RU2652680C1 - Устройство для кристаллизации периодического действия для получения кристаллов шарообразной формы - Google Patents

Устройство для кристаллизации периодического действия для получения кристаллов шарообразной формы Download PDF

Info

Publication number
RU2652680C1
RU2652680C1 RU2016141548A RU2016141548A RU2652680C1 RU 2652680 C1 RU2652680 C1 RU 2652680C1 RU 2016141548 A RU2016141548 A RU 2016141548A RU 2016141548 A RU2016141548 A RU 2016141548A RU 2652680 C1 RU2652680 C1 RU 2652680C1
Authority
RU
Russia
Prior art keywords
crystals
crystallization
vessel
solution
suspension
Prior art date
Application number
RU2016141548A
Other languages
English (en)
Inventor
Мартин СОУЦЕК
Ян МЫСИК
Ян КУПКА
Original Assignee
Эруца Текнолоджиз С.Р.О.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эруца Текнолоджиз С.Р.О. filed Critical Эруца Текнолоджиз С.Р.О.
Application granted granted Critical
Publication of RU2652680C1 publication Critical patent/RU2652680C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0009Crystallisation cooling by heat exchange by direct heat exchange with added cooling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0063Control or regulation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/16Perchloric acid
    • C01B11/18Perchlorates
    • C01B11/185Ammonium perchlorate
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0033Shaping the mixture
    • C06B21/0066Shaping the mixture by granulation, e.g. flaking
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B29/00Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
    • C06B29/22Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate the salt being ammonium perchlorate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/08Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by cooling of the solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Изобретение относится к устройствам для кристаллизации периодического действия для получения кристаллов, предпочтительно перхлората аммония. Устройство содержит кристаллизатор 1, состоящий из металлического цилиндрического сосуда, внутренняя поверхность которого состоит из материала с твердостью по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ, цилиндрический сосуд имеет овальное или круглое поперечное сечение с коническим или вогнутым днищем 12, оборудованный вдоль его длины двойной рубашкой 4 для охлаждения раствора и/или суспензии раствора и кристаллов и высокоскоростным перемешивающим устройством 8 из материала с твердостью по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ, высокоскоростное перемешивающее устройство 8 оснащено приводом 9, обеспечивающим регулирование скорости и, следовательно, степени воздействия механического действия перемешивающего устройства на округлость кристаллов внутри сосуда вместе с внутренней поверхностью сосуда, содержащего по меньшей мере две перегородки 5 из материала с твердостью по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ, при этом сосуд оборудован по меньшей мере одним отверстием 10 сверху, соединенным по меньшей мере с одним независимым ответвлением контура циркуляции 11 снаружи для ввода нагретого раствора и/или нагретой суспензии раствора и кристаллов с помощью по меньшей мере одного циркуляционного насоса 2 через по меньшей мере один теплообменник 3 для обеспечения вместе с двойной рубашкой 4 регулируемых периодических изменений температур суспензии кристаллов вблизи кривой охлаждения, при этом соединительный трубопровод 13 соединен с днищем 12 сосуда кристаллизатора 1 и по меньшей мере с одним ответвлением контура циркуляции 11. Изобретение позволяет получать кристаллы шарообразной формы высокого качества (достаточной чистоты) среднего размера (100-300 мкм) в кристаллизаторе простой конструкции. 6 з.п. ф-лы, 3 ил., 1 табл., 2 пр.

