RU2698340C1 - Способ получения особо чистых халькогенидных стекол - Google Patents

Способ получения особо чистых халькогенидных стекол Download PDF

Info

Publication number
RU2698340C1
RU2698340C1 RU2018145962A RU2018145962A RU2698340C1 RU 2698340 C1 RU2698340 C1 RU 2698340C1 RU 2018145962 A RU2018145962 A RU 2018145962A RU 2018145962 A RU2018145962 A RU 2018145962A RU 2698340 C1 RU2698340 C1 RU 2698340C1
Authority
RU
Russia
Prior art keywords
glass
rare
earth elements
impurities
reactor
Prior art date
Application number
RU2018145962A
Other languages
English (en)
Inventor
Максим Викторович Суханов
Александр Павлович Вельмужов
Владимир Семенович Ширяев
Элла Владимировна Караксина
Михаил Федорович Чурбанов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г.Девятых Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г.Девятых Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г.Девятых Российской академии наук
Priority to RU2018145962A priority Critical patent/RU2698340C1/ru
Application granted granted Critical
Publication of RU2698340C1 publication Critical patent/RU2698340C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1407Deposition reactors therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)

Abstract

Изобретение относится к материалам для инфракрасной оптики, а именно к способу получения особо чистых халькогенидных стекол, легированных редкоземельными элементами. Способ получения особо чистых халькогенидных стекол, легированных редкоземельными элементами, включает загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление, закалку стеклообразующего расплава и отжиг стекла. Перед загрузкой редкоземельных элементов проводят высокотемпературную обработку редкоземельного элемента в форме простого вещества или соединения в парах серы в режиме динамического вакуума при температуре 600–700°С. Технический результат – снижение содержания в стеклах примесей, поглощающих в спектральном диапазоне 2–10 мкм, и, как следствие, увеличение оптической прозрачности стекол. 2 пр.

Description

Изобретение относится к материалам для инфракрасной оптики, а именно к способу получения особо чистых халькогенидных стекол, легированных редкоземельными элементами. Эти стекла являются перспективными материалами для изготовления массивных элементов и волоконных световодов для сенсоров, усилителей и лазеров, работающих в среднем ИК-диапазоне.
Важнейшим требованием, предъявляемым к таким стеклам для практического применения в качестве оптических сред, является низкое содержание примесей (водород, кислород, углерод и др.), поглощающих и рассеивающих излучение в спектральном диапазоне 2–10 мкм.
Известен способ получения халькогенидных стекол, легированных редкоземельными элементами (РЗЭ) [J. Ari1, F. Starecki, C. Boussard-Plédel, J.-L. Doualan, L. Quétel, K. Michel, A. Braud, P. Camy, R. Chahal, B. Bureau, Y. Ledemi, Y. Messaddeq, V. Nazabal, Rare-earth doped chalcogenide glasses for mid-IR gas sensor applications // Proc. of SPIE. – 2017. – Vol. 10100. – P. 1–8], включающий загрузку компонентов шихты в кварцевый реактор, вакуумирование реактора, нагревание до 850°С, гомогенизацию халькогенидного расплава при этой температуре в течение 4-х часов в качающейся печи, охлаждение до 650°С, закалку расплава и отжиг. Редкоземельный элемент (празеодим, диспрозий) добавляют в форме сульфида.
Недостатком данного способа является то, что компоненты шихты, в том числе сульфиды редкоземельных элементов, загружаются в реактор без предварительной очистки. Содержание примеси кислорода и водорода в редкоземельных элементах в форме оксидов, гидроксидов, оксо- и гидроксокарбонатов различного состава, как правило, не контролируется. Сульфиды РЗЭ преимущественно получают взаимодействием оксидов и гидроксидов с сероводородом или сероуглеродом при повышенных температурах [Руководство по неорганическому синтезу. Т. 3: Пер. с нем. / Под ред. Р. Брауэра. – М. Мир, 1985. – 392 с.]. Этим обусловлено дополнительное содержание примесей кислорода, водорода и углерода в сульфидах. Использование таких реактивов в качестве легирующих добавок приводит к существенному загрязнению халькогенидных стекол поглощающими примесями и ухудшению их оптических и люминесцентных свойств. Дополнительным источником примесей является взаимодействие реактивов редкоземельных элементов с атмосферой при хранении и загрузке в реактор.
Наиболее близким к заявляемому способу по технической сущности и достигаемому результату, выбранным в качестве прототипа, является способ получения халькогенидных стекол, легированных редкоземельными элементами, [A. Galstyan, S.H. Messaddeq, I. Skripachev, T. Galstian, Y. Messaddeq, Role of iodine in the solubility of Tm3+ ions in As2S3 glasses // OPTICAL MATERIALS EXPRESS. – 2015. – Vol. 6, No. 1. – P. 230–243], включающий загрузку компонентов шихты вакуумной дистилляцией в кварцевый реактор с туллием, плавление шихты при температуре 750°С в течение 12 часов, закалку стеклообразующего расплава на воздухе и отжиг стекла при 130–160°С.
Преимуществом этого способа по сравнению с вышеописанным аналогом является то, что шихта, за исключением редкоземельного элемента, подвергается дополнительной очистке при загрузке в реактор вакуумной дистилляцией. Недостатком способа является то, что редкоземельный элемент не подвергается предварительной очистке. Примеси водорода, кислорода, углерода и др., присутствующие в редкоземельном элементе, попадают в халькогенидное стекло и ухудшают его оптическую прозрачность. Этим обусловлено наличие интенсивных полос поглощения от SH-, OH-групп и As2O3 в спектрах стекол, получаемых таким способом.
Техническая проблема, решаемая предлагаемым изобретением, - создание способа получения особо чистых халькогенидных стекол, легированных редкоземельными элементами, с низким содержанием примесей, поглощающих в спектральном диапазоне 2–10 мкм.
Технический результат от использования изобретения заключается в снижении содержания в стеклах примесей, поглощающих в спектральном диапазоне 2–10 мкм, и, как следствие, в увеличении оптической прозрачности стекол.
Указанный результат достигается тем, что в способе получения особо чистых халькогенидных стекол, легированных редкоземельными элементами, включающем загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление, закалку стеклообразующего расплава и отжиг стекла, перед загрузкой редкоземельных элементов проводят высокотемпературную обработку редкоземельного элемента в форме простого вещества или соединения в парах серы в режиме динамического вакуума при температуре 600–700°С.
Способ осуществляют следующим образом.
В открытую ампулу, спаянную одним концом с реактором из кварцевого стекла, загружают необходимое количество редкоземельного элемента в форме простого вещества или соединения. Ко второму концу ампулы подпаивают ампулу с серой. Полученную установку вакуумируют. Ампулу с редкоземельным элементом нагревают до температуры 600–700°С. При меньших температурах взаимодействие серы с примесями будет менее эффективным; при более высоких температурах начнется заметное взаимодействие редкоземельного элемента со стенками кварцевой ампулы. Далее нагревают серу, что приводит к ее испарению в ампулу с редкоземельным элементом, в которой она взаимодействует с примесями. После полного испарения серы установку охлаждают и отпаивают от вакуумного насоса. Очищенный редкоземельный элемент пересыпают в реактор. В случае синтеза селенидных или теллуридных стекол, далее в реактор загружают остальные компоненты испарением из ампулы для получения шихты заданного химического состава. В случае синтеза сульфидных стекол компоненты шихты могут быть загружены в реактор до термической обработки редкоземельного элемента в парах серы. Реактор отпаивают, помещают в печь, синтезируют стеклообразующий расплав при 850°С и проводят его гомогенизацию при этой температуре. Далее стеклообразующий расплав охлаждают до 700°С и отжигают полученное стекло при температуре стеклования.
Новым в способе является то, что перед загрузкой редкоземельных элементов в форме простых веществ или соединений в реактор, проводят их обработку в парах серы при температуре 600–700°С в режиме динамического вакуума. Это приводит к взаимодействию примесей, находящихся в редкоземельном элементе, с серой и содержащимися в ней примесями, например, по реакциям:
2Pr6O11 + 29S = 6Pr2S3 + 11SO2 (1);
4Pr(OH)3 + 9S = 2Pr2S3 + 3SO2 + 6H2O (2);
2Pr2(CO3)3 + 9S = 2Pr2S3 + 3SO2 + 6CO2 (3);
6Pr6O11 + 29CS2 = 18Pr2S3 + 4SO2 + 29CO2 (4);
3Pr6O11 + 29H2S = 9Pr2S3 + 2SO2 + 29H2O (5).
Образующиеся легколетучие продукты (CO2, SO2, H2O) удаляют из реактора в условиях непрерывного вакуумирования системы. Протекание указанных реакций приводит к значительному снижению содержания примеси кислорода, водорода и углерода в редкоземельных элементах и, следовательно, в халькогенидных стеклах, для синтеза которых они используются. Реакции (4)–(5) приводят к дополнительной очистке серы от водорода и углерода за счет сильных окислительных свойств некоторых оксидов редкоземельных элементов. В случае получения сульфидных стекол это способствует снижению содержания в них примесей, т.к. сера, пропускаемая над празеодимом, может использоваться для синтеза стекла.
Новым в способе является то, что загрузку редкоземельных элементов в реактор в форме простых веществ или соединений проводят непосредственно после их очистки без развакуумирования системы. Это исключает взаимодействие редкоземельных элементов с атмосферными примесями (кислород, вода, углекислый газ, пыль), и, следовательно, снижает содержание примесей в халькогенидных стеклах.
Указанные отличительные признаки являются существенными, так как каждый из них необходим, а в совокупности они достаточны для достижения поставленной задачи – разработка способа получения особо чистых халькогенидных стекол, легированных редкоземельными элементами, с низким содержанием примесей, поглощающих в спектральном диапазоне 2–10 мкм.
Пример 1.
Для получения 20 г стекла состава Ge35As10S55, легированного празеодимом до уровня 450 ppm ат., в ампулу, подпаянную к кварцевому реактору, помещают 2.965 г мышьяка, 10.056 г германия и 0.025 г празеодима. Ко второму концу ампулы подпаивают ампулу с 6.979 г серы. Полученную установку вакуумируют до остаточного давления не выше 10-5 мм рт.ст. Ампулу с мышьяком, германием и празеодимом нагревают до 400°С. При этом мышьяк испаряется и конденсируется в реакторе. После полной загрузки мышьяка температуру ампулы повышают до 550℃, ампулу с серой нагревают до 250°С. Сера поступает в ампулу с германием, образующийся моносульфид германия испаряется и конденсируется в реакторе. По окончании загрузки германия температуру в ампуле с празеодимом повышают до 700°С и продолжают загружать серу до ее полного испарения из исходной ампулы. Далее реактор с ампулой, в которой находится празеодим, отпаивают от вакуумного насоса и ампулы, в которой находилась сера, празеодим пересыпают в реактор. Реактор отпаивают от ампулы, помещают в печь, синтезируют стеклообразующий расплав при 850°С и проводят его гомогенизацию при этой температуре в течение 5 ч в режиме перемешивающего качания. Далее стеклообразующий расплав охлаждают до 700°С, закаливают на воздухе и полученное стекло отжигают при 350°С в течение часа. Содержание примеси водорода в форме SH-групп в полученном стекле на порядок меньше, чем в стекле, полученном без прокаливания празеодима (0.1 и 1 ppm масс., соответственно); содержание примеси кислорода в 5 раз меньше (0.2 и 1 ppm масс.).
Пример 2.
Для легирования 20 г стекла состава Ge18Sb10Se66In3I3 1000 ppm масс. диспрозия в ампулу, подпаянную к кварцевому реактору помещают 0.026 г сульфида диспрозия (III). Подпаивают ампулу с 20 г предварительно полученного стеклообразующего расплава Ge18Sb10Se66In3I3, ампулу с 2 г серы, установку вакуумируют. Нагревают сульфид диспрозия (III) до 600°С, нагревают ампулу с серой. Сера взаимодействует с примесями, находящимися в сульфиде диспрозия (III) и конденсируется в приемнике, подпаянном к ловушке, охлаждаемой жидким азотом. После израсходования всей серы сульфид диспрозия пересыпают в реактор. Нагревают ампулу со стеклообразующим расплавом Ge18Sb10Se66In3I3 для дистилляции с конденсацией в реакторе. По окончании дистилляции расплава реактор отпаивают от вакуумного насоса, помещают в печь, нагревают до 800°С, синтезируют стеклообразующий расплав и гомогенизируют его при этой температуре в течение 4-х часов. Далее стеклообразующий расплав охлаждают до 650°С, закаливают на воздухе, полученное стекло отжигают при 350°С в течение часа. Получают образец с содержанием примеси кислорода в форме оксида германия 0.2 ppm масс.
Определение содержания примеси водорода в форме SH-, SeH-групп и кислорода в форме оксида германия проводили методом инфракрасной спектроскопии с использованием известных коэффициентов поглощения [В.Г. Борисевич, В.В. Войцеховский, И.В. Скрипачев, В.Г. Плотниченко, Исследование влияния примесного водорода на оптические свойства халькогенидных стекол системы As – Se, Высокочистые вещества, 1991, №1, С. 65–70; В.Г. Борисевич, В.Г. Плотниченко, И.В. Скрипачев, М.Ф. Чурбанов, Коэффициент экстинкции SH-групп в стеклообразном сульфиде мышьяка, Высокочистые вещества, 1990, №4, С. 11–21; J. Nishii, T. Yamashita, T. Yamagishi, Oxide impurity absorptions in Ge-Se-Te glass fibres, J. of Materials Science 24 (1989) 4293-4297].
Таким образом, предлагаемый способ получения особо чистых халькогенидных стекол, легированных редкоземельными элементами, позволяет в 5–10 раз снизить содержание в стеклах примесей, поглощающих в спектральном диапазоне 2–10 мкм, и как следствие, к увеличению оптической прозрачности стекол.

