RU2650687C1 - Способ получения азетидиноновых соединений и производных азетидиноновых соединений - Google Patents

Способ получения азетидиноновых соединений и производных азетидиноновых соединений Download PDF

Info

Publication number
RU2650687C1
RU2650687C1 RU2016151618A RU2016151618A RU2650687C1 RU 2650687 C1 RU2650687 C1 RU 2650687C1 RU 2016151618 A RU2016151618 A RU 2016151618A RU 2016151618 A RU2016151618 A RU 2016151618A RU 2650687 C1 RU2650687 C1 RU 2650687C1
Authority
RU
Russia
Prior art keywords
formula
compound
acid
stage
molar ratio
Prior art date
Application number
RU2016151618A
Other languages
English (en)
Inventor
Хуа Бай
Сюйян Чжао
Юньцай ЧЖАН
Сюйфэй ЛИ
Юн Чжан
Дечжоу СЮЙ
Ли Чжан
Сяоцзе Сюй
Цифэн ЧЖУ
Сяомин ВАН
Чжицин ЯН
Цзехуа ЧЖОН
Цзянь Чжан
Original Assignee
Чжэцзян Хисунь Фармасьютикал Ко., Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чжэцзян Хисунь Фармасьютикал Ко., Лтд. filed Critical Чжэцзян Хисунь Фармасьютикал Ко., Лтд.
Application granted granted Critical
Publication of RU2650687C1 publication Critical patent/RU2650687C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/06Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D205/08Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with one oxygen atom directly attached in position 2, e.g. beta-lactams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/367Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/42Unsaturated compounds containing hydroxy or O-metal groups
    • C07C59/56Unsaturated compounds containing hydroxy or O-metal groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/327Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/732Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids of unsaturated hydroxy carboxylic acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