Description

Область изобретения
Изобретение относится к устройству для кристаллизации периодического действия для получения кристаллов шарообразной формы от малого до среднего размера, предпочтительно кристаллов перхлората аммония (ПХА).
Предшествующий уровень техники
В предшествующем уровне техники описано несколько способов получения кристаллов шарообразной формы. Как известно из теории и практики, кристаллы меньшего размера проявляют более высокую растворимость, чем кристаллы большего размера, и что кристалл с прямоугольной поверхностью растворяется легче, чем кристалл с шарообразной поверхностью. Кристаллизация, которую проводят таким путем, что температура периодически колеблется вблизи температуры насыщенного раствора, основана на этом явлении. Таким образом, зародыши кристаллов, мелкие кристаллы и кристаллы с прямоугольной поверхностью растворяются легче, а крупные кристаллы, с другой стороны, проявляют преимущественный рост. Таким образом, получают крупнозернистый продукт.
Примером этого способа получения кристаллов шарообразной формы является, например, патент CS 105232 (
Figure 00000001
., опубликованный 15 апреля 1962 года), в котором описан процесс кристаллизации с получением крупнозернистого продукта без примесей мелких кристаллов. Данный способ основан на суспензии кристаллов в маточном растворе, подвергаемой воздействию смены одного из количественных показателей (температуры, давления, объема раствора) вблизи равновесной кривой насыщенного раствора.
Патент CS 112280 (
Figure 00000002
., опубликован 15 апреля 1964 года) относится к процессу кристаллизации для получения округлых кристаллов. Запатентованный способ кристаллизации основан на общем принципе, состоящем в том, что колебания температуры вблизи температуры насыщенного раствора вызывает округление кристаллов. Этого достигают за счет циркуляции суспензии кристаллов в растворе между двумя частями устройства, одна из которых имеет температуру выше температуры насыщения, а другая - ниже температуры насыщения.
На основе упомянутого выше способа был запатентован кристаллизатор в патенте Чехословакии 112306 (
Figure 00000001
. и др., опубликован 15 апреля 1964 года). Он сконструирован в виде единого устройства в целом круглого поперечного сечения с конической нижней частью. Кристаллизатор разделен перегородкой на два пространства, между которыми циркулирует суспензия кристаллизуемого соединения. Циркуляцию обеспечивают действием перемешивающих устройств и статических трубных решеток кольцевой формы, входящих в состав обоих пространств. Трубные решетки одновременно выполняют функцию теплообменников. Необязательной деталью является двойной теплообменник. Для достижения такой ситуации, чтобы температуры в обоих пространствах кристаллизатора различались так, что температура циркулирующей смеси периодически колеблется, используют подходящее соединение теплообменников.
Патент США 3599701 (Mollerstedt и др., выдан 17 августа 1971 года) относится к способу получения округлых кристаллов с узким распределением размера частиц. Способ состоит из двух основных процессов. Первый представляет собой растворение, а второй представляет собой кристаллизацию, причем суспензия (кристаллы и маточный раствор) циркулирует между ними. Растворения достигают вводом в суспензию такого количества воды, чтобы растворить только часть кристаллов (прежде всего кристаллов наименьшего размера и наиболее прямоугольной формы). Кристаллизацию проводят путем барботирования воздуха, которое удаляет часть воды из суспензии. Барботирование вместе с энергичным перемешиванием всей суспензии сохраняет равномерный рост кристаллов шарообразной формы, который также поддерживается взаимным механическим взаимодействием кристаллов. Часть суспензии из кристаллизатора извлекают для выделения продуктов (кристаллов). Получение является непрерывным.
Другой способ производства кристаллов шарообразной формы основан на «помоле» кристаллов, которые формируются в процессе кристаллизации высокоскоростным перемешивающим устройством. Этим способом получают очень мелкие частицы, с чем связан ряд проблем при дальнейшей обработке продукта (слабая фильтрующая способность, спекание продукта, образование пыли). В процессе кристаллизации путем помола высокоскоростным перемешивающим устройством края кристаллов преимущественно отделяются. Однако при использовании этого способа дополнительно образуются очень мелкие частицы (фрагменты), что нежелательно.
Кристаллы перхлората аммония шарообразной формы описаны в патенте США 3383180 (Kralik и др., выдан 14 мая 1968 года), причем он относится к способу получения крупных кристаллов перхлората аммония ПХА (от 200 до 1000 мкм) с низким содержанием включений, подходящих для получения ракетного топлива. В сосуде для растворения готовят горячий (приблизительно 80°С), почти насыщенный раствор ПХА. Его готовят путем растворения неочищенного ПХА в отработанном маточном растворе и суспендирования ПХА в маточном растворе, который подают из кристаллизатора. Полученный в результате раствор подают в кристаллизатор (контур циркуляции между кристаллизатором и сосудом для растворения). Кристаллизатор содержит горячую суспензию кристаллов ПХА в маточном растворе. Под действием пониженного давления воду испаряют, и кристаллы растут. Конфигурация кристаллизатора со встроенными промежуточными перегородками и низкоскоростным перемешивающим устройством, установленным в трубке, обеспечивает осевой поток суспензии. Нижняя часть кристаллизатора, имеющая форму узкой трубы («колена»), которая присоединяет второй контур циркуляции в нижней части, выполняет функцию отделителя кристаллов (крупные кристаллы падают, мелкие кристаллы переносятся вверх). Третий контур циркуляции кристаллизатора проходит через устройство с функцией мельницы (например, коллоидной мельницы или шестереночного насоса), где кристаллы измельчают до меньшего размера (вплоть до стократного уменьшения радиуса); таким образом получают частицы, которые действуют в качестве новых зародышей, а также частицы, участвующие в регуляции насыщения маточного раствора посредством их растворения. Из нижней части кристаллизатора продукт извлекают в отделитель, где кристаллы ПХА отделяют от маточного раствора, который возвращают в начало процесса. Этот способ является непрерывным.
