RU2649380C2 - Способ и устройство для детектирования повернутых сегментов в многосегментном стержне, перемещаемом в машине, используемой в табачном производстве - Google Patents

Способ и устройство для детектирования повернутых сегментов в многосегментном стержне, перемещаемом в машине, используемой в табачном производстве Download PDF

Info

Publication number
RU2649380C2
RU2649380C2 RU2015144849A RU2015144849A RU2649380C2 RU 2649380 C2 RU2649380 C2 RU 2649380C2 RU 2015144849 A RU2015144849 A RU 2015144849A RU 2015144849 A RU2015144849 A RU 2015144849A RU 2649380 C2 RU2649380 C2 RU 2649380C2
Authority
RU
Russia
Prior art keywords
rod
segment
optical sensors
segments
scanning
Prior art date
Application number
RU2015144849A
Other languages
English (en)
Other versions
RU2015144849A (ru
Inventor
Ханс-Райнер ХОФФМАНН
Original Assignee
Интернэшнл Тобакко Машинери Поланд Сп. з о.о.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50588647&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2649380(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Интернэшнл Тобакко Машинери Поланд Сп. з о.о. filed Critical Интернэшнл Тобакко Машинери Поланд Сп. з о.о.
Publication of RU2015144849A publication Critical patent/RU2015144849A/ru
Application granted granted Critical
Publication of RU2649380C2 publication Critical patent/RU2649380C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3412Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by means of light, radiation or electrostatic fields
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/343Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by mechanical means, e.g. feelers
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0229Filter rod forming processes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0275Manufacture of tobacco smoke filters for filters with special features
    • A24D3/0287Manufacture of tobacco smoke filters for filters with special features for composite filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manufacturing Of Cigar And Cigarette Tobacco (AREA)

Abstract

Изобретение относится к способу и устройству для детектирования повернутых сегментов в многосегментном стержне, перемещаемом в машине, используемой в табачном производстве. Способ детектирования повернутых сегментов, имеющих длину, близкую к их диаметру, в непрерывном многосегментном стержне, перемещаемом в машине, используемой в табачном производстве, включает в себя генерирование сигнала об ошибке формы указанного непрерывного многосегментного стержня (CR1, CR1'), причем стержень (CR1, CR1') содержит множество сегментов (2, 3, 4), расположенных друг за другом в общей обертке, при этом стержень (CR1, CR1'), перемещаемый в направлении вдоль его оси, одновременно сканируют посредством по меньшей мере двух линейных оптических датчиков (5) так, что плоскость сканирования перпендикулярна оси стержня (CR1, CR1'), направления сканирования двух оптических датчиков (5) ориентированы под углом от 40° до 60° друг к другу и плоскости сканирования датчиков (5') по существу компланарны, при этом измеряют диаметр стержня (CR1, CR1') путем повторяемых сканирований с такой частотой, что самый короткий сегмент стержня (CR1, CR1') сканируется по меньшей мере однократно, сравнивают результаты сканирований с предварительно определенным эталонным значением и каждое расхождение между любым из результатов сканирований и предварительно определенным значением преобразуют в сигнал об ошибке формы. Техническим результатом изобретения является создание способа и устройства для быстрого и надежного детектирования повернутых сегментов так, чтобы детектирование происходило независимо от направления поворота сегментов. 3 н. и 6 з.п. ф-лы, 14 ил.

