RU2648389C1 - Способ получения особо чистых халькогенидных стекол системы германий-селен - Google Patents

Способ получения особо чистых халькогенидных стекол системы германий-селен Download PDF

Info

Publication number
RU2648389C1
RU2648389C1 RU2017121748A RU2017121748A RU2648389C1 RU 2648389 C1 RU2648389 C1 RU 2648389C1 RU 2017121748 A RU2017121748 A RU 2017121748A RU 2017121748 A RU2017121748 A RU 2017121748A RU 2648389 C1 RU2648389 C1 RU 2648389C1
Authority
RU
Russia
Prior art keywords
germanium
selenide
selenium
glass
glasses
Prior art date
Application number
RU2017121748A
Other languages
English (en)
Inventor
Александр Павлович Вельмужов
Максим Викторович Суханов
Михаил Федорович Чурбанов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук (ИХВВ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук (ИХВВ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук (ИХВВ РАН)
Priority to RU2017121748A priority Critical patent/RU2648389C1/ru
Application granted granted Critical
Publication of RU2648389C1 publication Critical patent/RU2648389C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/10Compositions for glass with special properties for infrared transmitting glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)

Abstract

Изобретение относится к способу получения особо чистых халькогенидных стекол системы германий-селен. Способ включает загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку. В качестве источника германия используют селенид германия(II). Селенид германия (II) получают пропусканием паров селена над германием в динамическом вакууме, проводят сублимационную очистку полученного селенида германия(II) и загружают его в вакуумированный кварцевый реактор вакуумным испарением в количестве, необходимом для получения стекла заданного химического состава. Технический результат – снижение содержания в стеклах примесей, поглощающих в спектральном диапазоне 2-10 мкм, и, как следствие, увеличении оптической прозрачности стекол. 1 з.п. ф-лы, 2 пр.