Изобретение относится к новому способу получения азетидинонового соединения, представленного формулой (I). Кетоэфир карбоновой кислоты, представленный формулой (II), служит в качестве исходного вещества, и его подвергают присоединению Гриньяра, стереоселективной дегидратации, восстановлению сложноэфирной группы, защите гидроксильной группы, присоединению имина после конденсации с хиральным вспомогательным веществом, циклизации и удалению защитной группы с получением соединения, представленного формулой (I). Настоящее изобретение имеет преимущества легкодоступного сырья, нескольких стадий синтеза, простоты операций, высокого выхода, хорошей стереоселективности и низкой стоимости, а также может быть использовано для промышленного производства.
Figure 00000074
Figure 00000075
9 н. и 26 з.п. ф-лы, 19 пр.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к области химии, в частности, к новому способу получения агента, ингибирующего абсорбцию холестерина, соединения формулы (I), т.е., (3R,4S)-4-(4-гидроксифенил)-3-[3-(4-фторфенил)-4-гидроксибут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она и его синтезированных промежуточных соединений.
УРОВЕНЬ ТЕХНИКИ
В западных странах ишемическая атеросклеротическая болезнь сердца (ишемическая болезнь сердца) является наиболее частой причиной смерти, и холестерин является одним из факторов риска, вызывающих данное заболевание. В настоящее время существует два вида лекарственных средств, которые применяют для снижения уровня холестерина в плазме. Одним из видов являются статины, которые являются ингибиторами ГМГ-КоА редуктазы, и могут эффективно ингибировать биосинтез холестерина in vivo. Другая роль заключается в предотвращении всасывания холестерина в тонком кишечнике, и Эзетимиб является распространенным ингибитором абсорбции холестерина. В патенте США (US 5846966) описан Эзетимиб, при этом химическая структура представляет собой следующую:
Figure 00000001
Боковая цепь в 3-положении атома углерода азетидинона представляет собой хиральный бензиловый спирт, и хиральный атом углерода имеет конфигурацию S. Взаимосвязь между структурой и активностью показывает, что фармакодинамические свойства конфигурации S лучше, чем конфигурации R, которая указывает, что стереохимия углерода бензила очень важна.
В WO 2011/017907 описан новый вид азетидиноновых соединений, которые также могут эффективно ингибировать абсорбцию холестерина, но боковая цепь в 3-положении атома углерода азетидинона представляет собой не хиральный бензиловый спирт, а ахиральный аллиловый спирт, и фармакодинамические свойства двойных связей конфигурации Z намного лучше, чем двойных связей конфигурации Е. Среди соединений данного типа химическая структура данного соединения с наилучшими фармакодинамическими свойствами, т.е., (3R,4S)-4-(4-гидроксифенил)-3-[3-(4-фторфенил)-4-гидроксибут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-он, представляет собой следующую:
Figure 00000002
Поскольку путь синтеза для получения новых азетидиноновых соединений, указанных в WO 2011/017907 слишком долгий, и двойные связи конфигурации Z не могут быть получены стереоселективно, некоторые из стадий не подходят для промышленного производства, поэтому необходимо разработать новый технологический способ. Настоящее изобретение относится к новому способу получения такого типа азетидинона. Сырьевые материалы для нового способа легко получить, и способ включает несколько стадий синтеза, двойная связь конфигурации Z может быть получена стереоселективно, и операция является простой, выход является высоким, стоимость низкой, а способ можно применять для промышленного производства.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Одна из задач настоящего изобретения заключается в обеспечении новых ключевых промежуточных соединений (соединений формулы III, IV и V) для получения соединения формулы (I) и способов их получения:
Figure 00000003
.
В одном аспекте настоящего изобретения предложены новые промежуточные соединения формулы III, IV и V, которые можно применять для получения соединения формулы (I):
Figure 00000004
;
Figure 00000005
;
Figure 00000006
,
где R1 представляет собой C16 алкил, предпочтительно метил, этил или изопропил, более предпочтительно метил.
В другом аспекте настоящего изобретения предложен способ получения соединения формулы III, при этом указанный способ включает:
проведение селективного присоединения Гриньяра к кетону формулы II с галогенидом 4-фторфенилмагния, который применяют в качестве реактива Гриньяра, для получения третичного спирта формулы III:
Figure 00000007
где R1 представляет собой C16 алкил, предпочтительно метил, этил или изопропил, более предпочтительно метил; X представляет собой галоген, предпочтительно хлор, бром или йод.
галогенид 4-фторфенилмагния предпочтительно представляет собой бромид 4-фторфенилмагния.
Молярное соотношение соединения формулы II к галогениду 4-фторфенилмагния в реакции составляет 1:1,0~5,0, предпочтительно 1:1,1~3,0.
Температуру реакции поддерживают между -78°С~-5°С, предпочтительно -50°С~-10°С.
В другом аспекте настоящего изобретения предложен способ получения соединения формулы IV, при этом способ включает следующую стадию: под действием дегидратирующего агента третичный спирт формулы III подвергают стереоселективной дегидратации для получения (Z)-α,β-ненасыщенного сложного эфира формулы IV:
Figure 00000008
где R1 представляет собой C16 алкил, предпочтительно метил, этил или изопропил, более предпочтительно метил.
В данной реакции указанный дегидратирующий агент выбран из концентрированной серной кислоты, п-толуолсульфоновой кислоты, фосфорной кислоты, трифторметансульфонового ангидрида или метансульфоновой кислоты, предпочтительно трифторметансульфонового ангидрида.
В данной реакции молярное соотношение соединения формулы III к дегидрирующему агенту составляет 1:1,0~3,0, предпочтительно 1:1,0~1,5.
Растворитель для реакции выбран из дихлорметана или толуола, предпочтительно дихлорметана.
В другом аспекте настоящего изобретения предложен способ получения соединения формулы V, включающий: селективное восстановление сложного эфира формулы IV до спирта формулы V под действием восстанавливающего агента:
Figure 00000009
где R1 представляет собой C16 алкил, предпочтительно метил, этил или изопропил, более предпочтительно метил.
Восстанавливающий агент реакции предпочтительно представляет собой гидрид диизобутилалюминия (DIBAH).
Растворитель для реакции выбран из дихлорметана, тетрагидрофурана, толуола или диоксана, предпочтительно толуола.
Молярное соотношение соединения формулы IV к восстанавливающему агенту составляет 1:2,5~5,0, предпочтительно 1:3,0~4,0.
Другая задача настоящего изобретения заключается в обеспечении нового способа получения соединения формулы (I) в соответствии с вышеуказанными промежуточными соединениями, чтобы также обеспечить улучшенный и простой способ получения соединения формулы (I) с хорошей селективностью и высоким выходом.
Figure 00000010
То есть, способ получения соединения (3R,4S)-4-(4-гидроксифенил)-3-[3-(4-фторфенил)-4-гидроксибут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она, в котором соединение формулы (I) представляет собой новое азетидиноновое соединение, которое может восстанавливать холестерин крови.
При этом способ включает следующие стадии:
(1) Проведение селективного присоединения Гриньяра к кетону формулы II с галогенидом 4-фторфенилмагния, который применяют в качестве реактива Гриньяра, с получением третичного спирта формулы III:
Figure 00000011
где R1 представляет собой C16 алкил, предпочтительно метил, этил или изопропил, более предпочтительно метил; X представляет собой галоген, предпочтительно хлор, бром или йод.
(2) Под действием дегидратирующего агента третичный спирт формулы III подвергают стереоселективной дегидратации с получением (Z)-α,β-ненасыщенного сложного эфира формулы IV:
Figure 00000012
.
(3) Под действием восстанавливающего агента сложный эфир формулы IV селективно восстанавливают до спирта формулы V:
Figure 00000013
(4) Взаимодействие соединения формулы V с защищающим гидроксил соединением с получением соединения формулы VI:
Figure 00000014
где R2 представляет собой группу, защищающую гидроксил спирта, такую как: ацетил, замещенный или незамещенный бензоил («замещенный» включает галоген, алкил, нитрозамещенный) и т.д.
(5) Превращение карбоновой кислоты формулы VI в смешанный ангидрид или ацилгалид, с последующим взаимодействием с (S)-4-фенил-2-оксазолидоном формулы VII, который применяют в качестве хирального вспомогательного вещества с получением производного оксазолидона формулы VIII:
Figure 00000015
где карбоновую кислоту формулы VI подвергают взаимодействию с ацилирующим агентом с получением смешанного ангидрида; или карбоновую кислоту формулы VI подвергают взаимодействию с тригалогенидом фосфора, пентагалогенидом фосфора, дихлорсульфаном (SOCl2), оксалилхлоридом ((COCl)2) или фосгеном (COCl2) с получением ацилгалогенида; при этом X представляет собой хлор или бром.
Кроме того, стадия (4) и стадия (5) могут быть объединены, т.е. соединение формулы VIII может быть получено из соединения формулы V с помощью однореакторного способа, причем указанный способ включает следующие стадии: защита спиртового гидроксила формулы V в подходящем растворителе с получением соединения формулы VI, последующее превращение карбоновой кислоты формулы VI в смешанный ангидрид или ацилгалогенид без разделения и очистки, затем приведение во взаимодействие с (S)-4-фенил-2-оксазолидоном формулы VII, который применяют в качестве хирального вспомогательного вещества с получением производного оксазолидона формулы VIII:
Figure 00000016
где карбоновую кислоту формулы VI подвергают взаимодействию с ацилирующим агентом с получением смешанного ангидрида; или карбоновую кислоту формулы VI подвергают взаимодействию с тригалогенидом фосфора, пентагалогенидом фосфора, дихлорсульфаном (SOCl2), оксалилхлоридом ((COCl)2) или фосгеном (COCl2) с получением ацилгалогенида; при этом X представляет собой хлор или бром.
(6) В присутствии кислот Льюиса (тетрахлорид титана (TiCl4) и тетраизопропил титанат) и третичного амина взаимодействие производного оксазолидона формулы VIII с имином формулы IX с получением продукта присоединения формулы XI:
Figure 00000017
где R2 и R3 представляют собой гидроксилзащищающие группы, такие как: ацетил, замещенный или незамещенный бензоил («замещенный» включает галоген, алкил, нитрозамещенный) и т.д., R2 и R3 могут быть одинаковыми или разными.
(7) Проведение циклизации для продукта присоединения формулы XI с применением N,O-бис(триметилсилил)ацетамида (BSA) и фторида тетрабутиламмония (TBAF), с получением β-лактамов формул XII, XIII и XIV:
Figure 00000018
;
(8) Получение соединения формулы (I) посредством снятия защиты смеси соединений формул XII, XIII и XIV на стадии (7) под действием щелочи:
Figure 00000019
.
В указанных выше стадиях взаимодействия, где R1 представляет собой C16 алкил, предпочтительно метил, этил или изопропил, более предпочтительно метил; R2 и R3 представляют собой защищающие гидроксил группы, такие как: ацетил, замещенный или незамещенный бензоил («замещенный» включает галоген, алкил, нитрозамещенный) и т.д., R2 и R3 могут быть одинаковыми или разными.
На стадии (1), молярное соотношение соединения формулы II к галогениду 4-фторфенилмагния составляет 1:1,0~5,0, предпочтительно 1:1,1~3,0; галогенид 4-фторфенилмагния предпочтительно представляет собой бромид 4-фторфенилмагния. Температуру реакции поддерживают между -78°С~-5°С, предпочтительно -50°С~-10°С.
На стадии (2), указанный дегидратирующий агент выбран из концентрированной серной кислоты, п-толуолсульфоновой кислоты, фосфорной кислоты, трифторметансульфонового ангидрида или метансульфоновой кислоты, предпочтительно трифторметансульфонового ангидрида. Молярное соотношение соединения формулы III к дегидрирующему агенту составляет 1:1,0~3,0, предпочтительно 1:1,0~1,5. Растворитель для реакции выбран из дихлорметана или толуола, предпочтительно дихлорметана.
На стадии (3), молярное соотношение соединения формулы IV к восстанавливающему агенту составляет 1:2,5~5,0, предпочтительно 1:3,0~4,0. Восстанавливающий агент предпочтительно представляет собой гидрид диизобутилалюминия (DIBAH). Растворитель для реакции выбран из дихлорметана, тетрагидрофурана, толуола или диоксана, предпочтительно толуола.
На стадии (4), группа, защищающая гидроксил спирта, R2 предпочтительно представляет собой замещенный или незамещенный бензоил, более предпочтительно замещенный бензоил, где «замещенный» предпочтительно представляет собой замещенный нитрогруппой, более предпочтительно замещенный нитрогруппой в положении 3. Растворитель для реакции выбран из N,N-диметилформамида (ДМФА), N,N-диметилацетамида (DMA), диметилсульфоксида (ДМСО), 1,3-диметилпропиленмочевины (DMPU) или гексаметилфосфорамида (НМРА), предпочтительно N,N-диметилацетамида (DMA). Молярное соотношение соединения V к гидроксилзащищающему агенту составляет 1:1,0~3,0, предпочтительно 1:1,2~2,3.
На стадии (5), ацилирующий агент выбран из пивалоилхлорида, 3-нитробензоилхлорида или изобутилхлорформиата, предпочтительно пивалоилхлорида или 3-нитробензоилхлорида. Молярное соотношение соединения формулы VI к ацилирующему агенту составляет 1:1,0~2,0, предпочтительно 1:1,1~1,6. Молярное соотношение соединения формулы VI к (S)-4-фенил-2-оксазолидону формулы VII составляет 1:0,5~1,5, предпочтительно 1:0,8~1,1.