Description

Изобретение относится к способу и устройству для детектирования повернутых сегментов в многосегментном стержне, перемещаемом в машине, используемой в табачном производстве.
Фильтры, используемые в табачной промышленности, могут быть изготовлены из одного материала или же составлены из многих материалов с разными физическими свойствами.
В сигаретах, производимых в настоящее время, все чаще используются фильтры, включающие в себя несколько сегментов с различающимися фильтрационными свойствами. Специалистам известны машины для изготовления отдельных многосегментных фильтровых стержней из непрерывных многосегментных фильтровых стержней.
Указанные машины соединяют различные сегменты, поступающие из разных подающих устройств, причем сегменты формируют нарезанием фильтровых стержней в ходе их перемещения, например, по барабанному конвейеру посредством режущей головки с дисковыми ножами. В зависимости от типа машины отдельные сегменты располагаются бок о бок или друг за другом, формируя в конечном счете непрерывный многосегментный стержень, который режут на отдельные многосегментные стержни. На последующих этапах производственного процесса многосегментные стержни режут на отдельные многосегментные фильтры, вставляемые в отдельные сигареты.
Важным аспектом производства многосегментных стержней является их качество. Высокое качество достигается за счет обеспечения точных размеров сегментов, т.е. их диаметра и длины, а также за счет обеспечения определенной последовательности сегментов и просветов между ними. Важно также удерживать сегменты выровненными с осью сформированного стержня или направлением его транспортировки.
В настоящее время производители сигарет используют все более короткие сегменты, т.е. сегменты, у которых длина (осевое измерение) близка к их диаметру. Применяются также фильтры, длина которых меньше их диаметра, т.е. составляет 5 мм или меньше. При таких пропорциях существует риск поворачивания сегмента так, что его ось становится непараллельной, например расположенной поперечно к коси стержня, в котором находится этот сегмент.
Вышеописанное возможно из-за того, что размеры пространства, предназначенного для такого сегмента, позволяют ориентировать незначительно деформированный сегмент так, что его ось параллельна оси стержня, и также так, что она по существу перпендикулярна последней. При немного большей деформации сегмента возможно также его наклонное положение по отношению к оси стержня.
Кроме того, как направление, так и угол поворота такого сегмента относительно стержня совершенно случайны. В дальнейшем деформированными становятся как этот сегмент, так и обертка стержня, поскольку обертка имеет тенденцию к локальной адаптации своей формы к сегменту.
Иначе говоря, поворот сегмента приводит к тому, что сформированный стержень в некоторой степени подвергается деформации, т.е. стержень становится нецилиндрическим в области смещенного сегмента. В соответствии с требованиями производителей, многосегментные стержни, включающие в себя повернутые сегменты, должны удаляться из продукции.
Из уровня техники известны системы контроля качества многосегментных стержней. Такие системы были описаны в документах US 4001579, US 4212541, GB 2043962 и US 2011/162665 А1. Системы, раскрытые в перечисленных публикациях, предназначены для проверки типов сегментов, взаимного расположения сегментов в стержне и для регулировки длины разрезания многосегментных стержней. Однако в этих публикациях не раскрыты способы детектирования повернутых сегментов.
Настоящее изобретение направлено на создание способа и устройства для быстрого и надежного детектирования повернутых сегментов так, чтобы детектирование происходило независимо от направления поворота сегментов.
Согласно изобретению предлагается способ детектирования повернутых сегментов в непрерывном многосегментном стержне, перемещаемом в машине, используемой в табачном производстве, причем способ включает в себя генерирование сигнала об ошибке формы указанного непрерывного многосегментного стержня, стержень содержит множество сегментов, расположенных друг за другом в общей обертке, причем стержень, перемещаемый в направлении вдоль его оси, одновременно сканируют посредством по меньшей мере двух оптических датчиков, направления сканирования двух оптических датчиков ориентированы относительно друг друга под углом, отличным от 90°, при этом диаметр стержня измеряют путем повторяемых сканирований с такой частотой, что самый короткий сегмент стержня сканируется по меньшей мере однократно, результаты сканирований сравнивают с предварительно определенным эталонным значением и преобразуют в сигнал об ошибке формы каждое расхождение между любым из результатов сканирований и предварительно определенным значением.
Непрерывный многосегментный стержень предпочтительно сканируют посредством двух оптических датчиков, причем направления сканирования оптических датчиков ориентированы под углом между 40° и 60°, предпочтительно 45°.