Description

Изобретение относится к материалам для инфракрасной оптики, в частности, к способу получения особо чистых халькогенидных стекол системы германий-селен (Ge-Se), которые используются для изготовления оптических окон, линз, волоконных световодов для оптических и оптоэлектронных устройств, работающих в среднем ИК-диапазоне.
Для успешного применения в этих областях стекла должны обладать низким содержанием оптически активных примесей (водорода, кислорода, углерода и др.), поглощающих в спектральном диапазоне 2-10 мкм.
Известен способ получения стекол системы Ge-Se состава Ge2Se3 [В. Voight, G. Dreisler, Microheterogeneities in infrared optical selenide glasses. - Journal of Non-Cryst. Solids. - 1987. - Vol. 58. - P. 41-45], включающий загрузку германия полупроводниковой чистоты и селена с марки 99.999% в реактор из кварцевого стекла в сухом перчаточном боксе, вакуумирование реактора, синтез стеклообразующего расплава при температуре 800°C в течение 5 часов, закалку расплава на воздухе. Для снижения содержания примесей проводят дистилляционную очистку расплава при 800°C в двухсекционном вакуумированном кварцевом реакторе.
Существенным недостатком данного способа является высокая температура синтеза и дистилляции стеклообразующего расплава, способствующая поступлению в него примесей водорода, кремния и кислорода из стенок кварцевой ампулы. В частности, в данной работе отмечается появление интенсивной полосы поглощения в спектрах пропускания стекол в области 9 мкм, соответствующей примеси оксида кремния.
Известен способ получения халькогенидных стекол, который включает загрузку компонентов шихты в вакуумированный кварцевый реактор, при этом в качестве компонентов шихты, наряду с халькогенами, используют летучие иодиды элементов [Патент РФ №2467962, МКИ С03С 3/32, опубл. 27.11.2012]. Синтез стеклообразующих соединений ведут при температуре 650°C в реакторе, соединенном с разделительной секцией, при управляемой скорости нагрева и выводе из реактора йода, образующегося при химическом превращении исходных йодидов, и возвращении в зону реакции непрореагировавших йодидов элементов до достижения заданного макросостава расплава.
Основным недостатком этого способа для получения стекол системы Ge-Se взаимодействием йодида германии(IV) с селеном является сложность достижения заданного химического макросостава стекла. Это связано с тем, что в процессе синтеза из стеклообразующего расплава, несмотря на использование разделительной секции, совместно с выделяющимся йодом может удаляться заметное количество йодида германия(IV), обладающего при температурах синтеза стекла повышенной летучестью. Это также связано со сложностью полного удаления йода из состава стекла в виду сравнимых по значениям энергий связи Ge-Se и Ge-I (205.61 и 186.97 кДж/моль, соответственно). Указанные факторы могут приводить к заметному отклонению макросостава стекла от требуемого, что недопустимо для получения материалов с заданным набором физико-химических свойств.
Наиболее близким к заявляемому, выбранным в качестве прототипа, является способ получения особо чистых стекол системы Ge-Se, включающий дистилляционную загрузку селена в вакуумированный кварцевый реактор с германием, синтез стеклообразующего расплава, дистилляционную очистку расплава при 750°C, гомогенизацию расплава при 750°C и его закалку на воздухе [J. Troles, V. Shiryaev, М. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, J.L. Adam, GeSe4 glass fibres with low optical losses in the mid-IR, Opt. Mater. 32(2009) 212-215]. Содержание примеси водорода в форме SeH-групп в полученном стекле, оцененное по полосе поглощения в спектре оптических потерь волоконного световода, составило 0.06 ppm массовых.
Недостатком способа является необходимость проведения дистилляционной очистки расплава при повышенных температурах. Это обусловлено относительно невысокой летучестью селенида германия(IV) (0.6 мм рт.ст. при 550°C [А.В. Новоселова, А.С. Пашинкин, Давление пара летучих халькогенидов металлов. - М.: Наука, 1978,. с. 68]), образующегося в расплаве при взаимодействии германия с селеном. Длительное выдерживание халькогенидного расплава при повышенных температурах способствует поступлению в него примесей водорода и оксида кремния из стенок кварцевого реактора [Г.Г. Девятых, М.Ф. Чурбанов, Высокочистые халькогены. - Изд-во Нижегородского университета, 1991, с. 231]. Это приводит к появлению полос примесного поглощения от связей Se-H (3.55, 4.15 и 4.57 мкм) и Si-O (в области 9 мкм), что ухудшает оптические свойства стекол. Недостатком этого способа также является то, что испарение селенида германия(IV) сопровождается его частичным разложением по реакции
GeSe2=GeSe+Se,
что затрудняет получение стекла заданного химического состава [А.В. Новоселова, А.С. Пашинкин, Давление пара летучих халькогенидов металлов. - М.: Наука, 1978, с. 67].
Задачей, на которую направлено изобретение, является разработка способа получения особо чистых халькогенидных стекол системы германий-селен заданного химического состава с низким содержанием примесей, поглощающих в спектральном диапазоне 2-10 мкм.
Технический результат от использования изобретения заключается в снижении содержания в стеклах примесей, поглощающих в спектральном диапазоне 2-10 мкм, и, как следствие, увеличении оптической прозрачности стекол.
Указанный результат достигается тем, что в способе получения особо чистых халькогенидных стекол системы германий-селен, включающем загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку, в качестве источника германия используют селенид германия(II), который получают пропусканием паров селена над германием в динамическом вакууме, проводят сублимационную очистку полученного селенида германия(II) и загружают его в вакуумированный кварцевый реактор вакуумным испарением в количестве, необходимом для получения стекла заданного химического состава.
Компонентами шихты являются селенид германия(II) и селен.