Другой патент США 3498759 того же автора (Kralik и др., выдан 3 марта 1970 года) относится к способу получения округлых кристаллов перхлората аммония ПХА (приблизительно 200 мкм). Этот способ имеет две основные части, между которыми циркулирует суспензия кристаллов ПХА в маточном растворе. Первая из них представляет собой «зону растворения». Она представляет собой сосуд с перемешивающим устройством, где подвод тепла и «ненасыщенный» раствор (загрузка) вызывают растворение кристаллов. Другая представляет собой кристаллизатор, где вода испаряется и кристаллы последовательно растут за счет пониженного давления. Кристаллизатор состоит из воронкообразной верхней части (в данном случае суспензию подают из зоны растворения и происходит испарение) и нижней части (представляющей собой часть, где кристаллы растут и суспензию направляют обратно в зону растворения). Из нижней части кристаллизатора продукт извлекают в отделитель, где кристаллы ПХА отделяют от маточного раствора, который возвращают в начало процесса. Этот способ является непрерывным.
В патенте США 3222231 (Markels и др., выдан 7 декабря 1965 года) для получения округлых кристаллов ПХА используют способ высокочастотных акустических вибраций. Кристаллизация происходит за счет медленного охлаждения перемешиваемого горячего насыщенного раствора перхлората аммония ПХА. Действующие одновременно высокочастотные акустические вибрации обеспечивают, что получаемые кристаллы ПХА имеют характеристику шарообразной формы. В зависимости от условий (в частности, от интенсивности кристаллизации) можно получить кристаллы размером от приблизительно 5 до приблизительно 350 мкм.
Из упомянутых выше способов предшествующего уровня техники очевидно, что существует необходимость в получении кристаллов, которые имели бы размер от мелкого до среднего, в то же время имеющих форму от шарообразной до округлой, с использованием технологии, основанной на специальном устройстве для кристаллизации, которое обеспечило бы использование преимуществ упомянутых выше способов.
Было бы предпочтительным использовать данное устройство для получения кристаллов перхлората аммония ПХА среднего размера от округлой до шарообразной формы, в частности, полученных в результате рециркуляции твердого ракетного топлива.
Таким образом, для этой цели рециркуляция ПХА из топлива должна быть основана на полностью новой конфигурации и конструкции устройства для кристаллизации.
Краткое изложение сущности изобретения
Упомянутые выше требования, являющиеся результатом предшествующего уровня техники, выполняют путем обеспечения устройства для кристаллизации в соответствии с данным изобретением, которое отчасти основано на упомянутых выше результатах, для получения кристаллов шарообразной формы от мелкого до среднего размера, поскольку эти размеры наиболее востребованы на рынке.
Устройство для кристаллизации состоит из специально сконструированного металлического кристаллизатора, оборудованного высокоскоростным перемешивающим устройством, обеспечивающим механическую обработку - механическое воздействие, т.е. «помол» кристаллов. Затем циркуляционные насосы используют для направления полученных в результате мелких частиц через трубчатый теплообменник, который обеспечивает растворение зародышей, мелких кристаллов, образовавшихся фрагментов и/или краев кристаллов, а затем возвращают их в пространство кристаллизатора, что придает им округлую форму.
Объект изобретения представляет собой устройство для кристаллизации периодического действия, включающее кристаллизатор, состоящий из металлического цилиндрического сосуда, внутренняя поверхность которого состоит из твердого материала, с овальным или круглым поперечным сечением, с коническим или вогнутым днищем, оборудованный вдоль почти всей его длины двойной рубашкой для охлаждения раствора и/или суспензии раствора и кристаллов и высокоскоростным перемешивающим устройством из твердого материала с приводом, обеспечивающим регулирование скорости и, следовательно, степени воздействия механического действия перемешивающего устройства на округлость кристаллов внутри сосуда вместе с внутренней поверхностью сосуда, содержащего по меньшей мере две перегородки из твердого материала; при этом сосуд оборудован по меньшей мере одним отверстием сверху, соединенным по меньшей мере с одним независимым контуром циркуляции снаружи для ввода нагретого раствора и/или нагретой суспензии раствора и кристаллов с помощью по меньшей мере одного циркуляционного насоса и по меньшей мере одного теплообменника для обеспечения вместе с двойной рубашкой регулируемых периодических изменений температур суспензии кристаллов вблизи кривой охлаждения, при этом соединительный трубопровод соединен с днищем сосуда кристаллизатора, который соединен по меньшей мере с одним ответвлением контура циркуляции.
Для выгрузки суспензии кристаллов из кристаллизатора для дальнейшей обработки соединительный трубопровод содержит, предпочтительно перед линией соединения с ответвлением контура циркуляции, элемент разветвления, который может представлять собой, например, Т-образную деталь, где последующее ответвление содержит запорные клапаны, которые могут представлять собой клапан, вентиль, откидной клапан или золотниковый клапан, предпочтительно автоматический.
При применении упомянутого выше устройства для кристаллизации получают кристаллы округлой формы, такие как, например, кристаллы перхлората аммония, который в обычных условиях кристаллизации образует кристаллы с острыми краями.
В соответствии с изобретением все устройство для кристаллизации работает в периодическом режиме.