Согласно изобретению предлагается устройство для детектирования повернутых сегментов в непрерывном многосегментном стержне, перемещаемом в машине, используемой в табачном производстве, путем генерирования сигнала об ошибке формы указанного стержня, причем стержень содержит множество сегментов, расположенных друг за другом в общей обертке, устройство содержит по меньшей мере два оптических датчика для сканирования перемещаемого стержня, направления сканирования двух оптических датчиков ориентированы относительно друг друга под углом, отличным от 90°, при этом оптические датчики приспособлены для измерения диаметра стержня путем повторяемых сканирований с такой частотой, что самый короткий сегмент стержня сканируется по меньшей мере однократно; устройство содержит также контроллер, обеспечивающий возможность сравнивать результаты последовательных сканирований с предварительно определенным эталонным значением и преобразовывать в сигнал об ошибке формы каждое расхождение между любым из результатов сканирований и предварительно определенным значением.
Устройство согласно изобретению предпочтительно включает в себя два оптических датчика, причем направления сканирования оптических датчиков ориентированы под углом между 40° и 60°, предпочтительно 45°.
Каждый оптический датчик может содержать источник излучения, работающий предпочтительно в видимом спектре, и светочувствительный элемент, причем источник излучения и светочувствительный элемент расположены на взаимно противоположных сторонах перемещаемого непрерывного многосегментного стержня.
Оптические датчики предпочтительно представляют собой линейные датчики.
Плоскости сканирования датчиков по существу компланарны.
Оптические датчики могут также представлять собой поверхностные датчики.
Области сканирования датчиков по существу одинаковы.
Преимущество способа и устройства согласно изобретению состоит в их эффективном функционировании в сочетании с простотой и экономичностью реализации.
Далее описаны предпочтительные варианты осуществления изобретения со ссылками на прилагаемые чертежи, где: на фиг. 1 изображен пример непрерывного многосегментного фильтрового стержня; на фиг. 2 изображен другой пример непрерывного многосегментного фильтрового стержня; на фиг. 3a изображен фрагмент машины для изготовления отдельных многосегментных стержней; на фиг. 3b изображен пример отдельных многосегментных стержней, в одном из которых наблюдается ошибка формы; на фиг. 4 изображен непрерывный многосегментный фильтровый стержень фиг. 1 с одним повернутым сегментом; на фиг. 5 изображен непрерывный многосегментный фильтровый стержень фиг. 1 с одним сегментом, повернутым другим образом; на фиг. 6 представлен разрез повернутого сегмента с фиг. 5 по плоскости А-А; на фиг. 7 представлен разрез повернутого сегмента с фиг. 5 по плоскости В-В; на фиг. 8 изображено расположение двух оптических датчиков; на фиг. 9a и 9b изображено функционирование отдельных линейных оптических датчиков в случае неповернутого сегмента; на фиг. 10a и 10b изображено функционирование отдельных линейных оптических датчиков в случае повернутого сегмента; на фиг. 11a и 11b изображено функционирование отдельных поверхностных оптических датчиков в случае неповернутого сегмента; на фиг. 12a и 12b изображено функционирование отдельных поверхностных оптических датчиков в случае повернутого сегмента; на фиг. 13 изображены точки сканирования непрерывного многосегментного фильтрового стержня с фиг. 2; на фиг. 14 представлены результаты сканирования непрерывного многосегментного фильтрового стержня с фиг. 1 посредством линейных датчиков.
На фиг. 1 и 2 показаны примеры фрагментов непрерывных многосегментных фильтровых стержней CR1, CR1', содержащие чередующиеся сегменты 2, 3 на фиг. 1 и сегменты 2, 3 и 4 на фиг. 2. В общем случае сегменты являются цилиндрическими, сплошными или полыми и изготовлены из разных фильтрующих материалов. Сегменты могут формировать стержень, в котором они расположены конец-в-конец или друг за другом с просветами между ними, при этом они обернуты в обычную обертку, в частности бумажную обертку.
На чертежах многосегментные стержни показаны так, будто обертка является прозрачной. Как показано на фиг. 3, где изображен фрагмент машины для изготовления многосегментных стержней S из непрерывных стержней CR1, CR1', подающий блок 101 подает предварительно подготовленные известным образом фильтровые сегменты на конвейер 102, при этом на его поверхности расположена бумажная обертка 103. В ходе транспортировки сегментов по конвейеру 102 обертку 103 обматывают известным образом вокруг сегментов и склеивают. Многосегментный стержень CR, сформированный таким образом, перемещают через зону действия контрольного блока 104, а затем режут на стержни S посредством режущей головки 105 с ножами 106. Известные элементы, обеспечивающие опору и направление непрерывного стержня CR, на чертеже не показаны.
На фиг. 3b изображены примеры трех многосегментных стержней S, S' и S, причем стержень S' имеет дефект, который будет детектирован устройством согласно настоящему изобретению. Соответственно, стержень S' будет отбракован, т.е. исключен из производственного процесса.
Сегмент 2 является самым коротким из сегментов, представленных в обоих примерах с фиг. 1 и 2; его длина близка к диаметру фильтрового стержня. В процессе производства фильтрового многосегментного стержня может произойти, что такие короткие сегменты случайно окажутся повернутыми. Такие повернутые сегменты обозначены на фиг. 4 и 5 позициями 2A и 2B. Осевое направление транспортировки стержня в процессе производства показано стрелкой 10. Ось Y непрерывного многосегментного стержня CR1 с фиг. 4 проходит в плоскости чертежа, тогда как ось ХА повернутого сегмента 2A направлена перпендикулярно чертежу. Ось ХВ сегмента 2B с фиг. 5 расположена под наклоном к плоскости чертежа и перпендикулярна оси Z, хотя возможна и наклонная ориентация оси ХВ относительно оси Z. На фиг. 6 и 7 изображены разрезы А-А и В-В сегментов 2B и 3, показанных на фиг. 5. Позицией 11 обозначена бумажная обертка, в которой заключены сегменты непрерывного стержня CR1. Обертка 11, цилиндрическая вдоль всего стержня, деформирована в области повернутого стержня так, чтобы заключить его в себе. Иначе говоря, обертка 11 меняет свою цилиндрическую форму на форму, соответствующую повернутому сегменту 2B, а затем возвращается к цилиндрической форме. На фиг. 7 обертка 11 имеет круглое поперечное сечение, соответствующее круглому поперечному сечению сегмента 3, вокруг которого она принимает цилиндрическую форму.
В процессе производства непрерывный многосегментный фильтровый стержень CR проходит через область действия по меньшей мере двух оптических датчиков 5, образующих вместе блок 12 датчиков формы, предназначенный для измерения диаметра стержня, как показано на фиг. 8. Блок 12 датчиков формы может принадлежать контрольному блоку 104, показанному на фиг. 3a. Датчики 5 работают в плоскости чертежа, в то время как непрерывный многосегментный стержень движется в направлении, перпендикулярном плоскости чертежа. Каждый оптический датчик 5 включает в себя источник 6 излучения, работающий, например, в видимом спектре, и светочувствительный элемент 7, причем оба датчика 5 связаны с контроллером 8. Источник 6 излучения может быть линейным или поверхностным источником. Позиция 9 указывает направление сканирования оптического датчика 5.
На фиг. 8 изображен блок 12 датчиков определения формы, который включает в себя два оптических датчика 5, предназначенных для сканирования в направлениях 13 и 14, причем оптические датчики подсоединены к контроллеру 8 для управления работой датчиков 5. Направления сканирования оптических датчиков ориентированы под углом α друг к другу, причем этот угол α отличается от 90°. Угол α между направлениями 13 и 14 сканирования предпочтительно составляет 45°. Эффективность детектирования максимальна при угле 45°. Это связано с тем, что повернутый сегмент многосегментного стержня имеет прямоугольное поперечное сечение, и датчики могут генерировать различные значения сигнала в зависимости от фактического угла поворота сегмента относительно направления падения света на стержень. Обычно используется аналоговый сигнал. Датчики 5 приспособлены для измерения диаметра стержня, в частности диаметров его отдельных сегментов, посредством повторяемых сканирований.
Результаты измерений, т.е. величины диаметра последовательных сегментов, передаются контроллеру 8. В случае детектирования различия между неким результатом и предварительно определенным эталонным значением контроллер 8 генерирует сигнал об ошибке формы. Таким образом, сигнал об ошибке формы генерируется каждый раз, когда величина диаметра какого-либо сегмента отличается от эталонного значения. Понятие «диаметр стержня» здесь следует понимать как фактический диаметр или же как измерение, которое фактически не является диаметром (если сегмент повернут, из-за чего стержень в этой области не является цилиндрическим). На самом деле это длина между длинами А1 и В1 или А2 и В2 (см. фиг. 9a, 9b, 10a, 10b). Согласно испытаниям, проведенным для различных углов α между направлениями сканирования датчиков, самая высокая надежность с точки зрения правильного детектирования повернутых сегментов достигается для угла α, равного 45°. Существенно, что сравнение полученных результатов и генерирование сигналов об ошибке формы (другими словами, об ошибке в диаметре) выполняются контроллером 8 быстрее, чем, например, сравнение сканированных изображений, на которых представлена деформация стержня. Это объясняется тем, что для сравнения результатов и генерирования сигналов требуется проанализировать гораздо меньший объем данных.
На фиг. 9a изображен пример устройства согласно изобретению, в котором светочувствительный элемент выполнен в виде линейного элемента 7'. В ходе изготовления непрерывного многосегментного фильтрового стержня CR1 линейный источник 6' излучения (фиг. 9a) освещает стержень CR1 и, частично, светочувствительный элемент 7' (фиг. 9a и 9b). Если в фильтровом стержне CR1 нет повернутых сегментов и связанных с ними ошибок формы, будут освещены два фрагмента (длины) A1 и B1 светочувствительного элемента 7', принадлежащего линейному датчику 5'.
На фиг. 10a изображен линейный светочувствительный элемент 7' с фиг. 9a, освещенный в двух фрагментах А2 и В2 вследствие поворота сегмента 2B. На фиг. 10b представлена та же ситуация, показанная в осевом направлении многосегментного стержня CR1. В зависимости от положения оптического датчика 5' по отношению к сегменту 2B возможны различные ситуации: когда A2<A1 и B2<B1, когда A2=A1 и B2<B1 или B2=B1 и A2<A1, а также когда A2=A1 и B2=B1 (последнее относится к ситуации, когда деформация стержня является «невидимой» для датчика). Значения A1 и B1, указанные на фиг. 10a, должны рассматриваться как эталонные значения, хранящиеся в контроллере 8.
На практике в контроллер 8 должны быть введены некие предельные значения Ag и Bg, которые соответствуют значению, превышающему номинальную величину диаметра стержня. Это означает, что необходимо поддерживать определенные размерные допуски для диаметра стержня, которые в производственном процессе могут в некоторой степени варьироваться. Контроллер 8 сгенерирует сигнал об ошибке формы, когда одна из освещенных длин A1, А2, B1, В2 на светочувствительном элементе 7' окажется короче, чем соответственно Ag или Bg. В блоке 12 датчиков формы (фиг. 8), включающем в себя, например, два линейных оптических датчика, расположенных под подходящим углом, в ситуации, когда для одного из датчиков А21 и В21 и для другого датчика A2<A1 и B2<B1, сигнал об ошибке формы, сгенерированный всего лишь одним датчиком, послужит подтверждением того, что в непрерывном многосегментном стержне CR1 есть повернутый сегмент. Независимо от положения повернутого сегмента блок датчиков формы будет всегда детектировать ошибку формы, т.е. обнаруживать повернутый сегмент.
На фиг. 11a изображен пример варианта осуществления устройства согласно изобретению, в котором светочувствительный элемент представляет собой поверхностный элемент 7ʺ, например светочувствительную матрицу. В ходе производственного процесса непрерывный многосегментный стержень CR1 и частично светочувствительный элемент 7ʺ освещены плоским источником излучения 6ʺ (фиг. 11a и 11b). Если в многосегментном фильтровом стержне CR1 нет повернутых сегментов и, соответственно, нет ошибки формы, то освещены два фрагмента элемента - области Р1 и R1 светочувствительного элемента 7ʺ.
На фиг. 12a изображена поверхность фоточувствительного элемента 7ʺ, показанного на фиг. 11a, которая, однако, освещена в двух фрагментах - областях Р2 и R2 из-за наличия повернутого сегмента 2В, где P2<P1 и R2<R1. В зависимости от положения оптического датчика 5ʺ по отношению к сегменту 2 возможны различные ситуации: когда P2<P1 и R2<R1, когда P2=P1 и R2<R1 или R2=R1 и P2<P1, а также когда P2=P1 и R2=R1 (последнее относится к ситуации, когда деформация стержня является «невидимой» для датчика). Значения P1 и R1, указанные на фиг. 11a, должны рассматриваться как эталонные значения. На практике в контроллер, присоединенный к оптическому датчику, должны быть введены некие предельные значения Pg и Rg, которые соответствуют значению, превышающему номинальную величину диаметра стержня. Это означает, что необходимо поддерживать определенные размерные допуски для диаметра стержня, которые в производственном процессе могут в некоторой степени варьироваться. Контроллер сгенерирует сигнал об ошибке формы, когда одна из освещенных областей светочувствительного элемента 7' окажется короче, чем соответственно Pg или Rg. В блоке 12 датчиков формы (фиг. 8), включающем в себя, например, два поверхностных оптических датчика, расположенных под подходящим углом, в ситуации, когда для одного из датчиков P2=P1 и R2=R1 и для другого датчика P2<P1 и R2<R1, сигнал об ошибке формы, сгенерированный всего лишь одним датчиком, послужит подтверждением того, что в многосегментном стержне есть повернутый сегмент. Независимо от положения повернутого сегмента блок датчиков формы будет всегда детектировать ошибку формы, т.е. обнаруживать повернутый сегмент. Блок датчиков формы может включать в себя любое количество оптических датчиков, и сигнал от любого из них может рассматриваться как подтверждение детектирования повернутого сегмента.
На фиг. 13 изображен пример непрерывного многосегментного фильтрового стержня CR1'; места, в которых происходит сканирование в ходе транспортировки стержня в направлении 10, обозначены короткими линиями М. Сканирование, выполняемое посредством блока 12 датчиков формы, осуществляется многократно с частотой, подобранной так, что длина самого короткого сегмента сканируется по меньшей мере однократно. Временной промежуток между последовательными сканированиями стержня отрегулирован так, что он является более коротким, чем величина, равная длине самого короткого сегмента, деленная на скорость движения стержня. Распределение точек последовательного сканирования движущегося стержня, показанное на фиг. 13, приведено лишь в качестве иллюстративного примера. В действительности количество таких точек сканирования выше и определяется частотой сканирования, т.е. 10 кГц, 20 кГц, 50 кГц или 100 кГц, в зависимости от применяемого контроллера или компьютера и от скорости движения стержня, которая находится в диапазоне, например, от 50 м/мин до 600 м/мин. Частоту сканирования можно регулировать в зависимости от скорости движения стержня. Расстояния между соседними точками сканирования обозначены на фиг. 13 буквой «w». Например, если частота сканирования составляет 20 кГц, а скорость движения стержня составляет 500 м/мин, поверхность стержня будет сканироваться каждый раз, когда стержень перемещается в продольном направлении на 0,416 мм в области действия блока датчиков формы. Это означает, что сегмент длиной 5 мм будет сканироваться 12 раз. Возможно также альтернативное решение, когда непрерывный многосегментный стержень сканируют не вдоль всей его длины, но лишь вдоль его участков, содержащих короткие сегменты.
На фиг. 14 представлен пример результатов сканирований, выполненных линейными оптическими датчиками в форме коротких вертикальных линий ML. Значения А1 и В1 зарегистрированы для правильно расположенных сегментов, а значения А2 и В2 зарегистрированы для повернутого сегмента 2B. На основе измеренных значений могут быть отбракованы отдельные фильтровые стержни S', содержащие повернутые сегменты.