Способ осуществляют следующим образом. В первую секцию горизонтальной четырехсекционной ампулы из кварцевого стекла помещают селен, во вторую - германий, третья секция служит приемником образующегося селенида германия(II), четвертая секция необходима для сублимационной очистки селенида германия(II). Ампулу вакуумируют, секцию с германием нагревают до температуры не выше 600°C, так как при более высоких температурах начинает заметно проявляться загрязняющее действие материала аппаратуры и происходит частичное разложение селенида германия(II). Нагревают секцию ампулы с селеном, что приводит к его испарению во вторую секцию и образованию селенида германия(II), который конденсируется в третьей секции. По окончании синтеза первую и вторую секции отпаивают от ампулы и проводят сублимационную очистку селенида германия(II). Для этого третью секцию нагревают до температуры не выше 600°C, селенид германия(II) при этом конденсируется в четвертой секции. Полученный селенид германия(II) загружают из четвертой секции ампулы вакуумным испарением при температуре не выше 600°C в вакуумированный кварцевый реактор. Затем в этот реактор вакуумным испарением загружают необходимое количество селена для получения стекла заданного химического состава.
Новым в способе является то, что в качестве источника германия используют селенид германия(II), который обладает достаточно высоким давлением насыщенного пара (5 мм рт.ст. при температуре 550°C). Это позволяет проводить глубокую очистку германийсодержащего компонента шихты от оптически активных примесей методом вакуумной сублимации при температурах не выше 600°C, что практически исключает заметное проявление загрязняющего действия материала кварцевой аппаратуры. Снижение температуры очистки селенида германия(II) по сравнению с температурой очистки стеклообразующего расплава в прототипе способствует более эффективному удалению примеси оксида германия(IV). Сублимация селенида германия(II) при указанных температурах протекает без заметного разложения, что позволяет получать стекла системы Ge-Se заданного химического состава.
Новым в способе является то, что дополнительная очистка компонентов шихты происходит на этапе синтеза селенида германия(II) пропусканием паров селена над германием. Примеси углерода и оксидов германия, присутствующие в исходном германии, в указанных выше условиях не взаимодействуют с селеном и не испаряются совместно с селенидом германия(II). Примеси оксида селена(IV), селеноводорода и воды, присутствующие в исходном селене, взаимодействуют с германием с образованием нелетучего оксида германия(IV) и летучих примесей воды и водорода по реакциям:
Ge+SeO2=GeO2+Se;
Ge+H2Se=GeSe+H2;
Ge+2H2O=GeO2+2H2;
GeO2+2H2Se=GeSe2+2H2O.
Оксид германия(IV) при указанных условиях проведения синтеза селенида германия(II) остается в секции ампулы с исходным германием, а примеси водорода и воды удаляются за счет постоянной откачки реактора.
Указанные отличительные признаки являются существенными, так как каждый из них необходим, а в совокупности они достаточны для достижения поставленной задачи - разработка способа получения особо чистых стекол системы германий-селен заданного химического состава с низким содержанием примесей, поглощающих в спектральном диапазоне 2-10 мкм.
Пример 1.
Для получения 50 г стекла состава Ge20Se80 синтезируют 19.508 г селенида германия(II). Для этого в первую секцию четырехсекционной кварцевой ампулы помещают 10.164 г селена, во вторую секцию загружают 9.344 г германия, ампулу вакуумируют. Секцию с германием нагревают до 580°C, затем нагревают секцию с селеном до 350°C. Образующийся при этом селенид германия(II) конденсируется в третьей секции. По окончании синтеза первую и вторую секции отпаивают от ампулы и проводят сублимационную очистку селенида германия(II) при 580°C. После полной сублимации селенида германия(II), четвертую секцию отпаивают и подпаивают к кварцевому реактору, к которому припаяна ампула с 30.492 г селена. Реактор вакуумируют и проводят загрузку в него селенида германия(II) испарением при 580°C. После полного испарения селенида германия(II) в вакуумированный кварцевый реактор загружают селен испарением при 400°C. Затем реактор с полученной шихтой, состоящей из селенида германия(II) и селена, отпаивают от вакуумной системы и помещают в печь. Температуру печи повышают до 750°C и проводят гомогенизацию стеклообразующего расплава при этой температуре в течение двух часов. Далее расплав охлаждают на воздухе до отверждения в стекло, которое отжигают для снятия механических напряжений.
Пример 2.
Для получения 50 г стекла состава Ge15Se85 синтезируют 14.570 г селенида германия(II). Для этого в первую секцию четырехсекционной кварцевой ампулы помещают 7.591 г селена, во вторую секцию загружают 6.979 г германия, ампулу вакуумируют. Далее синтезируют и очищают селенид германия(II), как описано в примере 1. Секцию с полученным селенидом германия(II) подпаивают к кварцевому реактору, к которому припаяна ампула с 35.430 г селена. Реактор вакуумируют и загружают в него селенид германия(II) при температуре 580°C. После полного испарения селенида германия(II) в вакуумированный кварцевый реактор загружают селен при температуре 400°C. Далее реактор отпаивают и помещают в печь, которую нагревают до 750°C. Гомогенизацию стеклообразующего расплава проводят при указанной температуре в течение двух часов. Затем расплав охлаждают на воздухе до стеклообразного состояния и отжигают полученное стекло.
Согласно результатам анализа полученных стекол методом ИК-Фурье спектроскопии, содержание примесей, поглощающих в спектральном диапазоне 2-10 мкм, составляет: примеси водорода в форме SeH-групп - 0.005 ppm массовых; кислорода в форме связей Ge-O <0.1 ppm массовых; воды <0.05 ppm массовых, что приводит к увеличению оптической прозрачности стекол.
Для получения стекол системы Ge-Se по разработанному способу с низким содержанием оптически активных примесей в качестве заготовок для изготовления реактора необходимо использовать трубки из кварцевого стекла высокого оптического качества с низким содержанием ОН-групп, селен марки не хуже «осч 16-5», дополнительно очищенный вакуумной дистилляцией, германий с содержанием основного вещества не ниже 99.9999 мас. %.
Таким образом, предлагаемый способ позволяет получать особо чистые халькогенидные стекла системы германий-селен заданного химического состава с низким содержанием примесей, поглощающих в спектральном диапазоне 2-10 мкм, что приводит к увеличению оптической прозрачности стекол.