Когда стадию (4) объединяют со стадией (5), т.е., соединение формулы VIII получают из соединения формулы V с помощью однореакторного способа, группа, защищающая гидроксил спирта, R2 предпочтительно представляет собой замещенный или незамещенный бензоил, более предпочтительно замещенный бензоил, где «замещенный» предпочтительно представляет собой замещенный нитрогруппой, более предпочтительно замещенный нитрогруппой в положении 3. Растворитель выбран из N,N-диметилформамида (ДМФА), N,N-диметилацетамида (DMA), диметилсульфоксида (ДМСО), 1,3-диметилпропиленмочевины (DMPU) или гексаметилфосфорамида (НМРА), предпочтительно N,N-диметилацетамида (DMA). Молярное соотношение соединения V к агенту, защищающему гидроксильную группу спирта, составляет 1:1,0~3,0, предпочтительно 1:1,0~1,5. Ацилирующий агент выбран из пивалоилхлорида, 3-нитробензоилхлорида или изобутилхлорформиата, предпочтительно пивалоилхлорида или 3-нитробензоилхлорида. Молярное соотношение соединения формулы V к ацилирующему агенту составляет 1:1,0~2,0, предпочтительно 1:1,0~1,5. Молярное соотношение соединения формулы V к (S)-4-фенил-2-оксазолидону составляет 1:0,5~1,5, предпочтительно 1:0,7~1,1.
На стадии (6), группа, защищающая гидроксил фенола R3, предпочтительно представляет собой замещенный или незамещенный бензоил, более предпочтительно замещенный бензоил, где «замещенный» предпочтительно представляет собой замещенный нитрогруппой, более предпочтительно замещенный нитрогруппой в положении 3. Третичный амин предпочтительно представляет собой диизопропилэтиламин (DIPEA). Молярное соотношение соединения формулы VIII к имину (соединение формулы IX) составляет 1:1,0~2,0, предпочтительно 1:1,0~1,2; при этом температуру реакции поддерживают между -90°С~0°С, предпочтительно -80°С~-20°С; при этом спирты, кислоты или смешанные жидкие формы кислот, разбавленных органическими растворителями, можно применять в реакции гашения после обработки; при этом спирты выбраны из метанола, этанола, пропанола, изопропанола, третичного бутанола, предпочтительно изопропанола; при этом кислоты выбраны из неорганических кислот и органических кислот, включая хлористоводородную кислоту, серную кислоту, азотную кислоту, бромистоводородную кислоту, муравьиную кислоту, уксусную кислоту, трифторуксусную кислоту, метансульфоновую кислоту, трифторметансульфоновую кислоту, бензойную кислоту, бензолсульфоновую кислоту, п-толуолсульфоновую кислоту, лимонную кислоту, малеиновую кислоту или винную кислоту, предпочтительно органических кислот, включая муравьиную кислоту, уксусную кислоту, трифторуксусную кислоту, метансульфоновую кислоту, трифторметансульфоновую кислоту, бензойную кислоту, бензолсульфоновую кислоту, п-толуолсульфоновую кислоту, лимонную кислоту, малеиновую кислоту или винную кислоту, более предпочтительно уксусной кислоты или трифторуксусной кислоты.
На стадии (7), растворитель для реакции выбран из ацетонитрила или толуола, предпочтительно толуола. Молярное соотношение соединения формулы XI к N,O-бис(триметилсилил)ацетамиду (BSA) составляет 1:1,0~5,0, предпочтительно 1:2,0~4,0; и молярное соотношение соединения формулы XI к тетрабутиламмония фторида тригидрату (TBAF) составляет 1:0,1~0,5, предпочтительно 1:0,1~0,3.
На стадии (8) растворитель, используемый для снятия защиты с соединений формулы XII, XIII и XIV, предпочтительно представляет собой ацетон, щелочь предпочтительно представляет собой водный раствор гидроксида лития. Молярное соотношение щелочи к соединению XI на стадии (7) составляет 3,0~5,0:1.
В другом аспекте настоящее изобретение также относится к защите промежуточных соединений формулы III, IV и V.
Некоторые термины, используемые в настоящем изобретении, определены следующим образом:
«Галоген» относится к фтору, хлору, брому и йоду.
«Алкил», когда он представляет собой группу или часть группы, относится к линейной или разветвленной алифатической углеводородной группе. Наиболее предпочтительно, он представляет собой C16 алкил, если не обозначено иное, при этом примеры линейного или разветвленного C16 алкила включают, но не ограничиваются ими: метил, этил, н-пропил, 2-пропил, н-бутил, изобутил, третичный бутил, гексил и т.п.
«Комнатная температура» относится к 20~30°С.
Предпочтительные условия реакции настоящего изобретения приведены на следующих схемах
Стадия (1):
Figure 00000020
Стадия (2):
Figure 00000021
Стадия (3):
Figure 00000022
Стадия (4):
Figure 00000023
Стадия (5):
Figure 00000024
Стадия (6):
Figure 00000025
Стадия (7):
Figure 00000026
Стадия (8):
Figure 00000027
В указанных выше схемах реакции Tf2O представляет собой трифторметансульфоновый ангидрид, DIBAH представляет собой гидрид диизобутилалюминия, DMAP представляет собой 4-диметиламинопиридин, DIPEA представляет собой диизопропилэтиламин, BSA представляет собой N,O-бис(триметилсилил)ацетамид и TBAF представляет собой фторид тетрабутиламмония, где R1 представляет собой C16 алкил, предпочтительно метил, этил или изопропил, более предпочтительно метил; R2 и R3 представляют собой защищающие гидроксил группы, такие как: ацетил, замещенный или незамещенный бензоил («замещенный» включает галоген, алкил, нитрозамещенный) и т.д., R2 и R3 могут быть одинаковыми или разными.
ПОДРОБНОЕ ОПИСАНИЕ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Способ получения дополнительно проиллюстрирован посредством комбинации указанных выше стадий реакции (1)~(8) ниже.
На стадии (1), спирт формулы III получают посредством реакции присоединения кетокарбонила формулы II и реактива Гриньяра. Способ взаимодействия является следующим: соединение формулы II (1 эквивалент) добавляют к безводному растворителю (такому как тетрагидрофуран или диэтиловый эфир, предпочтительно тетрагидрофуран), температуру понижают до значения между -78°С~-5°С (предпочтительно -50°С~-10°С), добавляют 1,0~5,0 эквивалентов (предпочтительно 1,1~3,0 эквивалентов) реактива Гриньяра (такого как галогенид 4-фторфенилмагния, предпочтительно бромид 4-фторфенилмагния), затем температуру поддерживают для взаимодействия в течение 1~2 часов при перемешивании, взаимодействие прекращают с помощью водного раствора хлорида аммония. Продукт, соединение формулы III, выделяют посредством экстракции и очищают посредством кристаллизации.
В данной реакции сырьевой материал, сложный кетоэфир карбоновой кислоты (соединение формулы II) может быть получен способом синтеза из документа Tetrahedron Letters, 1994, 35, 6089-6092, т.е. в растворителе ацетонитриле, кетон формулы II получают посредством окисления и раскрытия кольца циклопентанон-2-карбоксилата при катализе солью меди (такой как CuCl2⋅2Н2О, CuSO4⋅5H2O, Cu(ОАс)2⋅Н2О или Cu(ClO4)2⋅6H2O). Уравнение представляет собой следующее:
Figure 00000028
.
На стадии (2), (Z)-α,β-ненасыщенный сложный эфир формулы IV получают с помощью стереоселективной дегидратации третичного спирта формулы III. В J.Org.Chem. 2006, 71, 5039-5042 описано, что (Z)-α-арил-α,β-ненасыщенный сложный эфир получают с помощью селективной дегидратации α-арил-α-гидроксил сложного эфира под действием дегидратирующего агента (трифторметансульфоновый ангидрид) и щелочи (такой как пиридин или DMAP). Время взаимодействия по литературным данным является долгим (взаимодействие длится 10~12 часов при комнатной температуре), и не указано, является ли ω-карбонил-α-арил-α-гидроксил сложный эфир подходящим для данного взаимодействия. Ранее известное взаимодействие было улучшено способом согласно настоящему изобретению для увеличения эффективности и селективности получения (Z)-ω-карбонил-α-арил-α,β-ненасыщенного сложного эфира. После улучшения время реакции сократилось, селективность улучшилась и необходимости в щелочном катализе (пиридин или DMAP) больше нет. Гидроксильный сложный эфир карбоновой кислоты (соединение формулы III, 1 эквивалент) растворяют в неполярном безводном растворителе (таком как дихлорметан), добавляют 1,0~3,0 эквивалента (предпочтительно 1,0~1,5 эквивалента) дегидратирующего агента (предпочтительно трифторметансульфонового ангидрида) при 5°С~15°С, реакционную смесь нагревают с обратным холодильником в течение 1~2 часов, и затем реакцию останавливают водой. Продукт, соединение формулы IV, разделяют с помощью экстракции.
На стадии (3), сложноэфирную группу соединения формулы IV селективно восстанавливают и сохраняют карбонильную группу. Соединение формулы IV (1 эквивалент) растворяют в подходящем растворителе (предпочтительно толуоле), добавляют щелочь (такую как триэтиламин или диизопропилэтиламин) при комнатной температуре, чтобы позволить карбонильной группе образовать соль, затем температуру понижают, медленно добавляют 2,5~5,0 эквивалентов (предпочтительно 3,0~4,0 эквивалентов) восстанавливающего агента (предпочтительно гидрида диизобутилалюминия) при температуре -30°С~-5°С, реакционную смесь перемешивают в течение 20~60 минут. После окончания реакции реакционный раствор медленно добавляют к щелочи (такой как водный раствор гидроксида калия, гидроксида лития или гидроксида натрия, предпочтительно водный раствор гидроксида натрия) при температуре t<15°C, перемешивают, разделяют на слои, водную фазу экстрагируют подходящим растворителем (например, дихлорметаном) для удаления органических примесей, затем подкисляют кислотой (такой как соляная кислота), затем экстрагируют с помощью подходящего растворителя (например, этилацетата), продукт отделяют и очищают с помощью кристаллизации с получением (Z)-5-(4-фторфенил)-6-гидроксил-гекс-4-еновой кислоты (соединение формулы V).
На стадии (4) гидроксильную группу соединения формулы V селективно защищают и сохраняют карбонильную группу. Соединение формулы V (1 эквивалент) растворяют в подходящем безводном растворителе (предпочтительно N,N-диметилацетамиде), добавляют 1,0~3,0 эквивалента (предпочтительно 1,2~2,3 эквивалента) защищающего гидроксил агента (предпочтительно нитробензоилхлорида, более предпочтительно 3-нитробензоилхлорида) при -5°С~40°С и обеспечивают взаимодействие в течение 5~6 часов. Добавляют подходящую щелочь (такую как пиридин) для гидролиза полученной смеси ангидрида, затем добавляют щелочь (такую как имидазол) для удаления карбоновой кислоты защищающего агента, высвободившейся в процессе гидролиза с образованием соли. Продукт, соединение формулы VI, отделяют с помощью экстракции.
На стадии (5) соединение формулы VI (1 эквивалент) растворяют в безводном инертном растворителе (таком как тетрагидрофуран или дихлорметан, предпочтительно дихлорметан), добавляют 1,0~2,0 эквивалента (предпочтительно 1,1~1,6 эквивалента) ацилирующего агента (такого как пивалоилхлорид, изобутилхлорформиат или 3-нитробензоилхлорид, предпочтительно пивалоилхлорид или 3-нитробензоилхлорид), в то же время обеспечивают взаимодействие смеси в течение 3~4 часов при комнатной температуре в присутствии щелочи (такой как триэтиламин) с получением смеси ангидрида. Затем к полученному раствору смеси ангидрида добавляют 0,5~1,5 эквивалента (предпочтительно 0,8~1,1 эквивалента) (S)-4-фенил-2-оксазолидона формулы VII, добавляют 0,1~0,3 эквивалента подходящего катализатора (такого как 4-диметиламинопиридин) и перемешивают в течение 3-5 часов при комнатной температуре для образования ацилированного производного оксазолидона формулы VIII посредством конденсации. Продукт отделяют с помощью экстракции и очищают кристаллизацией.
Кроме того, стадия (4) может быть объединена со стадией (5), соединение формулы VIII может быть получено из соединения формулы V с помощью однореакторного способа. Соединение формулы V (1 эквивалент) растворяют в подходящем безводном растворителе (предпочтительно N,N-диметилацетамиде), добавляют 1,0~3,0 эквивалента (предпочтительно 1,0~1,5 эквивалента) защищающего гидроксил агента (предпочтительно нитробензоилхлорида, предпочтительно 3-нитробензоилхлорида) при -5°С~40°С, после окончания взаимодействия реакционный раствор добавляют к раствору 1,0~2,0 эквивалентов (предпочтительно 1,0~1,5 эквивалентов) ацилирующего агента (такого как пивалоилхлорид, изобутилхлорформиат или 3-нитробензоилхлорид, предпочтительно пивалоилхлорид или 3-нитробензоилхлорид, более предпочтительно 3-нитробензоилхлорид) и щелочи (такой как триэтиламин), растворенным в безводном инертном растворителе (таком как тетрагидрофуран или дихлорметан, предпочтительно дихлорметан), затем добавляют 0,5~1,5 эквивалентов (предпочтительно 0,7~1,1 эквивалентов) хирального вспомогательного вещества ((S)-4-фенил-2-оксазолидона) формулы VII и 0,1~0,5 эквивалента подходящего катализатора (такого как 4-диметиламинопиридин), температуру поддерживают для взаимодействия в течение 6~7 часов, ацилированное производное оксазолидона формулы VIII получают с помощью конденсации. Продукт отделяют с помощью экстракции и очищают кристаллизацией.