Claims (9)

1. Способ детектирования повернутых сегментов, имеющих длину, близкую к их диаметру, в непрерывном многосегментном стержне, перемещаемом в машине, используемой в табачном производстве, способ включает в себя генерирование сигнала об ошибке формы указанного непрерывного многосегментного стержня (CR1, CR1'), причем стержень (CR1, CR1') содержит множество сегментов (2, 3, 4), расположенных друг за другом в общей обертке, при этом стержень (CR1, CR1'), перемещаемый в направлении вдоль его оси, одновременно сканируют посредством по меньшей мере двух линейных оптических датчиков (5) так, что плоскость сканирования перпендикулярна оси стержня (CR1, CR1'), направления сканирования двух оптических датчиков (5) ориентированы под углом от 40° до 60° друг к другу и плоскости сканирования датчиков (5') по существу компланарны, при этом измеряют диаметр стержня (CR1, CR1') путем повторяемых сканирований с такой частотой, что самый короткий сегмент стержня (CR1, CR1') сканируется по меньшей мере однократно, сравнивают результаты сканирований с предварительно определенным эталонным значением и каждое расхождение между любым из результатов сканирований и предварительно определенным значением преобразуют в сигнал об ошибке формы.
2. Способ по п. 1, в котором стержень (CR1, CR1') сканируют посредством двух оптических датчиков (5), причем направления сканирования оптических датчиков (5) ориентируют под углом 45°.
3. Устройство для детектирования повернутых сегментов, имеющих длину, близкую к их диаметру, в непрерывном многосегментном стержне (CR1, CR1'), перемещаемом в машине, используемой в табачном производстве, путем генерирования сигнала об ошибке формы указанного стержня (CR1, CR1'), причем стержень (CR1, CR1') содержит множество сегментов (2, 3, 4), расположенных друг за другом в общей обертке, устройство содержит по меньшей мере два линейных оптических датчика (5) для сканирования перемещаемого стержня (CR1, CR1'), причем плоскость сканирования перпендикулярна оси стержня (CR1, CR1'), плоскости сканирования датчиков (5') по существу компланарны и направления сканирования двух оптических датчиков (5) ориентированы под углом от 40° до 60° друг к другу, при этом оптические датчики (5) приспособлены для измерения диаметра стержня (CR1, CR1') путем повторяемых сканирований, временной промежуток между последовательными сканированиями является регулируемым, так что каждый сегмент сканируется по меньшей мере однократно, устройство дополнительно содержит контроллер (8), обеспечивающий возможность сравнивать результаты последовательных сканирований с предварительно определенным эталонным значением и преобразовывать каждое расхождение между любым из результатов сканирований и предварительно определенным значением в сигнал об ошибке формы.
4. Устройство по п. 3, содержащее два оптических датчика (5), причем направления сканирования оптических датчиков (5) ориентированы под углом 45°.
5. Устройство по п. 4, в котором каждый оптический датчик (5) содержит источник (6) излучения, работающий предпочтительно в видимом спектре, и светочувствительный элемент (7), причем источник (6) излучения и светочувствительный элемент (7) расположены на взаимно противоположных сторонах перемещаемого стержня (CR1, CR1').
6. Устройство по п. 5, в котором области сканирования датчиков (5) по существу одинаковы.
7. Машина для изготовления многосегментных стержней из перемещаемого в ней непрерывного многосегментного стержня (CR1, CR1'), машина содержит устройство для детектирования повернутых сегментов, содержащихся в непрерывном многосегментном стержне (CR1, CR1'), причем детектируемые сегменты имеют длину, близкую к их диаметру, устройство приспособлено генерировать сигнал об ошибке формы указанного стержня (CR1, CR1'), стержень (CR1, CR1') содержит множество сегментов (2, 3, 4), расположенных друг за другом в общей обертке, устройство содержит по меньшей мере два линейных оптических датчика (5) для сканирования перемещаемого стержня (CR1, CR1'), причем плоскость сканирования перпендикулярна оси стержня (CR1, CR1'), плоскости сканирования датчиков (5') по существу компланарны и направления сканирования двух оптических датчиков (5) ориентированы под углом от 40° до 60° друг к другу, при этом оптические датчики (5) приспособлены для измерения диаметра стержня (CR1, CR1') путем повторяемых сканирований, временной промежуток между последовательными сканированиями является регулируемым, так что каждый сегмент сканируется по меньшей мере однократно, устройство дополнительно содержит контроллер (8), обеспечивающий возможность сравнивать результаты последовательных сканирований с предварительно определенным эталонным значением и преобразовывать каждое расхождение между любым из результатов сканирований и предварительно определенным значением в сигнал об ошибке формы.
8. Машина по п. 7, в которой устройство для детектирования содержит два оптических датчика (5), причем направления сканирования оптических датчиков (5) ориентированы под углом 45°.
9. Машина по п. 8, в которой каждый оптический датчик (5) содержит источник (6) излучения, работающий предпочтительно в видимом спектре, и светочувствительный элемент (7), причем источник (6) излучения и светочувствительный элемент (7) расположены на взаимно противоположных сторонах перемещаемого стержня (CR1, CR1').
RU2015144849A 2013-04-08 2014-04-08 Способ и устройство для детектирования повернутых сегментов в многосегментном стержне, перемещаемом в машине, используемой в табачном производстве RU2649380C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PL403464A PL223633B1 (pl) 2013-04-08 2013-04-08 Sposób i urządzenie do detekcji obróconych segmentów w wielosegmentowym wałku przemieszczanym w maszynie stosowanej w przemyśle tytoniowym
PLP.403464 2013-04-08
PCT/EP2014/057050 WO2014166944A1 (en) 2013-04-08 2014-04-08 Method and device for detection of rotated segments in a multi-segment rod transferred in a machine used in tobacco industry