Claims (2)

1. Способ получения особо чистых халькогенидных стекол системы германий-селен, включающий загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление и закалку, отличающийся тем, что в качестве источника германия используют селенид германия(II), который получают пропусканием паров селена над германием в динамическом вакууме, проводят сублимационную очистку полученного селенида германия(II) и загружают его в вакуумированный кварцевый реактор вакуумным испарением в количестве, необходимом для получения стекла заданного химического состава.
2. Способ по п. 1, отличающийся тем, что компонентами шихты являются селенид германия(II) и селен.
RU2017121748A 2017-06-20 2017-06-20 Способ получения особо чистых халькогенидных стекол системы германий-селен RU2648389C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121748A RU2648389C1 (ru) 2017-06-20 2017-06-20 Способ получения особо чистых халькогенидных стекол системы германий-селен

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121748A RU2648389C1 (ru) 2017-06-20 2017-06-20 Способ получения особо чистых халькогенидных стекол системы германий-селен

Publications (1)

Publication Number Publication Date
RU2648389C1 true RU2648389C1 (ru) 2018-03-26

Family

ID=61707860

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121748A RU2648389C1 (ru) 2017-06-20 2017-06-20 Способ получения особо чистых халькогенидных стекол системы германий-селен

Country Status (1)

Country Link
RU (1) RU2648389C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2770494C1 (ru) * 2021-11-22 2022-04-18 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ имени Г.Г. Девятых Российской академии наук Способ получения особо чистых халькогенидных стекол, содержащих галлий
RU2781425C1 (ru) * 2022-04-06 2022-10-11 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г.Девятых Российской академии наук Способ получения особо чистых халькогенидных стекол, содержащих йодид серебра