При применении этого устройства в соответствии с изобретением и с подходящим набором параметров получают продукты шарообразной формы кристалла от малого до среднего размера, составляющего от приблизительно 100 до приблизительно 300 мкм, предпочтительно приблизительно 200 мкм, которые наиболее востребованы на рынке. Кристаллы, полученные в этом устройстве, также проявляют предпочтительное, очень узкое распределение размера частиц.
Эти кристаллы предпочтительно представляют собой кристаллы перхлората аммония (ПХА) шарообразной формы.
Устройство для кристаллизации состоит из устройства для кристаллизации периодического действия специальной конструкции, которое содержит металлический кристаллизатор, оборудованный высокоскоростным перемешивающим устройством с возможностью регулирования скорости, которое обеспечивает «помол» кристаллов, и, следовательно, степени воздействия механического действия перемешивающего устройства на округлость кристаллов внутри сосуда в смеси насыщенного раствора и кристаллов, при этом помол осуществляют посредством ударения о лопасти перемешивающего устройства, а также ударения о стенки кристаллизатора из твердого материала, а также соударения кристаллов друг о друга.
Для улучшения эффективности степени воздействия механического действия на кристаллы, т.е. «помола» кристаллов, кристаллизатор содержит по меньшей мере две перегородки внутри, выполненные из материала такой же твердости, что и высокоскоростное перемешивающее устройство и внутренняя поверхность стенок кристаллизатора.
Если число этих перегородок больше, этот вариант представляет собой только другой вариант конструкции, попадающий в пределы объема данного изобретения.
В качестве твердого материала предпочтительно можно использовать нержавеющую сталь, эмалированный металл или стекло, при этом в соответствии с изобретением также необходимо, чтобы эти материалы достигали твердости по шкале Бринелля по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ.
Кристаллизатор охлаждают снаружи вдоль почти всей длины его поверхности с помощью двойной рубашки.
Смесь кристаллов циркулирует при использовании по меньшей мере одного циркуляционного насоса (также обеспечивающего помол кристаллов) посредством по меньшей мере одного теплообменника, предпочтительно трубчатого теплообменника, который подает тепло с другой стороны.
В качестве циркуляционного насоса предпочтительно можно использовать центробежный насос с открытым рабочим колесом из твердого материала, как упомянуто выше.
Таким образом, смесь кристаллов в суспензии периодически подвергают воздействию колебаний температуры (для обеспечения преимущественного роста кристаллов большего размера и округлой формы). Значение температуры, вблизи которого она колеблется, уменьшают в процессе кристаллизации (таким образом, кристаллизацией управляют/ее вызывают снижением температуры растворимости).
Устройство для кристаллизации в соответствии с изобретением способно обеспечивать значительные признаки технологии получения округлых кристаллов, такие как:
- предотвращение образования нежелательных мелких частиц;
- превосходная регуляция параметров кристаллизации и, следовательно, простота установления среднего размера и распределения частиц по размеру;
- превосходная воспроизводимость кристаллизации;
- эффективное осуществление принципа механической обработки - «помола» кристаллов, который осуществляют несколькими способами одновременно (перемешивающее устройство, насос, стенки кристаллизатора и перегородки).
В частности, на интенсивность «помола» может влиять твердость выбранных материалов, число перегородок перемешивающего устройства, тип рабочего колеса циркуляционного насоса и число контуров циркуляции. Интенсивность «помола» можно регулировать путем изменений скорости перемешивающего устройства и/или скорости вращения рабочего (-их) колеса (колес) насоса.
Устройство для кристаллизации в соответствии с изобретением действительно доказуемо способно производить округлые кристаллы, при этом объединяя два принципа округления (механическую обработку-помол и растворение), позволяющие получить кристаллы среднего размера и высокого качества.
Поскольку устройству для кристаллизации в соответствии с изобретением свойственна возможность регулирования степени охлаждения и степени нагревания (разность температур на входе и выходе теплообменника), этот способ точно и легко регулируют.
Благодаря этому устройству для кристаллизации все кристаллы независимо от их размера проходят через все циклы «процесса округления».
Устройство для кристаллизации в соответствии с данным изобретением позволяет кристаллам проходить через любое число «циклов округления (растворения)» в соответствии с параметрами режима (степенью охлаждения и скоростью объемного потока циркуляции) порядка от нескольких сотен до нескольких тысяч.
Другое преимущество устройства для кристаллизации в соответствии с изобретением заключается в том, что это устройство состоит из доступных, серийно производимых «традиционных» устройств и что весь кристаллизатор также имеет простую конструкцию, т.е. затраты на приобретение всего устройства невысоки.
Устройство для кристаллизации работает в периодическом режиме, относится к загрузочному типу, что дает возможность также для маломасштабного производства.
Другое преимущество, обеспечиваемое данным изобретением, заключается в том, что способ кристаллизации с перемешиванием посредством охлаждения одновременно представляет собой способ очистки кристаллов, отличающийся от выпаривания, который приводит к получению в результате кристаллов высокого качества (чистоты).
Таким образом, устройство для кристаллизации в соответствии с изобретением обеспечивает необходимые кристаллы достаточной чистоты, необходимого размера и формы.
Краткое описание чертежей
Фиг. 1 представляет собой схематический чертеж устройства для кристаллизации в соответствии с изобретением с одним контуром циркуляции.
Фиг. 2 представляет собой схематический чертеж устройства для кристаллизации в соответствии с изобретением с двумя контурами циркуляции.
На Фиг. 3 показаны округлые кристаллы перхлората аммония, полученные с помощью устройства для кристаллизации в соответствии с изобретением.
Примеры
Пример 1
Для получения кристаллов перхлората аммония шарообразной формы используют устройство для кристаллизации периодического действия, которое содержит кристаллизатор (1), состоящий из металлического цилиндрического сосуда из эмалированного металла с внутренней поверхностью из полированной нержавеющей стали с овальным или круглым поперечным сечением, с коническим или вогнутым днищем (12), оборудованный вдоль почти всей его длины двойной рубашкой (4) для охлаждения раствора и/или суспензии раствора и кристаллов, и высокоскоростного перемешивающего устройства (8) из нержавеющей стали с приводом (9), обеспечивающим регулирование скорости и, следовательно, степени воздействия механического действия перемешивающего устройства на округлость кристаллов внутри сосуда вместе с внутренней поверхностью сосуда, содержащего две перегородки (5) из полированной нержавеющей стали, при этом сосуд оборудован одним отверстием (10) сверху, с которым соединен один независимый контур циркуляционного трубопровода (11) с наружной стороны для ввода нагретого раствора и/или нагретой суспензии раствора и кристаллов с помощью циркуляционного центробежного насоса (2) с открытым рабочим колесом через трубчатый теплообменник (3) для обеспечения вместе с двойной рубашкой (4) регулируемых периодических изменений температур суспензии кристаллов вблизи кривой охлаждения, при этом соединительный трубопровод (13) соединен с днищем (12) сосуда (1) кристаллизатора, который соединен с одним контуром циркуляционного трубопровода (11), как показано на Фиг. 1.
Сырьевой материал представлял собой крупнозернистый перхлорат аммония (ПХА). Его получили в процессе кристаллизации периодического действия в пластмассовом кристаллизаторе, оборудованном охлаждающими диффузорами. Кристаллы ПХА отделяли от маточного раствора (MP) на фильтре процесса и высушивали сжатым воздухом процесса. Содержание влаги кристаллов изменялось в диапазоне 5-10 масс. %. Далее MP использовали для получения раствора ПХА, который извлекали путем фильтрования после процесса кристаллизации, описанного ниже.
700-1200 кг крупнозернистого ПХА растворяли на фильтре процесса в 3500-4500 кг MP, который предпочтительно был подогрет паром с использованием трубчатого теплообменника до температуры 50-90°С. Таким путем был получен раствор ПХА, который насыщали в диапазоне температур 40-60°С, а затем снова перекачивали в пластмассовый резервуар.
Кристаллизацию проводили в описанном выше кристаллизаторе, входящем в состав устройства для кристаллизации в соответствии с одним вариантом изобретения, который схематически проиллюстрирован на Фиг. 1.
Раствор ПХА из пластмассового резервуара перекачивали в кристаллизатор в количестве 900-1200 кг. Раствор подогревали при необходимости в трубчатых теплообменниках так, что полученная в результате температура в кристаллизаторе могла изменяться в диапазоне 35-65°С. После наполнения кристаллизатора 1 запускали насос 2, обеспечивающий суммарную скорость потока раствора ПХА 30-100 м3/ч, а затем суспензии ПХА через теплообменник 3 в течение всего процесса кристаллизации.
Затем в работу вводили перемешивающее устройство 8, при этом скорость его двигателя 9 устанавливали с помощью преобразователя частоты на значение 60-240 об/мин. Перемешивание также продолжали на протяжении всего процесса кристаллизации.
Затем выполняли охлаждение раствора ПХА, когда на первом этапе раствор охлаждали до температуры начальной кристаллизации со скоростью 40-80°С/ч. Температура начальной кристаллизации находилась в диапазоне 30-55°С. Начиная с этой температуры, скорость охлаждения снижали до 2-15°С/ч и в то же время начинали нагревание раствора, а затем суспензии ПХА в теплообменнике 3, что обеспечивало разность температур 0,2-3,5°С между входом и выходом раствора ПХА. Для нагревания можно использовать пар, воду или другую теплопроводную среду.
Процесс кристаллизации завершали, когда температура достигала 10-25°С. При этой температуре нагревание раствора с помощью теплообменника 3 отключали и выключали циркуляционные насосы 2 и перемешивающее устройство 8.
Затем суспензию перекачивали подходящим насосом через соединительный трубопровод 13, Т-образную деталь 14 и автоматические запорные клапаны 7, которые представляют собой стопорный клапан, и разветвляющую трубу 6 для дальнейшей обработки на фильтре процесса. Там MP отделяли от кристаллов ПХА. Затем кристаллы высушивали на фильтре технологическим давлением до значения 90-98 масс. % (относительно суммарной массы с остаточной водой).
Описанным выше способом получали кристаллы ПХА, распределение частиц которых по размеру в соответствии с анализом гранулометрического состава находится в диапазонах, представленных в таблице 1.
Таблица 1 - Анализ гранулометрического состава полученных кристаллов ПХА
Figure 00000003
Размер и форма кристаллов ПХА показаны на Фиг. 3.
Пример 2
Использовали такое же устройство для кристаллизации периодического действия, как в примере 1, но оно содержало два контура циркуляции 11 и 11' для ввода нагретого раствора или нагретой суспензии раствора и кристаллов с использованием циркуляционных насосов 2, 2' и через теплообменники 3, 3' как показано на Фиг. 2.
Данная конфигурация устройства дает возможность увеличить число циклов кристаллизации при одной и той же скорости охлаждения и/или снизить скорость потока в ответвлении(-ях) контуров циркуляции.
Общий процесс производства кристаллов ПХА был таким же, как в примере 1.
Полученные кристаллы имели более округлую форму; тем не менее, они обладали такой же чистотой и распределением размера частиц по сравнению с примером 1.