Publications (2)

Publication Number Publication Date
RU2015144849A RU2015144849A (ru) 2017-05-11
RU2649380C2 true RU2649380C2 (ru) 2018-04-02

Family

ID=50588647

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015144849A RU2649380C2 (ru) 2013-04-08 2014-04-08 Способ и устройство для детектирования повернутых сегментов в многосегментном стержне, перемещаемом в машине, используемой в табачном производстве

Country Status (8)

Country Link
US (1) US10072925B2 (ru)
EP (1) EP2983533B1 (ru)
JP (1) JP6255479B2 (ru)
CN (1) CN105072931B (ru)
HU (1) HUE046498T2 (ru)
PL (1) PL223633B1 (ru)
RU (1) RU2649380C2 (ru)
WO (1) WO2014166944A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL226663B1 (pl) * 2014-10-17 2017-08-31 Int Tabacco Machinery Poland Spółka Z Ograniczoną Odpowiedzialnością Sposób i urządzenie do detekcji obróconych, niezamkniętych w materiale owijkowym segmentów przemieszczanych w ciągu segmentów jeden za drugim w maszynie stosowanej w przemyśle tytoniowym oraz maszyna zawierająca takie urządzenie
WO2017212358A1 (en) * 2016-06-10 2017-12-14 International Tobacco Machinery Poland Sp. Z O.O. Apparatus for determination of the position of an insert in rod-like articles of the tobacco industry
PL233097B1 (pl) * 2016-06-10 2019-09-30 Int Tobacco Machinery Poland Spolka Z Ograniczona Odpowiedzialnoscia Urządzenie do określania położenia wkładki w artykułach prętopodobnych przemysłu tytoniowego
CN106679576A (zh) * 2017-02-05 2017-05-17 长沙博思科技有限公司 实时测量烟草加工业棒状物圆周的装置
EP3387919B1 (en) * 2017-04-12 2020-01-29 Sodim S.A.S. Method and system for determining the track of origin of products of the tobacco processing industry, cigarette inspection station
DE112020002035B4 (de) 2020-01-27 2022-10-06 Japan Tobacco Inc. Prüfverfahren und Prüfvorrichtung für Filter für Rauchartikel
CN114747800A (zh) * 2022-02-28 2022-07-15 浙江中烟工业有限责任公司 醋酸纤维丝束拼接段检测方法及装置
EP4343276A1 (en) * 2022-09-21 2024-03-27 International Tobacco Machinery Poland Sp. z o.o. A method for measuring a diameter of a continuous rod of tobacco industry products
EP4343275A1 (en) * 2022-09-21 2024-03-27 International Tobacco Machinery Poland Sp. z o.o. A method and system for measuring a diameter of a continuous rod of tobacco industry products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930734A (en) * 1996-11-18 1999-07-27 Lap Gmbh Laser Applikationen Method and apparatus for measuring the thickness of non-circular elongated workpieces
US20070091326A1 (en) * 2005-09-28 2007-04-26 Hauni Maschinenbau Ag Device and method for measuring properties of multi-segment filters or combinations of filter segments