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317231A (ja) * 1986-07-03 1988-01-25 Sumitomo Electric Ind Ltd カルコゲナイドガラスフアイバ母材の製造方法及びその装置
SU1694496A1 (ru) * 1989-08-29 1991-11-30 Ужгородский Государственный Университет Халькогенидное стекло
US6634189B1 (en) * 2000-10-11 2003-10-21 Raytheon Company Glass reaction via liquid encapsulation
RU2467962C1 (ru) * 2011-04-28 2012-11-27 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук (ИХВВ РАН) Способ получения особо чистых тугоплавких халькойодидных стекол

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317231A (ja) * 1986-07-03 1988-01-25 Sumitomo Electric Ind Ltd カルコゲナイドガラスフアイバ母材の製造方法及びその装置
SU1694496A1 (ru) * 1989-08-29 1991-11-30 Ужгородский Государственный Университет Халькогенидное стекло
US6634189B1 (en) * 2000-10-11 2003-10-21 Raytheon Company Glass reaction via liquid encapsulation
RU2467962C1 (ru) * 2011-04-28 2012-11-27 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук (ИХВВ РАН) Способ получения особо чистых тугоплавких халькойодидных стекол

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TROLES J. et al. GeSe4 glass fibres with low optical losses in the mid-IR. Optical material, N32, 2009, p. 212-215. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2770494C1 (ru) * 2021-11-22 2022-04-18 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ имени Г.Г. Девятых Российской академии наук Способ получения особо чистых халькогенидных стекол, содержащих галлий
RU2781425C1 (ru) * 2022-04-06 2022-10-11 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г.Девятых Российской академии наук Способ получения особо чистых халькогенидных стекол, содержащих йодид серебра

Similar Documents

Publication Publication Date Title
Savelii et al. Management of OH absorption in tellurite optical fibers and related supercontinuum generation
US7844162B2 (en) Method for fabricating IR-transmitting chalcogenide glass fiber
Shiryaev et al. Preparation of high purity glasses in the Ga–Ge–As–Se system
Troles et al. GeSe4 glass fibres with low optical losses in the mid-IR
Cui et al. Novel oxyfluorophosphate glasses and glass-ceramics
CN103332851A (zh) 一种高纯低损耗硫系玻璃的制备方法
RU2648389C1 (ru) Способ получения особо чистых халькогенидных стекол системы германий-селен
Velmuzhov et al. Preparation of especially pure Ge-Se glasses via germanium monoselenide for Mid-IR fiber optics
RU2698340C1 (ru) Способ получения особо чистых халькогенидных стекол
Maaoui et al. Removal of hydroxyl groups from Er3+/Yb3+ codoped flurotellurite glasses
Churbanov et al. High-purity As-S-Se and As-Se-Te glasses and optical fibers
Zhang et al. Glass forming and properties of Ga2S3Sb2S3CsCl chalcohalide system
CN101397190A (zh) 一种硒基透可见硫卤玻璃及其制备方法
Reitter et al. Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses
Nguyen et al. Fabrication of arsenic sulfide optical fiber with low hydrogen impurities
Azlan et al. Influence of erbium concentration on spectroscopic properties of tellurite based glass
Joshi et al. Reduction of OH− ions in tellurite glasses using chlorine and oxygen gases
Shiryaev et al. Preparation of optical fibers based on Ge–Sb–S glass system
RU2467962C1 (ru) Способ получения особо чистых тугоплавких халькойодидных стекол
JP2004526654A (ja) 透過性グラファイトを用いた波長157nmの光を透過するフッ化バリウム結晶の調製
RU2770494C1 (ru) Способ получения особо чистых халькогенидных стекол, содержащих галлий
RU2618257C1 (ru) Способ получения особо чистых стекол системы германий - сера - йод
RU2455243C1 (ru) Способ получения высокочистых теллуритных стекол
Katsuyama et al. Fabrication of high‐purity chalcogenide glasses by chemical vapor deposition
RU2419589C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА