RU2419589C1 - СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА - Google Patents

СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА Download PDF

Info

Publication number
RU2419589C1
RU2419589C1 RU2009147788/03A RU2009147788A RU2419589C1 RU 2419589 C1 RU2419589 C1 RU 2419589C1 RU 2009147788/03 A RU2009147788/03 A RU 2009147788/03A RU 2009147788 A RU2009147788 A RU 2009147788A RU 2419589 C1 RU2419589 C1 RU 2419589C1
Authority
RU
Russia
Prior art keywords
arsenic
monosulphide
sulphur
glass
monosulfide
Prior art date
Application number
RU2009147788/03A
Other languages
English (en)
Inventor
Геннадий Евгеньевич Снопатин (RU)
Геннадий Евгеньевич Снопатин
Виктор Геннадьевич Плотниченко (RU)
Виктор Геннадьевич Плотниченко
Михаил Федорович Чурбанов (RU)
Михаил Федорович Чурбанов
Original Assignee
Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) filed Critical Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН)
Priority to RU2009147788/03A priority Critical patent/RU2419589C1/ru
Application granted granted Critical
Publication of RU2419589C1 publication Critical patent/RU2419589C1/ru

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

Изобретение относится к волоконной оптике и касается разработки способа получения халькогенидных стекол системы As-S с низким содержанием примеси кислорода в виде гидроксильных групп, молекулярной воды, диоксида углерода и может быть использовано для получения волоконных световодов, применяемых в оптике и приборах для ближнего и среднего ИК-диапазона. Способ включает сплавление высокочистых мышьяка и серы в вакуумированном кварцевом реакторе, при этом источником As является моносульфид мышьяка, полученный взаимодействием серы с мышьяком в присутствии паров сероуглерода. Синтез моносульфида мышьяка ведут, предпочтительно, при температуре не выше 450°С, после чего полученный моносульфид мышьяка очищают вакуумной дистилляцией с удельной скоростью испарения (0.8-1)·10-3 г/см2·сек. Затем к моносульфиду мышьяка добавляют серу и ведут сплавление шихты из моносульфида мышьяка и серы при температуре не выше 750°С. Изобретение позволяет получать стекла системы As-S с низким содержанием кислорода в форме гидроксильных групп (на уровне 1·10-7 мол.%) на длине волны 2.9 мкм. 1 з.п. ф-лы.

Description

Заявляемое изобретение относится к волоконной оптике и касается разработки способа получения халькогенидных стекол системы As-S с низким содержанием примеси кислорода в виде гидроксильных групп и молекулярной воды, диоксида углерода и может быть использовано для получения волоконных световодов, применяемых в оптике и приборах для ближнего и среднего ИК-диапазона (ИК-пирометрии, тепловидении и др. специальных применений).
Халькогенидные стекла системы As-S относятся к наиболее перспективным стеклам для волоконной оптики среднего ИК-диапазона. Это обусловлено их высокой прозрачностью в ближнем и среднем ИК-диапазоне от 0.6 до 10 мкм, низкими оптическими потерями, устойчивостью к кристаллизации и действию окружающей среды.
Существующие методы синтеза имеют ограниченные возможности в части снижения содержания примесей соединений водорода и кислорода, являющихся одним из основных источников оптических потерь. Интенсивные полосы поглощения, обусловленные наличием примесей O-H групп на длинах волн 1.44 мкм, 1.92 мкм, 2.3 мкм, 2.92 мкм и H2O на длинах волн 2.77 мкм, 2.83 мкм, 6.33 мкм в сульфидно-мышьяковых стеклах и волоконных световодах на их основе, ограничивают практическое использование стекол и световодов.
Традиционный способ получения халькогенидных стекол системы As-S состоит в плавлении шихты из мышьяка и серы в запаянном вакуумированном контейнере из кварцевого стекла с последующим отверждением расплава в стекло (см., например, Борисова З.У. - Химия стеклообразующих полупроводников. Изд-во ЛГУ, 1972, 246 с.).
Недостатком способа применительно к получению стекол для волоконных световодов является невысокая степень чистоты по примесям кислорода и водорода. Взвешивание исходных элементов даже в защитной атмосфере, последующее их измельчение и загрузка в реактор синтеза приводят к появлению на поверхности мышьяка и серы оксидов и воды. Полное их удаление при вакуумировании реактора не достигается.
Известны решения, направленные на повышение степени чистоты стекол, полученных сплавлением элементов. Это проведение загрузки мышьяка и серы в реактор вакуумной сублимацией и дистилляцией (M.F.Churbanov, J.N.C.S., 140 (1992), 324-330) и использование в качестве источника мышьяка моносульфида мышьяка, более устойчивого к окислению и более летучего по сравнению с элементарным мышьяком (патент РФ 1721997, МКИ C03B 37/023, заявл. 02.04.1990).
Недостатком известных решений является достаточно высокое содержание гидроксильных групп (10-4-10-5 мас.%) в стекле, приводящее к повышенным оптическим потерям в световодах из этих стекол в интервале длин волн 2-3 мкм.
Известен способ получения стекол системы As-S, включающий загрузку элементарных As и S в реакционную камеру, при этом в реакционную камеру дополнительно вводят Cl в герметичном сосуде, вскрывают в ней сосуд с хлором, нагревают, обеспечивая градиент в камере Tmax≥600°C, -Tmin≅комнатная температура (см. патент РФ №2152364, МКИ C03C 3/32, C03C 4/10, заявл. 27.07.99)
Авторы заявляемого изобретения воспроизвели способ, описанный в упомянутом источнике. Эксперименты показали, что введение до 0.03 мас.% Cl2 в сульфидно-мышьяковое стекло и гомогенизация расплава при температурах до 800°C в течение 5 часов не обеспечивает уменьшения интенсивности полосы воды и O-H группы на длинах волн 2.77 мкм, 2.83 мкм, 6.33 мкм. Известно также, что взаимодействие хлора с компонентами стекла в замкнутом объеме и последующее отверждение расплава приводят к внедрению хлора в сетку стекла в виде концевых атомов и соответственно к изменению его физико-химических и оптических свойств (см. Виноградова Г.З. Стеклообразование и фазовые равновесия в халькогенидных системах. М.: Наука, 1984, стр.121).
Наиболее близким по сущности и достигаемому эффекту является способ получения стекол системы As-S сплавлением при 550-650°C высокочистых мышьяка и серы в вакуумированном кварцевом реакторе, с использованием в качестве источника моносульфида мышьяка, очищенного вакуумной дистилляцией с удельной скоростью испарения не выше (0.8-1)·10-3 г/см2·сек (см.патент РФ №1721997, МКИ C03B 37/023, заявл. 02.04.1990).
Недостатком прототипа является достаточно высокое содержание гидроксильных групп, что ограничивает область практического применения стекла, в частности передачи ИК-излучения Er:YAG лазера на длине волны 2.9 мкм и CO-лазера (5.5-6.5 мкм) (В.Г.Плотниченко, Современные и перспективные области использования ИК-световодов, Высокочистые вещества, №4, 1995, ст.42-51).
Задачей, на решение которой направлено заявляемое изобретение, является увеличение прозрачности сульфидно-мышьяковых стекол за счет снижения содержания примеси кислорода в виде гидроксильных групп, воды, диоксида углерода
Поставленная задача решается за счет того, что в способе получения стекол системы As-S сплавлением высокочистых мышьяка и серы в вакуумированном кварцевом реакторе, при этом источником As является моносульфид мышьяка, очищенный вакуумной дистилляцией с удельной скоростью испарения (0.8-1)·10-3 г/см2·сек, согласно изобретению, моносульфид мышьяка получают взаимодействием серы с мышьяком в присутствии паров сероуглерода, после чего к очищенному моносульфиду мышьяка добавляют серу и сплавление шихты ведут при температуре не выше 750°C.
Предпочтительно синтез моносульфида мышьяка вести при температуре не выше 450°C, т.к. при более высокой температуре из-за возможного повышения давления паров серы возникают трудности проведения процесса в условиях безопасной работы.
Полученное стекло было охарактеризовано на содержание примесей кислорода, водорода и углерода методом ИК-спектроскопии массивных образцов и волоконных световодов. В спектрах пропускания образцов стекол длиной 120 мм полностью отсутствовали полосы воды и гидроксильных групп. Из полученных стекол были изготовлены волоконные световоды и измерен спектр полных оптических потерь. Содержание кислорода, рассчитанное из значений интенсивности основной полосы поглощения валентных колебаний OH-групп в световоде на длине волны 2.9 мкм и коэффициента экстинкции (0.5-1.0)·10-4 дБ/км/ppm, принятого для OH групп в кварцевом и фторидных стеклах, составило (1,5-3,0)·10-7 мас.%. Интенсивность полосы с максимумом на 4.33 мкм соответствует содержанию диоксида углерода, равному 7·10-8 мас.%, SH-групп на 4.01; 3.17 мкм. соответствует содержанию водорода ~7·10-6 мол.%. Уровень оптических потерь в световодах составляет 12 дБ/км на длине волны 3.0 мкм и 14 дБ/км на длине волны 4.8 мкм.
Новым в заявляемом способе является то, что синтез моносульфида мышьяка ведут взаимодействием серы с мышьяком в присутствии паров сероуглерода, предпочтительно при температуре не выше 450°C, что обеспечивает снижение содержания примеси кислорода, связанного с мышьяком за счет перевода его в более летучее соединение и удаления при вакуумной перегонке.
Новым в способе является также и то, что сплавление шихты из моносульфида мышьяка и серы ведут при температуре не выше 750°C. Опытным путем было установлено, что сплавление шихты при температуре не выше 750°C обеспечивает хорошую гомогенизацию расплава и получение оптически однородного стекла. Сплавление шихты при температуре выше 750°C приводит к проявлению загрязняющего действия материала реактора. В результате взаимодействия расплава получаемого стекла с кварцевым стеклом реактора происходит загрязнение стекла частицами диоксида кремния, приводящее к значительному увеличению общих оптических потерь в волоконных световодах, вплоть до 3 дБ/м, что исключает их использование.
Упомянутые признаки являются существенными, т.к. каждый из них необходим, а вместе они достаточны для решения поставленной задачи - получение стекол системы As-S с низким содержанием кислорода в форме гидроксильных групп до уровня 1·10-7 мол.% на длине волны 2.9 мкм, с одной стороны, а с другой - существенное снижение загрязняющего действия материала аппаратуры.
Пример 1.
В вакуумированный до остаточного давления 2·10-6 мм рт.ст. кварцевый реактор с заданными количествами серы и мышьяка, через байпасную линию напускают пары сероуглерода P20C=300 мм рт. столба, байпасную линию отпаивают от системы вакуумирования и напуска газа. Ампулу разогревают до температуры 450°C и проводят синтез моносульфида мышьяка в атмосфере сероуглерода. По окончании синтеза кварцевый реактор присоединяют через стеклянную перегородку к системе дистилляции и расфасовки моносульфида. Всю систему вакуумируют, разбивают стеклянную перегородку и синтезированный моносульфид перегоняют со скоростью 9·10-4 г/см2·сек в расфасовочную ампулу, в которую добавляют серу для получения сульфидно-мышьякового стекла состава As40S60. Сплавление шихты из моносульфида мышьяка и серы ведут при температуре 750°C. Полученный расплав охлаждают и используют в качестве оболочечного стекла при изготовлении волоконного световода.
Содержание кислорода в полученном стекле составляет 3,0·10-7 мас.%. Оптические потери в световоде с использованием полученного сердцевинного стекла составляют 17 дБ/км на длине волны 3.0 мкм и 20 дБ/км на длине волны 4.8 мкм.
Пример 2
В вакуумированный до остаточного давления 2·10-6 мм рт.ст. кварцевый реактор с заданными количествами серы и мышьяка, через байпасную линию напускают пары сероуглерода P20C=300 мм рт. столба, байпасную линию отпаивают от системы вакуумирования и напуска газа. Ампулу разогревают до температуры 450°C и проводят синтез моносульфида мышьяка в атмосфере сероуглерода. По окончании синтеза кварцевый реактор присоединяют через стеклянную перегородку к системе дистилляции и расфасовки моносульфида. Всю систему вакуумируют, разбивают стеклянную перегородку и синтезированный моносульфид перегоняют со скоростью 1·10-3 г/см2·сек в расфасовочную ампулу, в которую добавляют серу для получения сульфидно-мышьякового стекла состава As38,7S61,3. Сплавление шихты из моносульфида мышьяка и серы ведут при температуре 700°C. Полученный расплав охлаждают и используют в качестве сердцевинного стекла при изготовлении волоконного световода.
Содержание кислорода в полученном стекле составляет 5·10-7 мас.%. Оптические потери в световоде с использованием полученного сердцевинного стекла составляют 12 дБ/км на длине волны 3,0 мкм и 14 дБ/км на длине волны 4.8 мкм.

Claims (2)

1. Способ получения стекол системы As-S с низким содержанием примеси кислорода сплавлением высокочистых мышьяка и серы в вакуумированном кварцевом реакторе, при этом источником As является моносульфид мышьяка, очищенный вакуумной дистилляцией с удельной скоростью испарения (0,8-1)·10-3 г/см2·с, отличающийся тем, что моносульфид мышьяка получают взаимодействием серы с мышьяком в присутствии паров сероуглерода, после чего к очищенному моносульфиду мышьяка добавляют серу, а сплавление шихты ведут при температуре не выше 750°С.
2. Способ получения стекол системы As-S по п.1, отличающийся тем, что синтез моносульфида мышьяка ведут при температуре не выше 450°С.
RU2009147788/03A 2009-12-23 2009-12-23 СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА RU2419589C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2009147788/03A RU2419589C1 (ru) 2009-12-23 2009-12-23 СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2009147788/03A RU2419589C1 (ru) 2009-12-23 2009-12-23 СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА

Publications (1)

Publication Number Publication Date
RU2419589C1 true RU2419589C1 (ru) 2011-05-27

Family

ID=44734862

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009147788/03A RU2419589C1 (ru) 2009-12-23 2009-12-23 СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА

Country Status (1)

Country Link
RU (1) RU2419589C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585479C1 (ru) * 2015-06-16 2016-05-27 Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН) ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
RU2698340C1 (ru) * 2018-12-24 2019-08-26 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г.Девятых Российской академии наук Способ получения особо чистых халькогенидных стекол

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585479C1 (ru) * 2015-06-16 2016-05-27 Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН) ПЛАЗМОХИМИЧЕСКИЙ СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ
RU2698340C1 (ru) * 2018-12-24 2019-08-26 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г.Девятых Российской академии наук Способ получения особо чистых халькогенидных стекол

Similar Documents

Publication Publication Date Title
US7891215B2 (en) Thermally stable IR-transmitting chalcogenide glass
US4341873A (en) Fluorozirconate, glass and the process for making the same
US7807595B2 (en) Low loss chalcogenide glass fiber
CN106927673B (zh) 一种光纤用高纯硫系玻璃的制备方法
Zhang et al. Low loss optical fibres of the tellurium halide-based glasses, the TeX glasses
RU2419589C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА
Churbanov et al. High-purity As-S-Se and As-Se-Te glasses and optical fibers
Joshi et al. Reduction of OH− ions in tellurite glasses using chlorine and oxygen gases
Nguyen et al. Fabrication of arsenic sulfide optical fiber with low hydrogen impurities
RU2698340C1 (ru) Способ получения особо чистых халькогенидных стекол
KR100789124B1 (ko) 발열 제조된 고순도 이산화규소, 이의 제조방법 및 이를 이용하여 수득한 실리카 유리 및 성형품
Katsuyama et al. Scattering loss characteristics of selenide‐based chalcogenide glass optical fibers
RU2450983C2 (ru) Особо чистый сульфидно-мышьяковый материал для синтеза высокопрозрачных халькогенидных стекол и способ его получения
Katsuyama et al. Fabrication of high‐purity chalcogenide glasses by chemical vapor deposition
Voigt et al. Optical properties of vitreous GeS2
RU2455243C1 (ru) Способ получения высокочистых теллуритных стекол
Nguyen et al. Effect of aluminum and tellurium tetrachloride addition on the loss of arsenic selenide optical fiber
RU2648389C1 (ru) Способ получения особо чистых халькогенидных стекол системы германий-селен
Huang et al. High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition
Devyatykh et al. Low-loss infrared arsenic-chalcogenide glass optical fibers
RU2152364C1 (ru) Способ получения стекол asxs1-x(x=0,10-0,45), asxse1-x(x=0-0,60)
JPS61174115A (ja) 四塩化ケイ素又は四塩化ゲルマニウムに溶解した含水素化合物から水素を除去する方法
RU2692310C1 (ru) Способ получения изотопно-обогащенных стеклообразных диоксидов кремния
RU2237030C1 (ru) Способ получения пар высокочистых стекол системы as-s для сердцевины и оболочки одномодовых и малоапертурных многомодовых световодов
RU2784125C1 (ru) Волоконный световод из сульфидно-мышьяковых стекол