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH576242A5 (ru) 1974-03-13 1976-06-15 Baumgartner Papiers Sa
CH621245A5 (ru) 1977-06-21 1981-01-30 Baumgartner Papiers Sa
CH627119A5 (ru) 1977-10-19 1981-12-31 Baumgartner Papiers Sa
DE3219389A1 (de) 1982-05-24 1983-11-24 Richter Bruno Gmbh Optisch-elektrisches messverfahren zur erfassung von unrunden querschnitten insbesondere strangartiger gegenstaende und einrichtung zur durchfuehrung des verfahrens
US4805641A (en) 1985-07-31 1989-02-21 Korber Ag Method and apparatus for ascertaining the density of wrapped tobacco fillers and the like
DE3633275A1 (de) 1986-09-30 1987-10-08 Siemens Ag Verfahren zum generieren von lagesignalen, die orte repraesentieren, welche die etwa elliptische querschnittsflaeche eines objektes begrenzen
CH683370A5 (de) * 1992-04-10 1994-02-28 Zumbach Electronic Ag Verfahren und Vorrichtung zur Messung der Abmessung eines Objekts.
JPH08201029A (ja) 1995-01-20 1996-08-09 Kansai Electric Power Co Inc:The 長尺体の外径測定方法及びその装置
IT1295207B1 (it) * 1997-10-01 1999-05-04 Gd Spa Unita' per il rilevamento delle dimensioni trasversali di articoli a forma di barretta.
US6252661B1 (en) * 1999-08-02 2001-06-26 James L. Hanna Optical sub-pixel parts inspection system
DE10203095A1 (de) * 2002-01-25 2003-07-31 Hauni Maschinenbau Ag Verfahren und Vorrichtung zum Messen des Durchmessers von Zigarettenstrang- oder stabförmigen Erzeugnissen der Tabak verarbeitenden Industrie
ES2264459T3 (es) * 2002-09-11 2007-01-01 Hauni Maschinenbau Ag Procedimiento y dispositivo para medir la longitud y el diametro de barras de filtro.
DE10304503A1 (de) 2003-02-05 2004-08-19 Hauni Maschinenbau Ag Vorrichtung und Verfahren zum Messen des Durchmessers eines stabförmigen Gegenstandes insbesondere der tabakverarbeitenden Industrie
DE10323152A1 (de) 2003-05-22 2004-12-16 Hauni Maschinenbau Ag Vorrichtung zum Messen des Durchmessers eines stabförmigen Gegenstandes insbesondere der Tabak verarbeitenden Industrie
WO2005022076A2 (en) 2003-08-23 2005-03-10 General Inspection, Llc Part inspection apparatus
JP4424610B2 (ja) 2004-06-04 2010-03-03 花王株式会社 電子写真用トナーの製造方法
DE102004057092A1 (de) * 2004-11-25 2006-06-01 Hauni Maschinenbau Ag Messen des Durchmessers von stabförmigen Artikeln der Tabak verarbeitenden Industrie
US7738121B2 (en) * 2007-10-23 2010-06-15 Gii Acquisition, Llc Method and inspection head apparatus for optically measuring geometric dimensions of a part
GB2465024B (en) 2008-11-08 2011-01-12 Adaptive Automation Ltd Shadow sensing apparatus
US9131730B2 (en) 2010-01-07 2015-09-15 Aiger Group Ag System and apparatus for registration of different objects in rod shaped articles
PL216616B1 (pl) 2010-06-30 2014-04-30 Int Tobacco Machinery Poland Sposób weryfikowania i poprawy usytuowania elementów prętopodobnych w kasetach lub magazynach pośrednich oraz urządzenie umożliwiające weryfikację prawidłowego usytuowania elementów prętopodobnych i liniowanie ich czołowej powierzchni w kasetach lub magazynach pośrednich
CN102160690B (zh) * 2011-01-17 2013-09-18 南京大树智能科技股份有限公司 滤棒圆周在线自动检测与控制方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5930734A (en) * 1996-11-18 1999-07-27 Lap Gmbh Laser Applikationen Method and apparatus for measuring the thickness of non-circular elongated workpieces
US20070091326A1 (en) * 2005-09-28 2007-04-26 Hauni Maschinenbau Ag Device and method for measuring properties of multi-segment filters or combinations of filter segments

Also Published As

Publication number Publication date
US10072925B2 (en) 2018-09-11
JP2016515828A (ja) 2016-06-02
US20160091301A1 (en) 2016-03-31
EP2983533A1 (en) 2016-02-17
WO2014166944A1 (en) 2014-10-16
PL403464A1 (pl) 2014-10-13
CN105072931A (zh) 2015-11-18
JP6255479B2 (ja) 2017-12-27
PL223633B1 (pl) 2016-10-31
RU2015144849A (ru) 2017-05-11
EP2983533B1 (en) 2019-10-09
HUE046498T2 (hu) 2020-03-30
CN105072931B (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
RU2649380C2 (ru) Способ и устройство для детектирования повернутых сегментов в многосегментном стержне, перемещаемом в машине, используемой в табачном производстве
JP4667049B2 (ja) フィルター棒状体を検査するための装置、機械及び方法
EP2199883B1 (en) A method of setting up and managing the inspection device in a machine for manufacturing tobacco products
RU2685856C2 (ru) Способ и устройство обнаружения повернутых сегментов, транспортируемых в машине, применяемой в табачной промышленности, и машина для изготовления многосегментных стержней, содержащая такое устройство
JP2005512586A (ja) 多重セグメントフィルターの特性を測定するための装置、およびシステム、並びに、この測定のための方法
EP3654275B1 (en) Method and system for the automatic measuring of physical and dimensional parameters of multi-segment articles
JP6976975B2 (ja) 細長い要素から構成されるグループの移送及び検査ユニット
EP3520631B1 (en) Method and apparatus for inspecting the ends of rod-shaped segments of the tobacco industry
KR102337014B1 (ko) 신장된 요소를 검사하는 방법
CN1759772A (zh) 测量尤其是烟草加工业的棒状制品的直径的设备和方法
JP2017527296A (ja) タバコ産業におけるマルチセグメント型ロッド状物品の測定装置及び測定方法
EP3465179A1 (en) Apparatus for identification of physical parameters of rod-like articles of the tobacco industry
EP3465178B1 (en) Apparatus for identification of physical parameters of rod-like articles of the tobacco industry
EP3468392B1 (en) Apparatus for determination of the position of an insert in rod-like articles of the tobacco industry
CN104172467B (zh) 用于光学评价烟草加工业的棒状物件的测量系统
EP4369954A1 (en) A device and a method for manufacturing multi-segment rod-like articles
EP3714707B1 (en) A measuring system for controlling a quality of a tube and a method for controlling a quality of a tube
EP4196774A1 (en) Method and device for inspecting tubular elements, in particular multi-layer tubular elements
KR20240035521A (ko) 다중 세그먼트 로드형 물품의 파라미터를 결정하기 위한 측정 시스템 및 방법
WO2014170666A1 (en) Apparatus for inspecting rod shaped articles

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210409