На стадии (6), температуру снижают в присутствии подходящего безводного растворителя (такого как безводный дихлорметан) и добавляют защиту потоком сухого инертного газа (такого как азот), кислоты Льюиса TiCl4 (1,1~1,5 эквивалентов) и тетраизопропил титанат (0,3~0,5 эквивалент) при температуре -5°С~0°С для осуществления взаимодействия при перемешивании в течение 20-40 минут с получением реагента титана, который оставляют для применения. Ацилированное производное оксазолидона формулы VIII (1 эквивалент), защищенное соединение имина формулы IX (1,0~2,0 эквивалентов, предпочтительно 1,0~1,2 эквивалентов) растворяют в безводном растворителе (таком как безводный дихлорметан), добавляют третичный амин (такой как диизопропилэтиламин), перемешивают в течение 10 минут, температуру снижают, медленно по каплям добавляют реагент титана, полученный выше, при температуре -90°С~0°С (предпочтительно -80°С~-20°С), температуру непрерывно поддерживают для осуществления взаимодействия, после окончания реакции добавляют подходящее количество кислоты (предпочтительно уксусной кислоты или трифторуксусной кислоты) для гашения реакции. Между тем, соль титана удаляют путем добавления разбавленной серной кислоты, а затем соединение формулы XI отделяют с помощью экстракции и очищают с помощью кристаллизации.
На стадии (7) соединение формулы XI (1 эквивалент) растворяют в подходящем растворителе (таком как толуол), добавляют 1,0~5,0 эквивалентов (предпочтительно 2,0~4,0 эквивалентов) N,O-бис(триметилсилил)ацетамида (BSA), и подвергают взаимодействию в течение 2-3 часов при температуре 50°С~70°С, затем добавляют 0,1~0,5 эквивалента (предпочтительно 0,1~0,3 эквивалента) тетрабутиламмония фторида (TBAF), подвергают взаимодействию в течение 2~5 часов при температуре, смесь соединений формулы XII, XIII и XIV получают с помощью циклизации.
На стадии (8) смесь соединений формулы XII, XIII и XIV растворяют в подходящем растворителе (предпочтительно ацетоне), добавляют 3-5 эквивалентов (рассчитывают на основании поданного количества соединения XI из стадии 7 как 1 эквивалента) щелочи (предпочтительно водного раствора гидроксида лития) при комнатной температуре для гидролиза гидроксилзащищающей группы, смесь подвергают взаимодействию при перемешивании в течение 2~3 часов, затем подкисляют слабой кислотой (такой как разбавленная серная кислота или разбавленная хлористоводородная кислота), экстрагируют, концентрируют и разделяют посредством колоночной хроматографии с получением соединения формулы I, которое очищают с помощью перекристаллизации.
В настоящем изобретении кетоэфир карбоновой кислоты, представленный формулой (II), применяют в качестве исходного материала и подвергают реакции присоединения Гриньяра, стереоселективной дегидратации, восстановлению сложноэфирной группы, защите гидроксильной группы, присоединению имина после конденсации с хиральным вспомогательным веществом, циклизации и удалению защитной группы с получением соединения, представленного формулой (I). Преимущества настоящего изобретения могут быть объединены следующим образом:
a) По сравнению со способом получения, описанном в WO 2011/017907, количество стадий синтеза значительно уменьшилось с 14 стадий до 8 стадий; в то же время, колоночную хроматографию заменяют на многократную перекристаллизацию, чтобы упростить операцию очистки и снизить стоимость.
b) На стадии 2 настоящего способа Z алкен получают посредством стереоселекции, обеспечивая начало последовательных многостадийных реакций с одного изомера, что облегчает операцию разделения и снижение стоимости.
c) Для защиты гидроксильных групп (включая гидроксильные группы спирта и фенольные гидроксильные группы) применяют нитрозамещенный бензоил, предпочтительно применяют бензоил, нитрозамещенный в положении 3. В одном аспекте способность кристаллизации ключевого промежуточного соединения увеличивается, так что он может быть эффективно очищен с помощью простой операции кристаллизации; в другом аспекте предпочтительно снятие защиты в неагрессивной среде впоследствии и предотвращение возникновения сопутствующих побочных реакций (например, раскрытие кольца β-лактама) в щелочных условиях.
d) Способ согласно настоящему изобретению подходит для промышленного производства, и выход является высоким.
Таким образом, настоящее изобретение имеет преимущества легко доступного сырья, нескольких стадий синтеза, простоты операций, высокого выхода, хорошей стереоселективности и низкой стоимости, а также может быть использовано для промышленного производства.
ВАРИАНТЫ РЕАЛИЗАЦИИ
Следующие примеры предназначены исключительно для иллюстрации настоящего изобретения, настоящее изобретение не ограничивается данными примерами.
Пример 1: Получение сырьевого материала имина IXa
Figure 00000029
Стадия 1: 12 кг 4-гидроксибензальдегида и 60 л метанола добавляли в 100 л реакционную емкость и растворяли при перемешивании, 12 кг 4-фторанилина по каплям добавляли при комнатной температуре, осуществляли непрерывное взаимодействие указанной смеси в течение 2~3 часов после добавления. Взаимодействие контролировали посредством ТСХ до исчезновения пятен сырьевого материала (4-гидроксилбензальдегид), твердое вещество, полученное при взаимодействии, отфильтровывали, сушили и взвешивали 19 кг (выход: 90%).
1Н ЯМР (400 МГц, ДМСО-d 6): δ 6,88 (d, 2 Н, J = 8,4 Гц), 7,18-7,27 (m, 4 Н), 7,76 (d, 2 Н, J = 8,4 Гц), 8,46 (s, 1 Н), 10,11 (s, 1 Н).
Стадия 2: Продукт, полученный на стадии 1, и 200 л дихлорметана добавляли в 500 л реакционную емкость и растворяли при перемешивании, при комнатной температуре добавляли 22 кг триэтиламина, 1,8 кг 4-диметиламинопиридина (DMAP), по каплям добавляли 50 л раствора дихлорметана с 20 кг растворенного 3-нитробензоилхлорида, осуществляли непрерывное взаимодействие указанной смеси в течение 2~3 часов после добавления, и контролировали посредством ТСХ до исчезновения пятен сырьевого материала (продукт, полученный на стадии 1). рН доводили до 4~6 посредством 2М хлористоводородной кислоты, указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали дихлорметаном (30 л × 2 раза), органические фазы объединяли и затем промывали 1 раз солевым раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении, неочищенный продукт перекристаллизовывали в безводном этаноле, фильтровали и сушили до получения 19 кг имина IXa (выход: 59%).
1Н ЯМР (400 МГц, ДМСО-d 6): δ 7,23 (t, 2 Н, J = 8,8 Гц), 7,31-7,35 (m, 2 Н), 7,49 (d, 2 Н, J = 8,4 Гц), 7,90 (t, 1 Н, J = 8,0 Гц), 8,03 (d, 2 Н, J = 8,4 Гц), 8,52-8,58 (m, 2 Н), 8,65 (s, 1 Н), 8,78 (s, 1 Н).
Пример 2: Получение 5-(4-фторфенил)-5-гидрокси-6-метокси-6-оксо-гексановой кислоты (IIIa)
Figure 00000030
100 г (0,563 моль) 6-метокси-5,6-диоксо-гексановой кислоты (соединение IIa) и 300 мл тетрагидрофурана добавляли в 3 л реакционную колбу, смесь защищали в атмосфере азота и растворяли при перемешивании, температуру снижали до -20°С~-10°С, медленно по каплям добавляли 1М раствор бромида 4-фторфенилмагния в ТГФ (1,4 л, 1,4 моль), температуру поддерживали для взаимодействия в течение 1~2 часов после добавления. Взаимодействие контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединение IIa).
Водный 25% раствор хлорида аммония (60 г хлорида аммония, растворенного в 180 мл воды) добавляли при температуре -20°С~0°С и перемешивали в течение 5 минут, затем рН доводили до 3~5 посредством 4М хлористоводородной кислоты при температуре 0°С ~30°С, затем добавляли 600 мл н-гептана, и перемешивали в течение 5 минут, указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали этилацетатом (140 мл × 2 раза), органические фазы объединяли, и затем промывали 2 раза насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении, неочищенный продукт перекристаллизовывали в толуоле, фильтровали и сушили до получения 64,6 г соединения IIIa (ВЭЖХ чистота: 93,2%; выход: 39,6%).
1Н ЯМР (ДМСО-d 6): 1,33-1,43 (m, 2 Н), 1,89-1,96 (m, 1 Н), 1,99-2,04 (m, 1 Н), 2,15 (t, 2 Н, J = 7,6 Гц), 3,61 (s, 3 Н), 5,99 (s, 1 Н), 7,12-7,17 (m, 2 Н), 7,47-7,51 (m, 2 Н), 12,02 (s, 1 Н); MS (m/z): 269 [М-Н]-.
Пример 3: Получение (Z)-5-(4-фторфенил)-6-метокси-6-оксо-гекс-4-еновой кислоты (IVa)
Figure 00000031
64,0 г (0,221 моль) 5-(4-фторфенил)-5-гидрокси-6-метокси-6-оксо-гексановой кислоты (соединение IIIa) и 300 мл дихлорметана добавляли в 500 мл реакционную колбу, смесь растворяли при перемешивании и защищали азотом, температуру снижали, 65,6 г (0,233 моль) трифторметансульфонового ангидрида добавляли при температуре 5°С ~15°С, затем реакционную смесь нагревали с обратным холодильником в течение 1~2 часов и контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединение IIIa).
Температуру снижали, 100 мл воды добавляли при температуре 5°С ~15°С для гашения реакции, указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали дихлорметаном (60 мл × 2 раза), органические фазы объединяли и затем промывали 3 раза насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении с получением 54,4 г соединения IVa (ВЭЖХ чистота: 95,6%; выход: 93,4%).
1Н ЯМР (ДМСО-d 6): 2,42 (t, 2 Н, J = 7,3 Гц), 2,56 (q, 2 Н, J = 7,3 Гц), 3,74 (s, 3 Н), 6,27 (t, 1 Н, J = 7,4 Гц), 7,18 (t, 2 Н, J = 8,8 Гц), 7,32-7,36 (m, 2 Н), 12,19 (s, 1 Н).
Пример 4: Получение (Z)-5-(4-фторфенил)-6-гидрокси-гекс-4-еновой кислоты (V)
Figure 00000032
54,0 г (0,205 моль) (Z)-5-(4-фторфенил)-6-метокси-6-оксо-гекс-4-еновой кислоты (соединение IVa) и 240 мл толуола добавляли в 1 л реакционную колбу, смесь растворяли при перемешивании и защищали азотом, добавляли 31,0 г (0,240 моль) диизопропилэтиламина и растворяли при перемешивании, температуру снижали до -20°С ~-15°С, медленно по каплям добавляли 382,0 г (0,673 моль) DIBAH в форме раствора в толуоле (25%), температуру поддерживали для взаимодействия в течение 20~40 минут после добавления. Взаимодействие контролировали посредством ТСХ до полного взаимодействия сырьевого материала (соединение Iva).
При температуре ниже 15°С реакционную смесь медленно по каплям добавляли к водному раствору гидроксида натрия (72,2 г гидроксид натрия, растворенный в 300 мл воды), затем раствор перемешивали в течение 30 минут; отстаивали для разделения на слои, водную фазу собирали, водную фазу экстрагировали дихлорметаном (60 мл × 2 раза), дихлорметановую фазу отбрасывали. РН водной фазы доводили до 1~2 с помощью 4М хлористоводородной кислоты при температуре ниже 25°С, добавляли 240 мл этилацетата, раствор перемешивали в течение 5 минут, затем отстаивали для разделения на слои, органическую фазу собирали, и водную фазу экстрагировали этилацетатом (100 мл × 3 раза). Органические фазы объединяли и промывали 2 раза насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении, неочищенный продукт перекристаллизовывали в толуоле, фильтровали и сушили до получения 36,4 г соединения V (ВЭЖХ чистота: 96,3%; выход: 76,4%).
1Н ЯМР (ДМСО-d 6): 2,38 (t, 2 Н, J = 7,1 Гц), 2,47 (q, 2 Н, J = 7,0 Гц), 4,34 (s, 2 Н), 4,75 (brs, 1 Н), 5,78 (t, 1 Н, J = 7,2 Гц), 7,13 (t, 2 Н, J = 8,9 Гц), 7,45-7,48 (m, 2 Н), 12,13 (br s, 1 Н).
Пример 5: Получение (Z)-5-(4-фторфенил)-6-(3-нитробензоилокси)гекс-4-еновой кислоты (VIa)
Figure 00000033
18,0 г (0,077 моль) (Z)-5-(4-фторфенил)-6-гидрокси-гекс-4-еновой кислоты (соединение V) и 60 мл N,N-диметилацетамида добавляли в 250 мл реакционную колбу, смесь растворяли при перемешивании и защищали азотом, температуру снижали, 31,2 г (0,168 моль) 3-нитробензоилхлорида добавляли при температуре -5°С ~5°С, затем обеспечивали взаимодействие реакционной смеси в течение 5~6 часов при температуре -5°С ~5°С, и контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединение V).
При температуре 0~10°С добавляли водный раствор пиридина (13,0 г пиридина растворяли в 30 мл воды) и перемешивали в течение 30 минут, затем при температуре 0~10°С, добавляли водный раствор имидазола (22,5 г имидазола растворяли в 50 мл воды), перемешивали в течение 1~2 часов, затем раствор экстрагировали с помощью 120 мл этилацетата и отстаивали для разделения на слои, органическую фазу собирали, и водную фазу экстрагировали этилацетатом (20 мл × 3 раза), органические фазы объединяли, и органическую фазу промывали водой, рН доводили до 3~5 с помощью 2М хлористоводородной кислоты, затем органическую фазу промывали 1 раз насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении с получением 24,0 г соединения VIa (ВЭЖХ чистота: 92,6%; выход: 77,0%).
1Н ЯМР (ДМСО-d6): 2,45 (t, 2 Н, J = 7,1 Гц), 2,59 (q, 2 Н, J = 7,3 Гц), 5,36 (s, 2 Н), 6,09(t, 1 Н, J = 7,4 Гц), 7,18 (t, 2 Н, J = 8,8 Гц), 7,51-7,54 (m, 2 Н), 7,80 (t, 1 Н, J = 7,8 Гц), 8,23(d, 1 Н, J = 7,8 Гц), 8,46-8,48 (m, 2 Н), 12,17 (s, 1 Н).
Пример 6: Получение
[(Z)-2-(4-фторфенил)-6-оксо-6-[(4S)-2-оксо-4-фенил-оксазолидин-3-ил]гекс-2-енил] 3-нитробензоата (VIIIa)
Figure 00000034
24,0 г (0,060 моль) (Z)-5-(4-фторфенил)-6-(3-нитробензоилокси)-гекс-4-еновой кислоты (соединение VIa) и 100 мл дихлорметана добавляли в 250 мл реакционную колбу, смесь растворяли при перемешивании и защищали азотом. Добавляли 8,9 г (0,074 моль) пивалоилхлорида. При комнатной температуре медленно по каплям добавляли 15,6 г (0,154 моль) триэтиламина, обеспечивали взаимодействие реакционной смеси в течение 3~4 часов при комнатной температуре после добавления. Затем добавляли 7,8 г (0,048 моль) (S)-4-фенил-2-оксазолидинона (соединение VII) и 2,2 г (0,018 моль) 4-диметиламинопиридина и осуществляли взаимодействие при комнатной температуре в течение 3~4 часов. Взаимодействие контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединение VIa).
РН доводили до 4~6 с помощью 2М хлористоводородной кислоты, указанный раствор отстаивали для разделения на слои, органическую фазу собирали, и водную фазу экстрагировали дихлорметаном (30 мл × 2 раза), органические фазы объединяли. Добавляли водный раствор имидазола (11,1 г имидазола растворяли в 30 мл воды) и перемешивали в течение 1~2 часов, затем 1 раз промывали насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении. Неочищенный продукт перекристаллизовывали в толуоле, фильтровали и сушили с получением 25,3 г соединения VIIIa (ВЭЖХ чистота: 95,1%; выход: 78,0%).
1Н ЯМР (ДМСО-d6): 2,59 (q, 2 Н, J = 7,2 Гц), 3,00-3,18 (m, 2 Н), 4,15 (dd, 1 Н, J = 8,8, 3,6 Гц), 4,72 (t, 1 Н, J = 8,7 Гц), 5,29 (d, 1 Н, J = 13,2 Гц), 5,32 (d, 1 Н, J = 13,2 Гц), 5,45 (dd, 1 Н, J = 8,6, 3,6 Гц), 6,05 (t, 1 Н, J = 7,5 Гц), 7,17 (t, 2 Н, J = 8,9 Гц), 7,26-7,36 (m, 5 H), 7,46-7,50 (m, 2 H), 7,76-7,80 (m, 1 H), 8,19-8,21 (m, 1 H), 8,45-8,47 (m, 2 H).
Пример 7: Получение соединения формулы VIIIa
Figure 00000035
Стадия 1: 18 г (0,080 моль) (Z)-5-(4-фторфенил)-6-гидрокси-гекс-4-еновой кислоты (соединение V) и 90 мл N,N-диметилацетамида добавляли в 250 мл реакционную колбу, смесь растворяли при перемешивании и защищали азотом. 17,8 г (0,096 моль) 3-нитробензоилхлорида добавляли при 25°С~30°С, температуру поддерживали для взаимодействия в течение 2 часов, окончание реакции определяли посредством ВЭЖХ, реакционную смесь оставляли для применения.
Стадия 2: 180 мл дихлорметана и 16,3 г (0,088 моль) 3-нитробензоилхлорида добавляли в 500 мл реакционную колбу и защищали азотом, 32,4 г (0,32 моль) триэтиламина по каплям добавляли при температуре 25°С~30°С, затем реакционную смесь со стадии 1 по каплям добавляли при температуре 25°С~30°С (смесь добавляли в течение 1~2 часов), затем температуру поддерживали для взаимодействия в течение 5 минут после добавления, затем добавляли 11,75 г (0,072 моль) (S)-4-фенил-2-оксазолидинона и 4,4 г (0,036 моль) 4-диметиламинопиридина, температуру поддерживали для взаимодействия в течение 6~7 часов, окончание реакции определяли посредством ВЭЖХ.
90 мл воды добавляли к реакционной смеси, указанный раствор отстаивали для разделения на слои, органическую фазу собирали и водную фазу экстрагировали дихлорметаном (50 мл × 2 раза), органические фазы объединяли. РН органической фазы доводили до 4~6 с помощью 2М хлористоводородной кислоты, затем органическую фазу промывали посредством 90 мл воды до нейтральной реакции, затем добавляли водный раствор имидазола (27 г имидазола растворяли в 50 мл воды), перемешивали в течение 30 минут и отстаивали для разделения на слои, органическую фазу собирали и промывали насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении. Неочищенный продукт перекристаллизовывали в смеси растворителей этилацетат/петролейный эфир (2/3), фильтровали и сушили до получения 30 г соединения VIIIa (ВЭЖХ чистота: 97,5%; выход: 74,0%).
Пример 8: Получение
[(Z,5R)-5-[(S)-(4-фторанилино)-[4-(3-нитробензоил)оксифенил]метил]-2-(4-фторфенил)-6-оксо-6-[(4S)-2-оксо-4-фенил-оксазолидин-3-ил]гекс-2-енил] 3-нитробензоата (XIa)
Figure 00000036
80 мл дихлорметана и 10,5 г (0,055 моль) тетрахлорида титана добавляли в 250 мл реакционную колбу и защищали азотом, температуру снижали, по каплям добавляли 5,2 г (0,018 моль) изопропилата титана при температуре -5°С~0°С, затем раствор перемешивали в течение 30 минут при температуре -5°С~0°С с получением реагента титана. 25,0 г (0,046 моль) соединения формулы VIIIa, 18,3 г (0,050 моль) имина формулы IXa и 350 мл дихлорметана добавляли в 1 л реакционную колбу и растворяли при перемешивании, добавляли 14,3 г (0,111 моль) диизопропилэтиламина и перемешивали, температуру снижали, реагент титана медленно по каплям добавляли при температуре -25°С~-20°С, затем смесь оставляли для взаимодействия в течение 1~2 часов при температуре -25°С~-20°С, взаимодействие контролировали посредством ВЭЖХ до содержания сырьевого материала (соединение VIIIa) <5%.
30 мл уксусной кислоты по каплям добавляли при температуре -25°С~-20°С и перемешивали в течение 5 минут; 150 мл серной кислоты (2М) по каплям добавляли при температуре ниже 10°С и перемешивали в течение 10 минут; указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали дихлорметаном (25 мл × 2 раза), органические фазы объединяли и промывали 3 раза насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении. Неочищенный продукт перекристаллизовывали в толуоле, фильтровали и сушили до получения 21,4 г соединения XIa (ВЭЖХ чистота: 95,3%; выход: 50,4%).
1Н ЯМР (ДМСО-d 6): 2,38-2,45 (m, 1 Н), 2,56-2,64 (m, 1 Н), 4,11 (dd, 1 Н, J = 8,8, 4,7 Гц), 4,62-4,75 (m, 3 Н), 5,15 (s, 2 Н), 5,51 (dd, 1 Н, J = 8,5, 4,6 Гц), 5,98 (t, 1 Н, J = 7,4 Гц), 6,34 (d, 1 Н, J = 9,8 Гц), 6,58-6,62 (m, 2 Н), 6,80 (t, 2 Н, J = 8,9 Гц), 7,13-7,28 (m, 9 Н), 7,45-7,48 (m, 2 Н), 7,54 (d, 2 Н, J = 8,5 Гц), 7,79 (t, 1 Н, J = 7,9 Гц), 7,91 (t, 1 Н, J = 8,0 Гц), 8,18 (d, 1 Н, J = 7,8 Гц), 8,43-8,49 (m, 3 Н), 8,57-8,60 (m, 1 Н), 8,74 (t, 1 Н, J = 1,8 Гц); MS (m/z): 883 [М+Н]+.
Пример 9: Получение соединения формулы XIa
Figure 00000037
150 мл дихлорметана и 13,2 г (0,069 моль) тетрахлорида титана добавляли в 500 мл реакционную колбу, защищали азотом и перемешивали, температуру снижали, 60 мл раствора дихлорметана с растворенным 6,6 г (0,023 моль) изопропилатом титана по каплям добавляли при температуре -5°С~0°С, затем раствор перемешивали в течение 30 минут при температуре -5°С~0°С с получением реагента титана. 30 г (0,058 моль) соединения формулы VIIIa, 23,2 г (0,064 моль) имина формулы IXa и 900 мл дихлорметана добавляли в 2 л реакционную колбу и защищали азотом и растворяли при перемешивании, добавляли 19,5 г диизопропилэтиламина, температуру снижали, медленно по каплям добавляли реагент титана, полученный выше, при температуре -75°С~-70°С, добавление заканчивали не позднее примерно 2 часов, затем обеспечивали взаимодействие реакционной смеси в течение 5 минут при температуре -75°С~-70°С и контролировали посредством ВЭЖХ до исчезновения пятен сырьевого материала (соединение VIIIa).
Раствор 135 мл 20% трифторуксусной кислоты в дихлорметане быстро добавляли при температуре ниже -70°С и перемешивали в течение 1 минуты; быстро по каплям добавляли 240 мл водного раствора серной кислоты (2М) при температуре ниже -30°С, затем раствор перемешивали и нагревали до комнатной температуры; указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали дихлорметаном (100 мл × 2 раза), органические фазы объединяли и промывали насыщенным солевым водным раствором до нейтральной реакции, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении с получением неочищенного продукта. Неочищенный продукт перекристаллизовывали в смеси растворителей этилацетат/петролейный эфир (1/1), фильтровали и сушили до получения 35 г соединения XIa (ВЭЖХ чистота: 98,9%; выход: 68,7%).
Пример 10: Получение
(3R,4S)-4-[4-(3-нитробензоилокси)фенил]-3-[3-(4-фторфенил)-4-(3-нитробензоилокси)бут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она (XIIa),
(3R,4S)-4-(4-гидроксифенил)-3-[3-(4-фторфенил)-4-(3-нитробензоилокси)бут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она (XIIIa),
(3R,4S)-4-(4-триметилсилилоксифенил)-3-[3-(4-фторфенил)-4-(3-нитробензоилокси)бут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она (XIVa)
Figure 00000038
21,0 г (0,025 моль) соединения формулы XIa и 200 мл толуола добавляли в 500 мл реакционную колбу, смесь перемешивали и нагревали, 18,4 г (0,090 моль) N,O-бис(триметилсилил)ацетамида (BSA) добавляли при температуре 50°С~60°С, затем оставляли для взаимодействия в течение 2 часов при данной температуре; затем добавляли 1,0 г (0,003 моль) тетрабутиламмония фторида тригидрата при температуре 50°~60°С и оставляли для взаимодействия в течение 2~3 часов при данной температуре. Взаимодействие контролировали посредством ВЭЖХ до содержания сырьевого материала (соединение XIa) <1,0%.
Температуру снижали ниже 25°С, по каплям добавляли 50 мл ледяной воды и перемешивали в течение 10 минут, затем добавляли 180 мл н-гептана и непрерывно перемешивали в течение 30 минут, твердое вещество выпадало в осадок и его отфильтровывали, и фильтрат отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали толуолом (15 мл × 2 раза), органические фазы объединяли и концентрировали досуха под вакуумом, получали смесь. Некоторое количество смеси отбирали для разделения с получением трех продуктов, т.е. соединений XIIa, XIIIa, XIVa.
Соединение XIIa: 1Н ЯМР (400 МГц, ДМСО-d 6): 2,91-3,08 (m, 2 Н), 3,41 (td, 1 Н, J = 8,5,2,1 Гц), 5,14 (d, 1 Н, J = 2,0 Гц), 5,42 (d, 1 Н, J = 13,1 Гц), 5,46 (d, 1 Н, J = 13,1 Гц), 6,17 (t, 1 Н, J = 7,5 Гц), 7,13-7,26 (m, 6 Н), 7,35 (d, 2 Н, J = 8,5 Гц), 7,48-7,53 (m, 4 Н), 7,78 (t, 1 Н, J = 8,0 Гц), 7,91 (t, 1 Н, J = 8,0 Гц), 8,21 (d, 1 Н, J = 7,8 Гц), 8,44-8,47 (m, 2 Н), 8,51 (d, 1 Н, J = 7,9 Гц), 8,56-8,59 (m, 1 Н), 8,76 (t, 1 Н, J = 1,7 Гц); MS (m/z): 720 [М+Н]+, 742 [M+Na]+.
Соединение XIIIa: 1Н ЯМР (400 МГц, ДМСО-d 6): 2,85-2,98 (m, 2 Н), 3,30 (td, 1 Н, J = 8,5, 2,2 Гц), 4,92 (d, 1 Н, J = 2,2 Гц), 5,40 (d, 1 Н, J = 13,1 Гц), 5,44 (d, 1 Н, J = 13,1 Гц), 6,13 (t, 1 Н, J = 7,5 Гц), 6,73 (d, 2 Н, J = 8,5 Гц), 7,12 (t, 2 Н, J = 8,8 Гц), 7,16-7,21 (m, 6 Н), 7,47-7,50 (m, 2 Н), 7,79 (td, 1 Н, J = 7,7, 0,9 Гц), 8,21 (d, 1 Н, J = 7,8 Гц), 8,45-8,47 (m, 2 Н), 9,52 (s, 1 Н); MS (m/z): 571 [М+Н]+.
Соединение XIVa: 1Н ЯМР (400 МГц, CDCl3): 0,28 (s, 9 Н), 2,97-3,01 (m, 2 Н), 3,30 (td, 1 Н, J = 7,9, 2,2 Гц), 4,72 (d, 1 Н, J = 2,1 Гц), 5,37 (s, 2 Н), 6,07 (t, 1 Н, J = 7,6 Гц), 6,83 (d, 2 Н, J = 8,5 Гц), 6,94 (t, 2 Н, J = 8,6 Гц), 7,03 (t, 2 Н, J = 8,6 Гц), 7,20 (d, 2 Н, J = 8,5 Гц), 7,24-7,28 (m, 2 Н), 7,35-7,38 (m, 2 Н), 7,61 (t, 1 Н, J = 8,0 Гц), 8,23 (d, 1 Н, J = 7,8 Гц), 8,38-8,41 (m, 1 Н), 8,75 (t, 1 Н, J = 1,7 Гц); MS (m/z): 643 [М+Н]+.
Пример 11: Получение
(3R,4S)-4-(4-гидроксифенил)-3-[3-(4-фторфенил)-4-гидрокси-бут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она (I)
Figure 00000039
Смесь соединений формулы XIIa, XIIIa XIVa, полученных в примере 10, и 90 мл ацетона добавляли в 250 мл реакционную колбу и растворяли при перемешивании, добавляли 23 мл (0,069 моль) водного раствора гидроксида лития (3М) при комнатной температуре, и обеспечивали взаимодействие реакционной смеси в течение 2~3 часов при перемешивании, и контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединений XIIa, XIIIa XIVa).
РН доводили до 4~6 посредством 2М хлористоводородной кислоты при комнатной температуре, затем раствор концентрировали под вакуумом (30~40°С) до малого объема, добавляли 100 мл этилацетата и перемешивали в течение 5 минут, указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали этилацетатом (20 мл × 2 раза), органические фазы объединяли, добавляли водный раствор гидрокарбоната натрия (3,8 г гидрокарбоната натрия растворяли в 40 мл воды) и перемешивали в течение 30 минут, указанный раствор отстаивали для разделения на слои. РН органической фазы доводили до примерно 6 с помощью 2М хлористоводородной кислоты, отстаивали для разделения на слои, органическую фазу промывали 1 раз насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали, фильтрат концентрировали досуха при пониженном давлении. Остаток очищали посредством колоночной хроматографии, дважды перекристаллизовывали в смеси растворителей этилацетат и н-гептан, фильтровали и сушили до получения 4,3 г соединения I (ВЭЖХ чистота: 99,2%; выход: 44,7% рассчитан в соответствии с количеством поданного соединения XIa из примера 10).
1Н ЯМР (400 МГц, ДМСО-d 6): δ 2,71-2,84 (m, 2 Н), 3,23 (td, 1 Н, J = 6,4, 2,0 Гц), 4,40 (d, 2 Н, J = 5,3 Гц), 4,87 (t, 1 Н, J = 5,3 Гц), 4,94 (d, 1 Н, J = 2,1 Гц), 5,80 (t, 1 H, J = 7,5 Гц), 6,74 (d, 2 Н, J = 8,5 Гц), 7,11-7,17 (m, 4 Н), 7,20-7,25 (m, 4 Н), 7,39-7,43 (m, 2 Н), 9,50 (s, 1 Н); MS (m/z): 422 [М+Н]+.
Пример 12: Получение 5-(4-фторфенил)-5-гидрокси-6-метокси-6-оксо-гексановой кислоты (IIIa)
Figure 00000040
60 кг (337,9 моль) 6-метокси-5,6-диоксо-гексановой кислоты (соединение IIa) и 180 л тетрагидрофурана добавляли в 2000 л реакционную емкость, смесь защищали азотом и растворяли при перемешивании, температуру снижали до -20°С~-10°С, медленно по каплям добавляли 1М раствор 4-фторфенилмагния бромида в ТГФ (800 л, 800 моль) и температуру поддерживали для взаимодействия в течение 1~2 часов после добавления. Взаимодействие контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединение IIa).
25% водный раствор хлорида аммония (30 кг хлорида аммония, растворенного в 90 л воды) добавляли при температуре -20°С~0°С и перемешивали в течение 5 минут, затем рН доводили до 3~5 с помощью 4М хлористоводородной кислоты при температуре 0°С ~30°С, затем добавляли 400 л н-гептана и перемешивали в течение 5 минут, указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали этилацетатом (80 л × 2 раза), органические фазы объединяли и два раза промывали насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении. Неочищенный продукт перекристаллизовывали в толуоле, фильтровали и сушили до получения 45,6 кг соединения IIIa (ВЭЖХ чистота: 70,8%; выход: 35,4%).
1Н ЯМР (ДМСО-d 6): 1,33-1,43 (m, 2 Н), 1,89-1,96 (m, 1 Н), 1,99-2,04 (m, 1 Н), 2,15 (t, 2 Н, J = 7,6 Гц), 3,61 (s, 3 Н), 5,99 (s, 1 Н), 7,12-7,17 (m, 2 Н), 7,47-7,51 (m, 2 Н), 12,02 (s, 1 Н); MS (m/z): 269 [М-Н]-.
Пример 13: Получение (Z)-5-(4-фторфенил)-6-метокси-6-оксо-гекс-4-еновой кислоты (IVa)
Figure 00000041