Claims (1)

  1. Способ получения особо чистых халькогенидных стекол, легированных редкоземельными элементами, включающий загрузку компонентов шихты в вакуумированный кварцевый реактор, синтез стеклообразующего расплава, его гомогенизирующее плавление, закалку стеклообразующего расплава и отжиг стекла, отличающийся тем, что перед загрузкой редкоземельных элементов проводят высокотемпературную обработку редкоземельного элемента в форме простого вещества или соединения в парах серы в режиме динамического вакуума при температуре 600–700°С.
RU2018145962A 2018-12-24 2018-12-24 Способ получения особо чистых халькогенидных стекол RU2698340C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018145962A RU2698340C1 (ru) 2018-12-24 2018-12-24 Способ получения особо чистых халькогенидных стекол

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018145962A RU2698340C1 (ru) 2018-12-24 2018-12-24 Способ получения особо чистых халькогенидных стекол

Publications (1)

Publication Number Publication Date
RU2698340C1 true RU2698340C1 (ru) 2019-08-26

Family

ID=67733717

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018145962A RU2698340C1 (ru) 2018-12-24 2018-12-24 Способ получения особо чистых халькогенидных стекол

Country Status (1)

Country Link
RU (1) RU2698340C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2731764C1 (ru) * 2019-12-30 2020-09-08 Акционерное общество "Научно-производственное предприятие "Медикон" (АО "НПП "Медикон") Способ выплавки кварцевого стекла
RU2770494C1 (ru) * 2021-11-22 2022-04-18 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ имени Г.Г. Девятых Российской академии наук Способ получения особо чистых халькогенидных стекол, содержащих галлий
RU2807334C1 (ru) * 2023-07-13 2023-11-14 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г.Девятых Российской академии наук Способ получения особо чистых теллуридных стекол

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569709A (zh) * 2003-07-11 2005-01-26 华东理工大学 含稀土元素硫系玻璃及其制备方法
RU2419589C1 (ru) * 2009-12-23 2011-05-27 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА
RU2450983C2 (ru) * 2010-08-25 2012-05-20 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Особо чистый сульфидно-мышьяковый материал для синтеза высокопрозрачных халькогенидных стекол и способ его получения
RU2618257C1 (ru) * 2016-01-11 2017-05-03 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Способ получения особо чистых стекол системы германий - сера - йод