Claims (7)

1. Устройство для кристаллизации периодического действия для получения кристаллов шарообразной формы, отличающееся тем, что оно содержит кристаллизатор (1), состоящий из металлического цилиндрического сосуда, внутренняя поверхность которого состоит из материала с твердостью по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ, где цилиндрический сосуд имеет овальное или круглое поперечное сечение с коническим или вогнутым днищем (12), оборудованный вдоль его длины двойной рубашкой (4) для охлаждения раствора и/или суспензии раствора и кристаллов и высокоскоростным перемешивающим устройством (8) из материала с твердостью по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ, где высокоскоростное перемешивающее устройство (8) оснащено приводом (9), обеспечивающим регулирование скорости и, следовательно, степени воздействия механического действия перемешивающего устройства на округлость кристаллов внутри сосуда вместе с внутренней поверхностью сосуда, содержащего по меньшей мере две перегородки (5) из материала с твердостью по меньшей мере 120 НВ, предпочтительно по меньшей мере 200 НВ, при этом сосуд оборудован по меньшей мере одним отверстием (10) сверху, соединенным по меньшей мере с одним независимым ответвлением контура циркуляции (11) снаружи для ввода нагретого раствора и/или нагретой суспензии раствора и кристаллов с помощью по меньшей мере одного циркуляционного насоса (2) через по меньшей мере один теплообменник (3) для обеспечения вместе с двойной рубашкой (4) регулируемых периодических изменений температур суспензии кристаллов вблизи кривой охлаждения, при этом соединительный трубопровод (13) соединен с днищем (12) сосуда кристаллизатора (1) и по меньшей мере с одним ответвлением контура циркуляции (11).
2. Устройство для кристаллизации периодического действия по п. 1, отличающееся тем, что соединительный трубопровод (13) перед соединением с ответвлением контура циркуляции (11) содержит элемент разветвления (14) с разветвляющей трубой (6) с запорным клапаном (7), предпочтительно автоматическим, для выгрузки кристаллов для дальнейшей обработки.
3. Устройство для кристаллизации периодического действия по п. 2, отличающееся тем, что элемент разветвления (14) представляет собой Т-образную деталь и запорный клапан (7) представляет собой клапан, вентиль, откидной клапан или золотниковый клапан.
4. Устройство для кристаллизации периодического действия по п. 1, отличающееся тем, что указанный материал представляет собой нержавеющую сталь, эмалированный металл или стекло.
5. Устройство для кристаллизации периодического действия по п. 1, отличающееся тем, что теплообменник(и) представляет(-ют) собой трубчатый(-ые) теплообменник(и).
6. Устройство для кристаллизации периодического действия по п. 1, отличающееся тем, что циркуляционный(-ые) насос(ы) представляет(-ют) собой центробежный(-ые) насос(ы) с открытым рабочим колесом из указанного материала.
7. Устройство для кристаллизации периодического действия по п. 1, отличающееся тем, что кристаллы шарообразной формы представляют собой кристаллы перхлората аммония среднего размера от приблизительно 100 мкм до приблизительно 300 мкм, предпочтительно приблизительно 200 мкм.
RU2016141548A 2014-03-28 2015-01-22 Устройство для кристаллизации периодического действия для получения кристаллов шарообразной формы RU2652680C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CZPV2014-207 2014-03-28
CZ2014-207A CZ305172B6 (cs) 2014-03-28 2014-03-28 Diskontinuální krystalizační jednotka pro výrobu kulovitých krystalů
PCT/CZ2015/000007 WO2015144096A1 (en) 2014-03-28 2015-01-22 A discontinuous crystallization unit for the production of ball-shaped crystals

Publications (1)

Publication Number Publication Date
RU2652680C1 true RU2652680C1 (ru) 2018-04-28

Family

ID=52596264

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016141548A RU2652680C1 (ru) 2014-03-28 2015-01-22 Устройство для кристаллизации периодического действия для получения кристаллов шарообразной формы

Country Status (8)

Country Link
US (1) US20170128854A1 (ru)
EP (1) EP3122433B1 (ru)
CN (1) CN106457061B (ru)
CZ (1) CZ305172B6 (ru)
RU (1) RU2652680C1 (ru)
TR (1) TR201901049T4 (ru)
UA (1) UA118046C2 (ru)
WO (1) WO2015144096A1 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368096B (zh) * 2015-12-21 2021-12-10 詹森药业有限公司 用于获得坎格列净半水合物晶体的结晶程序
CN108043066A (zh) * 2018-01-30 2018-05-18 广西大学 电热式程序控温结晶器
CN108786172A (zh) * 2018-08-09 2018-11-13 通江县芝苞乡中心小学 一种重结晶实验辅助装置
CN109157863A (zh) * 2018-09-28 2019-01-08 石家庄四药有限公司 茶碱钠盐连续冷却结晶装置及方法
CN109126183B (zh) * 2018-09-28 2020-12-18 中北大学 一种大颗粒高氯酸铵球形化的连续结晶装置和方法
CN109593071A (zh) * 2018-12-10 2019-04-09 安徽金禾实业股份有限公司 一种连续可控的安赛蜜重结晶离心装置及方法
CN109621479B (zh) * 2018-12-17 2021-02-02 湖北东方化工有限公司 用于400微米高氯酸铵的生产工艺
CN110860105A (zh) * 2019-12-17 2020-03-06 尹博闻 利用冷却结晶生产溶解度随温度变化无机盐的设备及方法
CN112076494A (zh) * 2020-09-07 2020-12-15 衡阳百赛化工实业有限公司 一种硫酸锌晶体制备用蒸发结晶装置
CN113144661B (zh) * 2021-03-22 2022-11-22 无棣永利盐业有限公司 一种可筛控晶体的日晒重结晶盐打花旋卤装置
CN114832421B (zh) * 2022-04-01 2023-07-18 江苏福瑞达新材料有限公司 一种二烷基二苯胺分步结晶提纯装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2288667A (en) * 1938-08-15 1942-07-07 American Potash & Chem Corp Method of crystallizing substances from solution
US3383180A (en) * 1965-04-16 1968-05-14 Hooker Chemical Corp Crystallization of large particle sized ammonium perchlorate
US3498759A (en) * 1965-05-28 1970-03-03 Hooker Chemical Corp Production of rounded ammonium perchlorate crystals
US3599701A (en) * 1968-07-30 1971-08-17 Kema Nord Ab Crystallization method
US6305178B1 (en) * 1999-05-06 2001-10-23 Yuping Shi Continuous system of freeze concentration for aqueous solutions

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL250500A (ru) * 1959-04-14
US3188183A (en) * 1961-06-12 1965-06-08 Phillips Petroleum Co Reactor for mixing reactive fluids
US3222231A (en) 1962-09-18 1965-12-07 Atlantic Res Corp Process for producing finely divided rounded particles
US3419899A (en) * 1965-04-16 1968-12-31 Hooker Chemical Corp Crystallization of ammonium perchlorate
FR1581088A (ru) * 1968-07-17 1969-09-12
GB1296277A (ru) * 1970-05-12 1972-11-15
US3799884A (en) * 1972-06-29 1974-03-26 Union Oil Co Preparations of sulfur suspensions
US4105841A (en) * 1976-05-07 1978-08-08 The Dow Chemical Company Treatment of interior surfaces of polymerization reactors to retard polymer buildup
JPS62288605A (ja) * 1986-06-06 1987-12-15 Kanegafuchi Chem Ind Co Ltd 重合器内部の洗浄方法
GB8716377D0 (en) * 1987-07-10 1987-08-19 Crown Decorative Prod Ltd Polymerisation reactors
US4904461A (en) * 1987-12-07 1990-02-27 Quantum Technologies, Inc. Safe production of chlorine dioxide in a pressurized gaseous state
PL159329B1 (en) * 1989-01-24 1992-12-31 Apparatus for high-temperature crystalization
JP3183586B2 (ja) * 1993-04-26 2001-07-09 信越化学工業株式会社 重合装置
MXPA01013104A (es) * 1999-06-25 2003-07-14 Lion Corp Metodo para producir sales de esteres alcaloides acidos sulfograsos.
CZ303247B6 (cs) * 1999-08-25 2012-06-20 Kansai Chemical Engineering Co., Ltd. Krystalizacní zarízení a zpusob regulace tvorby krystalických polymorfních forem
MY145387A (en) * 2003-06-12 2012-01-31 Lion Corp Powder, flakes, or pellets containing a-sulfo fatty acid alkylester salt in high concentrations and process for production thereof; and granular detergent and process for production thereof
WO2005012218A1 (ja) * 2003-08-05 2005-02-10 Mitsui Chemicals, Inc. テレフタル酸の製造方法及びテレフタル酸
EP1924334A4 (en) * 2005-09-13 2009-11-11 Rasirc METHOD FOR PRODUCING A HIGH-PURITY FLOW
CA2636792C (en) * 2006-01-13 2014-03-11 President And Fellows Of Harvard College Systems, methods, and devices for frozen sample distribution
FR2918575B1 (fr) * 2007-07-09 2009-08-28 Crystal Evap Consult Sarl Appareil de cristallisation a circulation forcee.
CN101670189A (zh) * 2009-08-06 2010-03-17 瓮福(集团)有限责任公司 一种碘结晶器
KR20140007822A (ko) * 2010-12-20 2014-01-20 바이엘 인텔렉쳐 프로퍼티 게엠베하 폴리에테르 에스테르 폴리올의 제조 방법
GB2489684A (en) * 2011-03-31 2012-10-10 Haifa Chemicals Ltd Crystallisation Apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2288667A (en) * 1938-08-15 1942-07-07 American Potash & Chem Corp Method of crystallizing substances from solution
US3383180A (en) * 1965-04-16 1968-05-14 Hooker Chemical Corp Crystallization of large particle sized ammonium perchlorate
US3498759A (en) * 1965-05-28 1970-03-03 Hooker Chemical Corp Production of rounded ammonium perchlorate crystals
US3599701A (en) * 1968-07-30 1971-08-17 Kema Nord Ab Crystallization method
US6305178B1 (en) * 1999-05-06 2001-10-23 Yuping Shi Continuous system of freeze concentration for aqueous solutions

Also Published As

Publication number Publication date
EP3122433A1 (en) 2017-02-01
CZ2014207A3 (cs) 2015-05-27
CZ305172B6 (cs) 2015-05-27
US20170128854A1 (en) 2017-05-11
TR201901049T4 (tr) 2019-02-21
EP3122433B1 (en) 2019-01-09
CN106457061B (zh) 2020-05-19
UA118046C2 (uk) 2018-11-12
CN106457061A (zh) 2017-02-22
WO2015144096A1 (en) 2015-10-01

Similar Documents

Publication Publication Date Title
RU2652680C1 (ru) Устройство для кристаллизации периодического действия для получения кристаллов шарообразной формы
CN1197637C (zh) 水溶液的冷冻浓缩
JPH0312931B2 (ru)
SE533074C2 (sv) Fraktioneringsprocess och kristalliserare för ätbara oljor och fetter genom smältning och/eller upplösning, kylning samt omrörning
AU742221B2 (en) Continuous crystallization system with controlled nucleation for milk fat fractionation
US3117031A (en) Method and apparatus for countercurrent washing of solid particles such as crystals
JP2014024688A (ja) 硫酸ニッケルの晶析方法
CN108905265A (zh) 钒酸钠连续冷却结晶设备及其生产方法
KR102328508B1 (ko) 현탁액 결정화 시스템을 위한 모듈식 서브-유닛 및 상기 모듈식 서브-유닛을 사용한 현탁액 결정화 방법
US2042818A (en) Apparatus for effecting dissolution or lixiviation
US1997277A (en) Crystallization apparatus
CN209270883U (zh) 一种钒酸钠连续冷却结晶设备
CN102702034B (zh) 超细硝基胍连续化制备工艺
US3600138A (en) Crystallizer
US3837812A (en) Rotating disc contactor
JP7274289B2 (ja) 廃石膏ボードからの二水石膏の回収方法
JPH0458418B2 (ru)
CN208711101U (zh) 一种立式真空结晶装置
JPH11253703A (ja) 結晶化装置、少なくとも2つの結晶化装置の組み合わせ、そして結晶化方法
RU139340U1 (ru) Устройство для охлаждения и кристаллизации парафинсодержащего углеводородного сырья
SU831137A1 (ru) Кристаллизатор непрерывного действи
JPH07144102A (ja) 有機薬品の晶析方法
US1751740A (en) Process of separately recovering soluble substances in alpha coarse granular condition
CN208770887U (zh) 一种磷酸盐结晶器
WO2008152621A2 (en) Method for separation of hydrocarbon oils from a waxy feedstock and apparatus for implementation of said method