40,0 кг (104,9 моль) 5-(4-фторфенил)-5-гидрокси-6-метокси-6-оксо-гексановой кислоты (соединение IIIa) и 200 л дихлорметана добавляли в 300 л реакционную емкость, смесь растворяли при перемешивании и защищали азотом, температуру снижали, 31,2 кг (110,6 моль) трифторметансульфонового ангидрида добавляли при температуре 5~15°С, затем реакционную смесь нагревали с обратным холодильником в течение 1~2 часов и контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединение IIIa).
Температуру снижали, реакцию останавливали посредством добавления 50 л воды при температуре 5°С~15°С, перемешивали в течение 5 минут и отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали дихлорметаном (40 л × 2 раза), органические фазы объединяли и промывали 3 раза насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении с получением 25,2 кг соединения IVa (ВЭЖХ чистота: 86,3%; выход: 82,3%).
1Н ЯМР (ДМСО-d 6): 2,42 (t, 2 Н, J = 7,3 Гц), 2,56 (q, 2 Н, J = 7,3 Гц), 3,74 (s, 3 Н), 6,27 (t, 1 Н, J = 7,4 Гц), 7,18 (t, 2 Н, J = 8,8 Гц), 7,32-7,36 (m, 2 Н), 12,19 (s, 1 Н).
Пример 14: Получение (Z)-5-(4-фторфенил)-6-гидрокси-гекс-4-еновой кислоты (V)
Figure 00000042
25,0 кг (85,6 моль) (Z)-5-(4-фторфенил)-6-метокси-6-оксо-гекс-4-еновой кислоты (соединение IVa) и 100 л толуола добавляли в 500 л реакционную емкость, смесь растворяли при перемешивании и защищали азотом, добавляли 13,0 кг (100,8 моль) диизопропилэтиламина, перемешивали в течение 5 минут. Температуру снижали до -20°С~-15°С, медленно по каплям добавляли 159,7 кг (281,2 моль) DIBAH, растворенного в толуоле (25%), и температуру поддерживали для взаимодействия в течение 20~40 минут после добавления. Взаимодействие контролировали посредством ТСХ до полного взаимодействия сырьевого материала (соединение IVa).
Реакционную смесь медленно по каплям добавляли к водному раствору гидроксида натрия (30,2 кг гидроксида натрия растворяли в 140 л воды) при температуре ниже 15°С и перемешивали в течение 30 минут. Указанный раствор отстаивали для разделения на слои, водную фазу собирали и экстрагировали посредством 50 л дихлорметана, фазу дихлорметана отбрасывали, рН водной фазы доводили до 1~2 при температуре ниже 25°С с помощью 6М хлористоводородной кислоты, добавляли 100 л этилацетата и перемешивали в течение 5 минут. Указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали этилацетатом (40 л × 3 раза), органические фазы объединяли и промывали 2 раза насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении. Неочищенный продукт перекристаллизовывали в толуоле, фильтровали и сушили до получения 15,0 кг соединения V (ВЭЖХ чистота: 92,1%; выход: 72,0%).
1Н ЯМР (ДМСО-d 6): 2,38 (t, 2 Н, J = 7,1 Гц), 2,47 (q, 2H, J = 7,0 Гц), 4,34 (s, 2 Н), 4,75 (brs, 1Н), 5,78 (t, 1 Н, J = 7,2 Гц), 7,13 (t, 2 Н, J = 8,9 Гц), 7,45-7,48 (m, 2 Н), 12,13 (br s, 1Н).
Пример 15: Получение (Z)-5-(4-фторфенил)-6-(3-нитробензоилокси)гекс-4-еновой кислоты (VIa)
Figure 00000043
15,0 кг (61,7 моль) (Z)-5-(4-фторфенил)-6-гидрокси-гекс-4-еновой кислоты (соединение V) и 50 л N,N-диметилацетамида добавляли в 300 л реакционную емкость, смесь растворяли при перемешивании и защищали азотом. Температуру снижали до -5°С~5°С, добавляли 24,9 кг (134,2 моль) 3-нитробензоилхлорида, и температуру поддерживали для взаимодействия в течение 5-6 часов. Взаимодействие контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединение V).
Водный раствор пиридина добавляли (10,4 кг пиридина растворяли в 30 л воды) при температуре 0°С~10°С и перемешивали в течение 30 минут. Затем добавляли водный раствор имидазола (18,0 кг имидазола растворяли в 50 л воды) при температуре 0°С~10°С и перемешивали в течение 1~2 часов, затем добавляли 100 л этилацетата и перемешивали в течение 5 минут. Указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали этилацетатом (20 л × 3 раза), органические фазы объединяли и промывали водой, рН доводили до 3~5 с помощью 2М хлористоводородной кислоты, промывали 1 раз насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении с получением 20,2 кг соединения VIa (ВЭЖХ чистота: 85,6%; выход: 75,2%).
1Н ЯМР (ДМСО-d 6): 2,45 (t, 2 Н, J = 7,1 Гц), 2,59 (q, 2 Н, J = 7,3 Гц), 5,36 (s, 2 Н), 6,09(t, 1 Н, J = 7,4 Гц), 7,18 (t, 2 Н, J = 8,8 Гц), 7,51-7,54 (m, 2 Н), 7,80 (t, 1 Н, J = 7,8 Гц), 8,23(d, 1 Н, J = 7,8 Гц), 8,46-8,48 (m, 2 Н), 12,17 (s, 1 Н).
Пример 16: Получение
[(Z)-2-(4-фторфенил)-6-оксо-6-[(45)-2-оксо-4-фенил-оксазолидин-3-ил]гекс-2-енил] 3-нитробензоата (VIIIa)
Figure 00000044
20,0 кг (45,9 моль) (Z)-5-(4-фторфенил)-6-(3-нитробензоилокси)-гекс-4-еновой кислоты (соединение VIa) и 100 л дихлорметана добавляли в 300 л реакционную емкость, смесь растворяли при перемешивании и защищали азотом. Добавляли 6,8 кг (56,4 моль) пивалоилхлорида. При комнатной температуре медленно по каплям добавляли 12,0 кг (118,8 моль) триэтиламина, обеспечивали взаимодействие реакционной смеси при комнатной температуре в течение 3-4 часов после добавления, затем добавляли 6,0 кг (36,8 моль) (S)-4-фенил-2-оксазолидинона (соединение VII) и 1,7 кг (13,9 моль) 4-диметиламинопиридина и оставляли для взаимодействия при комнатной температуре в течение 4-5 часов. Взаимодействие контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединение VIa).
РН доводили до 4~6 с помощью 2М хлористоводородной кислоты, указанный раствор отстаивали для разделения на слои, органическую фазу собирали, и водную фазу экстрагировали дихлорметаном (25 л × 2 раза), органические фазы объединяли, добавляли водный раствор имидазола (8,6 кг имидазола растворяли в 30 л воды) и перемешивали в течение 2-3 часов, затем 1 раз промывали насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении. Неочищенный продукт перекристаллизовывали в толуоле, фильтровали и сушили до получения 15,2 кг соединения VIIIa (ВЭЖХ чистота: 91,7%; выход: 58,6%).
1Н ЯМР (ДМСО-d 6): 2,59 (q, 2 Н, J = 7,2 Гц), 3,00-3,18 (m, 2 Н), 4,15 (dd, 1 Н, J = 8,8, 3,6 Гц), 4,72 (t, 1 Н, J = 8,7 Гц), 5,29 (d, 1 Н, J = 13,2 Гц), 5,32 (d, 1 Н, J = 13,2 Гц), 5,45 (dd, 1 Н, J = 8,6, 3,6 Гц), 6,05 (t, 1 Н, J = 7,5 Гц), 7,17 (t, 2 Н, J = 8,9 Гц), 7,26-7,36 (m, 5 Н), 7,46-7,50 (m, 2 Н), 7,76-7,80 (m, 1 Н), 8,19-8,21 (m, 1 Н), 8,45-8,47 (m, 2 Н).
Пример 17: Получение
[(Z,5R)-5-[(S)-(4-фторанилино)-[4-(3-нитробензоил)оксифенил]метил]-2-(4-фторфенил)-6-оксо-6-[(4S)-2-оксо-4-фенил-оксазолидин-3-ил]гекс-2-енил] 3-нитробензоата (XIa)
Figure 00000045
60 л дихлорметана и 6,0 кг (31,6 моль) тетрахлорида титана добавляли в 100 л реакционную емкость и защищали азотом, перемешивали, температуру снижали, добавляли 3,0 кг (10,6 моль) тетраизопропил титаната при температуре -5°С~0°С, затем перемешивали в течение 30 минут при температуре -5°С~0°С с получением реагента титана. 15,0 кг (26,6 моль) соединения формулы VIIIa, 10,6 кг (29,1 моль) имина формулы IXa и 220L дихлорметана добавляли в 500 л реакционную емкость и растворяли при перемешивании, добавляли 8,3 кг (64,3 моль) диизопропилэтиламина и перемешивали в течение 10 минут, температуру снижали, медленно по каплям добавляли реагент титана при температуре -25°С~-20°С, температуру поддерживали для взаимодействия в течение 1~2 часов после добавления. Взаимодействие контролировали посредством ВЭЖХ до содержания сырьевого материала (соединение VIIIa) <5%.
18 л уксусной кислоты добавляли при температуре -25°С~-20°С, затем перемешивали в течение 5 минут; 90 л серной кислоты (2М) добавляли по каплям при температуре ниже 10°С, затем перемешивали в течение 10 минут. Указанный раствор отстаивали для разделения на слои, органическую фазу собирали, и водную фазу экстрагировали посредством 30 л дихлорметана. Органические фазы объединяли и промывали 3 раза насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали и выпаривали досуха при пониженном давлении. Неочищенный продукт перекристаллизовывали в толуоле, фильтровали и сушили до получения 12,3 кг соединения XIa (ВЭЖХ чистота: 92,1%; выход: 48,4%).
1Н ЯМР (ДМСО-d 6): 2,38-2,45 (m, 1 Н), 2,56-2,64 (m, 1 Н), 4,11 (dd, 1 Н, J = 8,8, 4,7 Гц), 4,62-4,75 (m, 3 Н), 5,15 (s, 2 Н), 5,51 (dd, 1 Н, J = 8,5, 4,6 Гц), 5,98 (t, 1 Н, J = 7,4 Гц), 6,34 (d, 1 Н, J = 9,8 Гц), 6,58-6,62 (m, 2 Н), 6,80 (t, 2 Н, J = 8,9 Гц), 7,13-7,28 (m, 9 Н), 7,45-7,48 (m, 2 Н), 7,54 (d, 2 Н, J = 8,5 Гц), 7,79 (t, 1 Н, J = 7,9 Гц), 7,91 (t, 1 Н, J = 8,0 Гц), 8,18 (d, 1 Н, J = 7,8 Гц), 8,43-8,49 (m, 3 Н), 8,57-8,60 (m, 1 Н), 8,74 (t, 1 Н, J = 1,8 Гц); MS (m/z): 883 [М+Н]+.
Пример 18: Получение
(3R,4S)-4-[4-(3-нитробензоилокси)фенил]-3-[3-(4-фторфенил)-4-(3-нитробензоилокси)бут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она (XIIa),
(3R,4S)-4-(4-гидроксифенил)-3-[3-(4-фторфенил)-4-(3-нитробензоилокси)бут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она (XIIIa),
(3R,4S)-4-(4-триметилсилилоксифенил)-3-[3-(4-фторфенил)-4-(3-нитробензоилокси)бут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она (XIVa)
Figure 00000046
12,0 кг (12,5 моль) соединения формулы XIa и 120 л толуола добавляли в 300 л реакционную емкость и перемешивали и нагревали, добавляли 10,2 кг (50,0 моль) N,O-бис(триметилсилил)ацетамида (BSA) при 50°С~60°С, оставляли для взаимодействия в течение 2~3 часов при указанной температуре; затем добавляли 0,6 кг (1,9 моль) тетрабутиламмония фторида тригидрата и температуру поддерживали для взаимодействия в течение 2~3 часов. Взаимодействие контролировали посредством ВЭЖХ до содержания сырьевого материала (соединение XIa) <1,0%.
Температуру снижали, 30 л ледяной воды по каплям добавляли при температуре ниже 25°С, раствор перемешивали в течение 10 минут, затем добавляли 100 л н-гептана и перемешивали в течение 30 минут, твердые вещества выпадали в осадок и их отфильтровывали, фильтрат отстаивали для разделения на слои, органическую фазу собирали, и водную фазу экстрагировали толуолом (10 л × 2 раза). Органические фазы объединяли и концентрировали досуха под вакуумом с получением смеси. Некоторое количество смеси отбирали для разделения с получением трех продуктов, т.е. соединений XIIa, XIIIa, XIVa.
Соединение XIIa: 1Н ЯМР (400 МГц, ДМСО-d 6): 2,91-3,08 (m, 2 Н), 3,41 (td, 1 Н, J = 8,5, 2,1 Гц), 5,14 (d, 1 Н, J = 2,0 Гц), 5,42 (d, 1 Н, J = 13,1 Гц), 5,46 (d, 1 Н, J = 13,1 Гц), 6,17 (t, 1 Н, J = 7,5 Гц), 7,13-7,26 (m, 6 Н), 7,35 (d, 2 Н, J = 8,5 Гц), 7,48-7,53 (m, 4 Н), 7,78 (t, 1 Н, J = 8,0 Гц), 7,91 (t, 1 Н, J = 8,0 Гц), 8,21 (d, 1 Н, J = 7,8 Гц), 8,44-8,47 (m, 2 Н), 8,51 (d, 1 Н, J = 7,9 Гц), 8,56-8,59 (m, 1 Н), 8,76 (t, 1 Н, J = 1,7 Гц); MS (m/z): 720 [М+Н]+, 742 [M+Na]+.
Соединение XIIIa: 1Н ЯМР (400 МГц, ДМСО-d 6): 2,85-2,98 (m, 2 Н), 3,30 (td, 1 Н, J = 8,5, 2,2 Гц), 4,92 (d, 1 H, J = 2,2 Гц), 5,40 (d, 1 Н, J = 13,1 Гц), 5,44 (d, 1 Н, J = 13,1 Гц), 6,13 (t, 1 Н, J = 7,5 Гц), 6,73 (d, 2 Н, J = 8,5 Гц), 7,12 (t, 2 Н, J = 8,8 Гц), 7,16-7,21 (m, 6 Н), 7,47-7,50 (m, 2 Н), 7,79 (td, 1 Н, J = 7,7, 0,9 Гц), 8,21 (d, 1 Н, J = 7,8 Гц), 8,45-8,47 (m, 2 Н), 9,52 (s, 1 Н); MS (m/z): 571 [М+Н]+.
Соединение XIVa: 1Н ЯМР (400 МГц, CDCl3): 0,28 (s, 9 Н), 2,97-3,01 (m, 2 Н), 3,30 (td, 1 Н, J = 7,9, 2,2 Гц), 4,72 (d, 1 Н, J = 2,1 Гц), 5,37 (s, 2 Н), 6,07 (t, 1 Н, J = 7,6 Гц), 6,83 (d, 2 Н, J = 8,5 Гц), 6,94 (t, 2 Н, J = 8,6 Гц), 7,03 (t, 2 Н, J = 8,6 Гц), 7,20 (d, 2 Н, J = 8,5 Гц), 7,24-7,28 (m, 2 Н), 7,35-7,38 (m, 2 Н), 7,61 (t, 1 Н, J = 8,0 Гц), 8,23 (d, 1 Н, J = 7,8 Гц), 8,38-8,41 (m, 1 Н), 8,75 (t, 1 Н, J = 1,7 Гц); MS (m/z): 643 [М+Н]+.
Пример 19: Получение
(3R,4S)-4-(4-гидроксифенил)-3-[3-(4-фторфенил)-4-гидроксибут-2(Z)-енил]-1-(4-фторфенил)азетидин-2-она (I)
Figure 00000047
Смесь соединений XIIa, XIIIa, XIVa, полученных в примере 18, и 50 л ацетона добавляли в 100 л реакционную емкость и растворяли при перемешивании, добавляли 13 л (39,0 моль) водного раствора гидроксида лития (3М) при комнатной температуре и оставляли для взаимодействия в течение 0,5~1 часа при перемешивании. Взаимодействие контролировали посредством ТСХ до исчезновения пятен сырьевого материала (соединение XIIa, XIIIa, XIVa).
РН доводили до 4~6 с помощью 2М хлористоводородной кислоты при комнатной температуре, затем раствор концентрировали под вакуумом (при 30°С~40°С) до малого объема, добавляли 60 л этилацетата и перемешивали в течение 5 минут, затем указанный раствор отстаивали для разделения на слои, органическую фазу собирали, водную фазу экстрагировали этилацетатом (10 л × 2 раза). Органические фазы объединяли, добавляли водный раствор бикарбоната натрия (2,0 кг бикарбоната натрия растворяли в 20 л воды), перемешивали в течение 30 минут, указанный раствор отстаивали для разделения на слои, рН органической фазы доводили до примерно 6 с помощью 2М хлористоводородной кислоты, указанный раствор отстаивали для разделения на слои, органическую фазу промывали 1 раз насыщенным солевым водным раствором, сушили над безводным сульфатом натрия, фильтровали, фильтрат концентрировали досуха при пониженном давлении. Остаток очищали посредством колоночной хроматографии, дважды кристаллизовали в смеси растворителей этилацетата и н-гептана, фильтровали и сушили до получения 2,1 кг соединения I (ВЭЖХ чистота: 98,9%; выход: 39,4% рассчитан в соответствии с количеством поданного соединения XIa примера 18).
1Н ЯМР (400 МГц, ДМСО-d 6): δ 2,71-2,84 (m, 2 Н), 3,23 (td, 1 Н, J = 6,4, 2,0 Гц), 4,40 (d, 2 Н, J = 5,3 Гц), 4,87 (t, 1 Н, J = 5,3 Гц), 4,94 (d, 1 Н, J = 2,1 Гц), 5,80 (t, 1 Н, J = 7,5 Гц), 6,74 (d, 2 Н, J = 8,5 Гц), 7,11-7,17 (m, 4 Н), 7,20-7,25 (m, 4 Н), 7,39-7,43 (m, 2 Н), 9,50 (s, 1 Н); MS (m/z): 422 [М+Н]+.

Claims (104)

1. Соединение формулы V:
Figure 00000048
2. Способ получения соединения, представленного формулой V, включающий: селективное восстановление сложного эфира формулы IV до спирта формулы V под действием восстанавливающего агента:
Figure 00000049
где R1 представляет собой C16 алкил; предпочтительно метил, этил или изопропил.
3. Способ по п. 2, характеризующийся тем, что растворитель для реакции выбран из дихлорметана, тетрагидрофурана, толуола или диоксана, предпочтительно толуола.
4. Способ по любому из пп. 2, 3, характеризующийся тем, что восстанавливающий агент представляет собой гидрид диизобутилалюминия (DIBAH).
5. Способ по любому из пп. 2-4, характеризующийся тем, что молярное соотношение соединения формулы IV к восстанавливающему агенту составляет 1:2,5~5,0, предпочтительно 1:3,0~4,0.
6. Соединение формулы IV:
Figure 00000050
где R1 представляет собой C16 алкил; предпочтительно метил, этил или изопропил.
7. Способ получения соединения, представленного формулой IV, включающий: осуществление стереоселективной дегидратации третичного спирта формулы III с получением (Z)-α,β-ненасыщенного сложного эфира формулы IV под действием дегидратирующего агента:
Figure 00000051
где R1 представляет собой C16 алкил; предпочтительно метил, этил или изопропил.
8. Способ по п. 7, характеризующийся тем, что указанный дегидратирующий агент выбран из концентрированной серной кислоты, п-толуолсульфоновой кислоты, фосфорной кислоты, трифторметансульфонового ангидрида или метансульфоновой кислоты, предпочтительно трифторметансульфонового ангидрида.
9. Способ по любому из пп. 7, 8, характеризующийся тем, что молярное соотношение соединения формулы III к дегидрирующему агенту составляет 1:1,0~3,0, предпочтительно 1:1,0~1,5.
10. Способ по любому из пп. 7-9, характеризующийся тем, что растворитель для реакции выбран из дихлорметана или толуола, предпочтительно дихлорметана.
11. Соединение формулы III:
Figure 00000052
где R1 представляет собой C16 алкил; предпочтительно метил, этил или изопропил.
12. Способ получения соединения, представленного формулой III, включающий: осуществление селективного присоединения Гриньяра кетона формулы II с галогенидом 4-фторфенилмагния, который применяют в качестве реактива Гриньяра, с получением третичного спирта формулы III:
Figure 00000053
где R1 представляет собой C16 алкил, предпочтительно метил, этил или изопропил; X представляет собой хлор, бром или йод.
13. Способ по п. 12, отличающийся тем, что галогенид 4-фторфенилмагния представляет собой бромид 4-фторфенилмагния.
14. Способ по любому из пп. 12, 13, характеризующийся тем, что молярное соотношение соединения формулы II к галогениду 4-фторфенилмагния составляет 1:1,0~5,0, предпочтительно 1:1,1~3,0.
15. Способ по любому из пп. 12-14, характеризующийся тем, что температуру реакции поддерживают между -78°С~-5°С, предпочтительно -50°С~-10°С.
16. Способ получения соединения, представленного формулой (I),
Figure 00000054
характеризующийся тем, что включает следующие стадии:
(a) взаимодействие соединения формулы V с защищающим гидроксил соединением с получением соединения формулы VI:
Figure 00000055
где R2 представляет собой группу, защищающую гидроксил спирта;
(b) превращение карбоновой кислоты формулы VI в смешанный ангидрид или ацилгалогенид с последующим взаимодействием с (S)-4-фенил-2-оксазолидоном формулы VII, который применяют в качестве хирального вспомогательного вещества, с получением производного оксазолидона формулы VIII:
Figure 00000056
где карбоновую кислоту формулы VI подвергают взаимодействию с ацилирующим агентом с получением смешанного ангидрида; или карбоновую кислоту формулы VI подвергают взаимодействию с тригалогенидом фосфора, пентагалогенидом фосфора, дихлорсульфаном (SOCl2), оксалилхлоридом ((COCl)2) или фосгеном (COCl2) с получением ацилгалогенида; при этом X представляет собой хлор или бром;
или описанные выше стадию (a) и стадию (b) можно проводить в одну стадию, соединение формулы VIII может быть получено из соединения формулы V с помощью однореакторного способа с применением следующих определенных стадий:
(ab) взаимодействие соединения формулы V с защищающим гидроксил агентом с получением соединения формулы VI, дальнейшее превращение карбоновой кислоты формулы VI в смешанный ангидрид или ацилгалогенид без отделения и очистки, затем взаимодействие с (S)-4-фенил-2-оксазолидоном формулы VII, который применяют в качестве хирального вспомогательного вещества, с получением производного оксазолидона формулы VIII:
Figure 00000057
где R2 представляет собой группу, защищающую гидроксид спирта; и
где карбоновую кислоту формулы VI подвергают взаимодействию с ацилирующим агентом с получением смешанного ангидрида; или карбоновую кислоту формулы VI подвергают взаимодействию с тригалогенидом фосфора, пентагалогенидом фосфора, дихлорсульфаном (SOCl2), оксалилхлоридом ((COCl)2) или фосгеном (COCl2) с получением ацилгалогенида; при этом X представляет собой хлор или бром;
(c) в присутствии кислот Льюиса (тетрахлорида титана (TiCl4) и тетраизопропил
титаната) и третичного амина взаимодействие производного оксазолидона формулы VIII с имином формулы IX с получением продукта присоединения формулы XI:
Figure 00000058
где R2 и R3 представляют собой защищающие гидроксил группы, которые могут быть одинаковыми или разными;
(d) циклизацию продукта присоединения формулы XI с N,O-бис(триметилсилил)ацетамидом (BSA) и фторидом тетрабутиламмония (TBAF) с получением β-лактамов формул XII, XIII и XIV:
Figure 00000059
(e) получение соединения формулы (I) посредством снятия защиты смеси
соединений формул XII, XIII и XIV, полученных на стадии (d):
Figure 00000060
17. Способ по п. 16, характеризующийся тем, что указанный способ дополнительно включает следующую стадию перед стадией (а) или (ab):
(а''') под действием восстанавливающего агента сложный эфир формулы IV селективно восстанавливают до спирта формулы V:
Figure 00000061
где R1 представляет собой C16 алкил; предпочтительно метил, этил или изопропил.
18. Способ по п. 17, характеризующийся тем, что указанный способ дополнительно включает следующую стадию перед стадией (а'''):
(а'') под действием дегидратирующего агента третичный спирт формулы III подвергают стереоселективной дегидратации с получением (Z)-α,β-ненасыщенного сложного эфира формулы IV:
Figure 00000062
где R1 представляет собой С1-C6 алкил; предпочтительно метил, этил или
изопропил.
19. Способ по п. 18, характеризующийся тем, что указанный способ дополнительно включает следующую стадию перед стадией (а''):
(а') осуществление селективного присоединения Гриньяра кетона формулы II с галогенидом 4-фторфенилмагния с получением третичного спирта формулы III:
Figure 00000063
где R1 представляет собой C16 алкил, предпочтительно метил, этил или изопропил; X представляет собой галоген, предпочтительно хлор, бром или йод.
20. Способ по любому из пп. 16-19, характеризующийся тем, что на стадии (а) или (ab) группа, защищающая гидроксил спирта R2, выбрана из следующих групп: ацетил, замещенный или незамещенный бензоил, предпочтительно замещенный бензоил; где замещенный замещен галогеном, алкилом или нитрогруппой, предпочтительно замещен нитрогруппой, более предпочтительно замещен нитрогруппой в положении 3.
21. Способ по п. 20, характеризующийся тем, что на стадии (а) молярное соотношение соединения V к защищающему гидроксил агенту составляет 1:1,0~3,0, предпочтительно 1:1,2~2,3.
22. Способ по п. 20, характеризующийся тем, что на стадии (ab) молярное соотношение соединения V к защищающему гидроксил агенту составляет 1:1,0~3,0, предпочтительно 1:1,0~1,5.
23. Способ по п. 21 или 22, характеризующийся тем, что растворитель для реакции на стадии (а) или растворитель для реакции синтеза соединения формулы VI из соединения формулы V на стадии (ab) выбран из N,N-диметилформамида (ДМФА), N,N-диметилацетамида (DMA), диметилсульфоксида (ДМСО), 1,3-диметилпропиленмочевины (DMPU) или гексаметилфосфорамида (НМРА), предпочтительно N,N-диметилацетамида (DMA).
24. Способ по любому из пп. 16-19, характеризующийся тем, что на стадии (b) или стадии (ab) ацилирующий агент, который применяют для образования смешанного ангидрида, выбран из пивалоилхлорида, 3-нитробензоилхлорида или изобутилхлорформиата, предпочтительно пивалоилхлорида или 3-нитробензоилхлорида.
25. Способ по п. 24, характеризующийся тем, что на стадии (b) молярное соотношение соединения формулы VI к ацилирующему агенту составляет 1:1,0~2,0, предпочтительно 1:1,1~1,6; молярное соотношение соединения формулы VI к (S)-4-фенил-2-оксазолидону составляет 1:0,5~1,5, предпочтительно 1:0,8~1,1.
26. Способ по п. 24, характеризующийся тем, что на стадии (ab) молярное соотношение соединения формулы V к ацилирующему агенту составляет 1:1,0~2,0, предпочтительно 1:1,0~1,5; молярное соотношение соединения формулы V к (S)-4-фенил-2-оксазолидону составляет 1:0,5~1,5, предпочтительно 1:0,7~1,1.
27. Способ по любому из пп. 16-19, характеризующийся тем, что на стадии (с)
R2 определен согласно п. 20;
R3 выбран из следующих групп: ацетил, замещенный или незамещенный бензоил, предпочтительно замещенный бензоил; где замещенный замещен галогеном, алкилом или нитрогруппой, предпочтительно замещен нитрогруппой, более предпочтительно замещен нитрогруппой в положении 3; и
третичный амин представляет собой диизопропилэтиламин (DIPEA);
молярное соотношение соединения формулы VIII к имину формулы IX составляет 1:1,0~2,0, предпочтительно 1:1,0~1,2; где температуру реакции поддерживают между -90°С~0°C, предпочтительно -80°C~20°C.
28. Способ по п. 27, отличающийся тем, что после окончания взаимодействия на стадии (с) проводят реакцию гашения после обработки, и спирты, кислоты или смешанные жидкие формы кислот, разбавленных органическими растворителями, можно применять в реакции гашения после обработки; при этом спирты выбраны из метанола, этанола, пропанола, изопропанола, третичного бутанола, предпочтительно изопропанола; при этом кислоты выбраны из неорганических кислот и органических кислот, включая хлористоводородную кислоту, серную кислоту, азотную кислоту, бромистоводородную кислоту, муравьиную кислоту, уксусную кислоту, трифторуксусную кислоту, метансульфоновую кислоту, трифторметансульфоновую кислоту, бензойную кислоту, бензолсульфоновую кислоту, п-толуолсульфоновую кислоту, лимонную кислоту, малеиновую кислоту или винную кислоту, предпочтительно органических кислот, включая муравьиную кислоту, уксусную кислоту, трифторуксусную кислоту, метансульфоновую кислоту, трифторметансульфоновую кислоту, бензойную кислоту, бензолсульфоновую кислоту, п-толуолсульфоновую кислоту, лимонную кислоту, малеиновую кислоту или винную кислоту, более предпочтительно уксусной кислоты или трифторуксусной кислоты.
29. Способ по любому из пп. 16-19, отличающийся тем, что растворитель реакции на стадии (d) выбран из ацетонитрила или толуола, предпочтительно толуола; молярное соотношение соединения формулы XI к N,O-бис(триметилсилил)ацетамиду (BSA) составляет 1:1,0~5,0, предпочтительно 1:2,0~4,0; и молярное соотношение соединения формулы XI к тригидрату фторида тетрабутиламмония (TBAF) составляет 1:0,1~0,5, предпочтительно 1:0,1~0,3.
30. Способ по любому из пп. 16-19, характеризующийся тем, что на стадии (е) растворитель, применяемый для снятия защиты смеси соединений формул XII, XIII и XIV, выбран из тетрагидрофурана или ацетона, предпочтительно ацетона; щелочь выбрана из водного раствора гидроксида лития, водного раствора гидроксида натрия или водного раствора гидроксида калия, предпочтительно водного раствора гидроксида лития; молярное соотношение щелочи к соединению формулы XI на стадии (d) составляет 3,0~5,0:1.
31. Способ по п. 17, характеризующийся тем, что на стадии (а''') молярное соотношение соединения формулы IV к восстанавливающему агенту составляет 1:2,5~5,0, предпочтительно 1:3,0~4,0; восстанавливающий агент выбран из гидрида диизобутилалюминия (DIBAH); растворитель для реакции выбран из дихлорметана, тетрагидрофурана, толуола или диоксана, предпочтительно толуола.
32. Способ по п. 18, характеризующийся тем, что на стадии (а'') молярное соотношение соединения формулы III к дегидрирующему агенту составляет 1:1,0~3,0, предпочтительно 1:1,0~1,5; указанный дегидратирующий агент выбран из концентрированной серной кислоты, п-толуолсульфоновой кислоты, фосфорной кислоты, трифторметансульфонового ангидрида или метансульфоновой кислоты, предпочтительно трифторметансульфонового ангидрида; растворитель для реакции выбран из дихлорметана или толуола, предпочтительно дихлорметана.
33. Способ по п. 19, характеризующийся тем, что на стадии (а') молярное соотношение соединения формулы II к галогениду 4-фторфенилмагния составляет 1:1,0~5,0, предпочтительно 1:1,1~3,0; галогенид 4-фторфенилмагния представляет собой бромид 4-фторфенилмагния; температуру реакции поддерживают между -78°С~5°С, предпочтительно -50°С~10°С.
34. Способ получения соединения, представленного формулой (I)
Figure 00000064
характеризующийся тем, что включает следующие стадии:
(1) в растворителе тетрагидрофуране осуществление селективного присоединения Гриньяра кетона формулы II с бромидом 4-фторфенилмагния, который применяют в качестве реактива Гриньяра, с получением третичного спирта формулы III:
Figure 00000065
(2) в растворителе дихлорметане третичный спирт формулы III стереоселективно дегидрируют под действием трифторметансульфонового ангидрида, который применяют в качестве дегидрирующего агента, с получением (Z)-α,β-ненасыщенного сложного эфира формулы IV:
Figure 00000066
(3) в растворителе толуоле карбоксильная группа формулы IV образует соль с диизопропилэтиламином (DIPEA), затем сложноэфирную группу формулы IV селективно восстанавливают до спирта формулы V под действием гидрида диизобутилалюминия (DIBAH), который применяют в качестве восстанавливающего агента:
Figure 00000067
(4) в растворителе N,N-диметилацетамиде взаимодействие соединения формулы V с защищающим гидроксил агентом (R2Cl) с получением соединения формулы VI:
Figure 00000068
где гидроксилзащищающая группа R2 предпочтительно представляет собой 3-нитробензоил;
(5) взаимодействие карбоновой кислоты формулы VI с ацилирующим агентом с получением смешанного ангидрида, затем взаимодействие полученного смешанного ангидрида с (S)-4-фенил-2-оксазолидоном формулы VII, который применяют в качестве хирального вспомогательного вещества при катализе 4-диметиламинопиридином (DMAP) с получением производного оксазолидона формулы VIII:
Figure 00000069
где ацилирующий агент предпочтительно представляет собой пивалоилхлорид или 3-нитробензоилхлорид;
(6) в присутствии кислот Льюиса (тетрахлорида титана (TiCl4) и тетраизопропил титаната) и третичного амина, диизопропилэтиламина (DIPEA), взаимодействие производного оксазолидона формулы VIII с имином формулы IX с получением продукта присоединения формулы XI:
Figure 00000070
где защищающие гидроксил группы R2 и R3 предпочтительно представляют собой 3-нитробензоил;
(7) в растворителе толуоле осуществление циклизации соединения формулы XI посредством применения N,O-бис(триметилсилил)ацетамида (BSA) и тетрабутиламмония фторида (TBAF) с получением β-лактамов формул XII, XIII и XIV:
Figure 00000071
(8) в растворителе ацетоне получение соединения формулы (I) посредством снятия защиты смеси соединений формул XII, XIII и XIV, полученных на стадии (7) под действием водного раствора гидроксида лития:
Figure 00000072
35. Применение любого соединения формулы V по п. 1, соединения формулы IV по п. 6 и соединения формулы III по п. 11 для получения соединения формулы I
Figure 00000073
RU2016151618A 2014-06-09 2015-06-05 Способ получения азетидиноновых соединений и производных азетидиноновых соединений RU2650687C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410251262.5 2014-06-09
CN201410251262.5A CN105294426B (zh) 2014-06-09 2014-06-09 氮杂环丁酮化合物制备方法及其中间体
PCT/CN2015/080893 WO2015188727A1 (zh) 2014-06-09 2015-06-05 氮杂环丁酮化合物制备方法及其中间体