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569709A (zh) * 2003-07-11 2005-01-26 华东理工大学 含稀土元素硫系玻璃及其制备方法
RU2419589C1 (ru) * 2009-12-23 2011-05-27 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) СПОСОБ ПОЛУЧЕНИЯ ХАЛЬКОГЕНИДНЫХ СТЕКОЛ СИСТЕМЫ As-S С НИЗКИМ СОДЕРЖАНИЕМ КИСЛОРОДА
RU2450983C2 (ru) * 2010-08-25 2012-05-20 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Особо чистый сульфидно-мышьяковый материал для синтеза высокопрозрачных халькогенидных стекол и способ его получения
RU2618257C1 (ru) * 2016-01-11 2017-05-03 Учреждение Российской академии наук Институт химии высокочистых веществ РАН (ИХВВ РАН) Способ получения особо чистых стекол системы германий - сера - йод

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. Galstyan et al. Role of iodine in the solubility of Tm3+ ions in As2S3 glasses. OPTICAL MATERIALS EXPRESS, 2015, Vol. 6, No. 1, p. 230-243. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2731764C1 (ru) * 2019-12-30 2020-09-08 Акционерное общество "Научно-производственное предприятие "Медикон" (АО "НПП "Медикон") Способ выплавки кварцевого стекла
RU2770494C1 (ru) * 2021-11-22 2022-04-18 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ имени Г.Г. Девятых Российской академии наук Способ получения особо чистых халькогенидных стекол, содержащих галлий
RU2810665C1 (ru) * 2023-06-06 2023-12-28 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г. Девятых Российской академии наук Способ получения особо чистых халькогенидных стекол
RU2807334C1 (ru) * 2023-07-13 2023-11-14 Федеральное государственное бюджетное учреждение науки Институт химии высокочистых веществ им. Г.Г.Девятых Российской академии наук Способ получения особо чистых теллуридных стекол

Similar Documents

Publication Publication Date Title
Shiryaev et al. Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics
US5846889A (en) Infrared transparent selenide glasses
US7693388B1 (en) Thermally stable IR transmitting chalcogenide glass
Shiryaev et al. Preparation of high purity glasses in the Ga–Ge–As–Se system
RU2698340C1 (ru) Способ получения особо чистых халькогенидных стекол
Dorofeev et al. Production and properties of high purity TeO2− WO3−(La2O3, Bi2O3) and TeO2− ZnO− Na2O− Bi2O3 glasses
Velmuzhov et al. Preparation of Ge20Se80 glasses with low hydrogen and oxygen impurities content for middle IR fiber optics
Cui et al. Novel oxyfluorophosphate glasses and glass-ceramics
Velmuzhov et al. Preparation of especially pure Ge-Se glasses via germanium monoselenide for Mid-IR fiber optics
CN106927673A (zh) 一种光纤用高纯硫系玻璃的制备方法
Maaoui et al. Removal of hydroxyl groups from Er3+/Yb3+ codoped flurotellurite glasses
Shiryaev et al. Recent progress in preparation of chalcogenide As-Se-Te glasses with low impurity content
Churbanov et al. Production of high-purity TeO2-ZnO and TeO2-WO3 glasses with the reduced content of ОН-groups
Churbanov et al. High-purity As-S-Se and As-Se-Te glasses and optical fibers
Velmuzhov et al. Preparation of high-purity germanium telluride based glasses with low oxygen impurity content
Velmuzhov et al. Physicochemical, optical properties and stability against crystallization of GaxGey-xS100-y (x= 0–8; y= 40–42) glasses
Shiryaev et al. Heterophase inclusions and dissolved impurities in Ge25Sb10S65 glass
Nguyen et al. Fabrication of arsenic sulfide optical fiber with low hydrogen impurities
Shiryaev et al. Preparation of optical fibers based on Ge–Sb–S glass system
RU2648389C1 (ru) Способ получения особо чистых халькогенидных стекол системы германий-селен
Churbanov et al. Effect of Oxygen Impurity on the Optical Transmission of As2Se3. 4Glass
RU2467962C1 (ru) Способ получения особо чистых тугоплавких халькойодидных стекол
Nguyen et al. Effect of aluminum and tellurium tetrachloride addition on the loss of arsenic selenide optical fiber
RU2455243C1 (ru) Способ получения высокочистых теллуритных стекол
RU2618257C1 (ru) Способ получения особо чистых стекол системы германий - сера - йод