-25 2016-04-25 Суперконцентрат углеродных нанотрубок и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016116139A RU2654959C2 (ru) 2016-04-25 2016-04-25 Суперконцентрат углеродных нанотрубок и способ его получения

Publications (2)

Publication Number Publication Date
RU2016116139A RU2016116139A (ru) 2017-10-26
RU2654959C2 true RU2654959C2 (ru) 2018-05-23

Family

ID=60153767

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016116139A RU2654959C2 (ru) 2016-04-25 2016-04-25 Суперконцентрат углеродных нанотрубок и способ его получения

Country Status (1)

Country Link
RU (1) RU2654959C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721318C1 (ru) * 2019-02-28 2020-05-18 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Способ получения золей и суспензий
WO2022186728A1 (ru) 2021-03-05 2022-09-09 МСД Текнолоджис С.а р.л. Добавка к резиновым композициям и способ получения добавки
RU2803714C1 (ru) * 2023-03-09 2023-09-19 Акционерное общество "Дальневосточная генерирующая компания" (АО "ДГК") Способ формирования гидрофобной структуры поверхности теплообмена

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050156144A1 (en) * 2002-10-23 2005-07-21 Takanori Fukushima Composition in gel form comprising carbon nanotube and ionic liquid and method for production thereof
US20090001326A1 (en) * 2007-06-29 2009-01-01 Kenichi Sato Aggregate of carbon nanotubes, dispersion thereof and conductive film using the same
RU2010137629A (ru) * 2008-02-13 2012-03-20 Байер МатириальСайенс АГ (DE) Печатный состав для нанесения токопроводящих покрытий и способ его получения
RU2564029C2 (ru) * 2010-03-23 2015-09-27 Аркема Франс Маточная смесь углеродных проводящих наполнителей для жидких композиций, в частности, в литий-ионных батареях
RU2573481C2 (ru) * 2011-09-16 2016-01-20 Прк-Десото Интернэшнл, Инк. Композиции проводящего герметика
RU2573873C1 (ru) * 2014-11-28 2016-01-27 Мсд Текнолоджис Частная Компания С Ограниченной Ответственностью Структура из углеродных нанотрубок

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050156144A1 (en) * 2002-10-23 2005-07-21 Takanori Fukushima Composition in gel form comprising carbon nanotube and ionic liquid and method for production thereof
US20090001326A1 (en) * 2007-06-29 2009-01-01 Kenichi Sato Aggregate of carbon nanotubes, dispersion thereof and conductive film using the same
RU2010137629A (ru) * 2008-02-13 2012-03-20 Байер МатириальСайенс АГ (DE) Печатный состав для нанесения токопроводящих покрытий и способ его получения
RU2564029C2 (ru) * 2010-03-23 2015-09-27 Аркема Франс Маточная смесь углеродных проводящих наполнителей для жидких композиций, в частности, в литий-ионных батареях
RU2573481C2 (ru) * 2011-09-16 2016-01-20 Прк-Десото Интернэшнл, Инк. Композиции проводящего герметика
RU2573873C1 (ru) * 2014-11-28 2016-01-27 Мсд Текнолоджис Частная Компания С Ограниченной Ответственностью Структура из углеродных нанотрубок

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СТРЕПИХЕЕВ А.А., ДЕРЕВИЦКАЯ В.А. Основы химии высокомолекулярных соединений. Москва, Научно-техническое изд-во химической литературы, 1961, с. 171. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2721318C1 (ru) * 2019-02-28 2020-05-18 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Способ получения золей и суспензий
WO2022186728A1 (ru) 2021-03-05 2022-09-09 МСД Текнолоджис С.а р.л. Добавка к резиновым композициям и способ получения добавки
RU2803714C1 (ru) * 2023-03-09 2023-09-19 Акционерное общество "Дальневосточная генерирующая компания" (АО "ДГК") Способ формирования гидрофобной структуры поверхности теплообмена

Also Published As

Publication number Publication date
RU2016116139A (ru) 2017-10-26

Similar Documents

Publication Publication Date Title
Socher et al. The influence of matrix viscosity on MWCNT dispersion and electrical properties in different thermoplastic nanocomposites
Yu et al. Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology
Rwei et al. Dispersion of carbon black in a continuous phase: Electrical, rheological, and morphological studies
US11673103B2 (en) Method for producing stable graphene, graphite and amorphous carbon aqueous dispersions
Leong et al. The effect of surfactant on stability and thermal conductivity of carbon nanotube based nanofluids
Schilde et al. Thermal, mechanical and electrical properties of highly loaded CNT-epoxy composites–A model for the electric conductivity
Choi et al. Electrorheological application of polyaniline/multi-walled carbon nanotube composites
RU2654959C2 (ru) Суперконцентрат углеродных нанотрубок и способ его получения
JP6620975B2 (ja) ナノシート含有分散液、ナノシート複合体及びそれらの製造方法
Larijani et al. Effect of aligned carbon nanotubes on electrical conductivity behaviour in polycarbonate matrix
CN106566267A (zh) 碳纳米管改性热塑性树脂及其制备方法
KR101400406B1 (ko) 탄소나노튜브 복합체의 제조방법
Wilkinson et al. Low viscosity processing using hybrid CNT-coated silica particles to form electrically conductive epoxy resin composites
JP6887646B2 (ja) sp2型炭素含有組成物、グラフェン量子ドット含有組成物およびこれらの製造方法、並びにグラファイトの剥離方法
KR20220044956A (ko) 분산제
CN107078290A (zh) 基于硫和含碳纳米填料的母料的生产、生产的母料及其用途
JP6730816B2 (ja) 熱電変換材料及びその製造方法
TWI753180B (zh) 複合樹脂粒子之製造方法、樹脂成形體及複合樹脂粒子
US20240166520A1 (en) Additive-free carbon particle dispersions, pastes, gels and doughs
JP5062978B2 (ja) 無機物膜の製造方法
Kamarudin et al. Lignin-assisted carbon nanotube dispersion for conductive ink application
Sadeghi et al. Synthesis and characteristic of precipitated nano-silica
Diaham et al. Novel electrical conduction properties obtained in few-layer graphene/epoxy nanocomposites
JP2009040908A (ja) 乾式表面処理炭酸カルシウム及びその製造方法並びにポリマー組成物
Noran et al. Surfactant role in nano-enhanced phase change materials

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20190312

Effective date: 20190312

QB4A Licence on use of patent

Free format text: SUB-LICENCE FORMERLY AGREED ON 20191209

Effective date: 20191209