Publications (1)

Publication Number Publication Date
RU2650687C1 true RU2650687C1 (ru) 2018-04-17

Family

ID=54832903

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016151618A RU2650687C1 (ru) 2014-06-09 2015-06-05 Способ получения азетидиноновых соединений и производных азетидиноновых соединений

Country Status (6)

Country Link
US (2) US9926268B2 (ru)
EP (1) EP3153496B1 (ru)
JP (1) JP6321829B2 (ru)
CN (1) CN105294426B (ru)
RU (1) RU2650687C1 (ru)
WO (1) WO2015188727A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107382698A (zh) * 2016-05-14 2017-11-24 深圳瀜新生物科技有限公司 一种用作神经保护剂的化合物的制备方法
CN110790689B (zh) * 2019-11-11 2022-04-01 江西师范大学 一种1,1-二氟-2-异腈-乙基苯基砜类化合物的合成方法
CN113185455B (zh) * 2020-01-14 2022-11-22 新发药业有限公司 一种2-羟基-6-三氟甲基吡啶的制备方法
CA3222897A1 (en) * 2021-06-17 2022-12-22 Xufei LI Hybutimibe intermediate and preparation method therefor
CN114957207B (zh) * 2022-04-18 2023-10-03 中国人民解放军海军军医大学 一种水溶性光催化剂在光催化反应中的应用
CN117186018B (zh) * 2023-09-07 2024-07-19 浙江海正药业股份有限公司 一种合成海博麦布关键中间体的新方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144522A (zh) * 1994-03-25 1997-03-05 先灵公司 用作降低血胆固醇药物的取代氮杂环丁酮化合物
US5846966A (en) * 1993-09-21 1998-12-08 Schering Corporation Combinations of hydroxy-substituted azetidinone compounds and HMG CoA Reductase Inhibitors
WO2011017907A1 (zh) * 2009-08-11 2011-02-17 浙江海正药业股份有限公司 氮杂环丁酮类化合物及医药应用
EA017349B1 (ru) * 2007-01-24 2012-11-30 Крка Способ получения эзетимиба и его производных
WO2014036956A1 (zh) * 2012-09-05 2014-03-13 浙江海正药业股份有限公司 氮杂环丁烷酮化合物的晶型及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016424A1 (en) * 1995-11-02 1997-05-09 Schering Corporation Process for preparing 1-(4-fluorophenyl)-3(r)-(3(s)-hydroxy-3-([phenyl or 4-fluorophenyl])-propyl)-4(s)-(4-hydroxyphenyl)-2-azetidinone
US5789413A (en) * 1996-02-01 1998-08-04 Merck Frosst Canada, Inc. Alkylated styrenes as prodrugs to COX-2 inhibitors
US6207822B1 (en) * 1998-12-07 2001-03-27 Schering Corporation Process for the synthesis of azetidinones
AU2004308332B2 (en) 2003-12-23 2008-04-10 Merck Sharp & Dohme Corp. Anti-hypercholesterolemic compounds
SE0403003D0 (sv) 2004-12-09 2004-12-09 Astrazeneca Ab Chemical compound 1
EP2149547A1 (en) * 2008-07-30 2010-02-03 LEK Pharmaceuticals D.D. Process for the synthesis of ezetimibe and intermediates useful therefor
CN104780918B (zh) * 2013-03-01 2017-03-08 浙江海正药业股份有限公司 用于预防和/或治疗丙型肝炎的氮杂环丁酮化合物及其组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846966A (en) * 1993-09-21 1998-12-08 Schering Corporation Combinations of hydroxy-substituted azetidinone compounds and HMG CoA Reductase Inhibitors
CN1144522A (zh) * 1994-03-25 1997-03-05 先灵公司 用作降低血胆固醇药物的取代氮杂环丁酮化合物
EA017349B1 (ru) * 2007-01-24 2012-11-30 Крка Способ получения эзетимиба и его производных
WO2011017907A1 (zh) * 2009-08-11 2011-02-17 浙江海正药业股份有限公司 氮杂环丁酮类化合物及医药应用
WO2014036956A1 (zh) * 2012-09-05 2014-03-13 浙江海正药业股份有限公司 氮杂环丁烷酮化合物的晶型及其制备方法

Also Published As

Publication number Publication date
EP3153496A1 (en) 2017-04-12
EP3153496A4 (en) 2018-01-24
WO2015188727A1 (zh) 2015-12-17
JP6321829B2 (ja) 2018-05-09
US20180099930A1 (en) 2018-04-12
CN105294426A (zh) 2016-02-03
CN105294426B (zh) 2019-05-14
EP3153496B1 (en) 2019-05-01
US9926268B2 (en) 2018-03-27
US20170121281A1 (en) 2017-05-04
JP2017523137A (ja) 2017-08-17
US10364219B2 (en) 2019-07-30

Similar Documents

Publication Publication Date Title
RU2650687C1 (ru) Способ получения азетидиноновых соединений и производных азетидиноновых соединений
CA2698245C (en) Process and intermediates for preparing integrase inhibitors
JPWO2006006496A1 (ja) アズレン誘導体の製造方法及びその合成中間体
WO2009141837A2 (en) Process for preparing posaconazole and intermediates thereof
JPWO2004099149A1 (ja) 2−クロロ−5−フルオロ−3−置換ピリジンまたはその塩の製造方法
KR101156588B1 (ko) 에제티밉의 제조방법 및 이에 사용되는 중간체
EP2105442A1 (en) Method for producing c-glycoside derivative and synthetic intermediate thereof
WO2004099132A2 (en) Process for the preparation of trans-isomers of diphenylazetidinone derivatives
CN1989147A (zh) D-赤型-2,2-二氟-2-脱氧-1-氧杂核糖衍生物的制备方法
CA3030555A1 (en) Intermediates in processes for the preparation of 4-alkoxy-3-(acyl or alkyl)oxypicolinamides_____________
WO2009067960A2 (en) A method of manufacturing (3r,4s)-l-(4-fluorophenyl)-3-[(3s)-3-(4-fluorophenyl)-3- hydroxypropyl)]-4-(4-hydroxyphenyl)-2-azetidinone and its intermediates
WO2008090046A1 (en) Alternate process for preparing 3,5-di-omicron-acyl-2-fluoro-2-c-methyl-d-ribono-gamma-lactone
JP7128629B2 (ja) ルビプロストンの製造方法
EP0454871B1 (en) Alpha, beta-unsaturated ketone and ketoxime derivative
KR101868618B1 (ko) (5-히드록시-4-옥소-4h-피란-2-일)메틸(2e)-3-(1,3-벤조디옥솔-5-일)아크릴레이트 화합물의 신규 제조 방법 및 이에 사용되는 신규 중간체
WO2004099136A1 (ja) ピロリジン誘導体の製造方法
JPH0940692A (ja) グリシン誘導体の製造方法
RU2435758C1 (ru) Способ получения этилового эфира 3-оксо-3-(2,6-дихлорпиридин-3-ил) пропановой кислоты
CA3223714A1 (en) Process for the preparation of a cyp11a1 inhibitor and intermediates thereof
JP2023167001A (ja) 2-メチル-2-フェニルプロパン酸誘導体の製造方法
KR101003822B1 (ko) 도세탁셀의 제조방법 및 도세탁셀의 제조를 위한 신규한중간체
JPH08319280A (ja) チアゾリジン誘導体の製造法
JP2763214B2 (ja) L−プロリン誘導体の製造法
JP2012041277A (ja) 1,3位−2置換ピロリジン化合物またはその塩の改良された製造法
JPH0577670B2 (ru)