RU2641364C2 - Способ оценки давления в вакуумном резервуаре сервотормоза - Google Patents

Способ оценки давления в вакуумном резервуаре сервотормоза Download PDF

Info

Publication number
RU2641364C2
RU2641364C2 RU2015125523A RU2015125523A RU2641364C2 RU 2641364 C2 RU2641364 C2 RU 2641364C2 RU 2015125523 A RU2015125523 A RU 2015125523A RU 2015125523 A RU2015125523 A RU 2015125523A RU 2641364 C2 RU2641364 C2 RU 2641364C2
Authority
RU
Russia
Prior art keywords
pressure
pmc
stage
brake
braking
Prior art date
Application number
RU2015125523A
Other languages
English (en)
Other versions
RU2015125523A (ru
Inventor
Хамид АЗЗИ
Режи САНЧЕС
Original Assignee
Рено С.А.С.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Рено С.А.С. filed Critical Рено С.А.С.
Publication of RU2015125523A publication Critical patent/RU2015125523A/ru
Application granted granted Critical
Publication of RU2641364C2 publication Critical patent/RU2641364C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • B60T13/52Vacuum systems indirect, i.e. vacuum booster units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Объектом изобретения является способ оценки давления (Pass) в вакуумном резервуаре (28) вакуумного сервотормоза (26) автотранспортного средства (10), при этом транспортное средство (10) содержит: тормозное устройство (16); сервотормоз (26); датчик (23) давления. При осуществлении способа на первом этапе (E1) циклически вычисляют давление (Pmc) торможения. На втором этапе (E2) вычисляют амплитуду (ΔPmc) снижения давления. В ходе второго этапа максимум (Pmc_max), а затем минимум (Pmc_min), достигаемые последовательно давлением торможения, сохраняют в памяти. Амплитуду (ΔPmc) снижения давления торможения вычисляют путем определения разности между максимумом (Pmc_max) и минимумом (Pmc_min). В ходе Третьего этапа (Е3), который начинается по завершении второго этапа (Е2), оценивают повышение (Conso) давления в вакуумном резервуаре (28) в зависимости от амплитуды (ΔPmc), вычисленной на втором этапе (Е2). Достигается быстрая и точная оценка давления в вакуумном резервуаре (28). 9 з.п. ф-лы, 7 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к способу оценки давления в вакуумном резервуаре вакуумного сервотормоза автотранспортного средства.
В частности, изобретение относится к способу оценки давления в вакуумном резервуаре вакуумного сервотормоза автотранспортного средства, при этом транспортное средство содержит:
- двигатель внутреннего сгорания;
- по меньшей мере одно тормозное устройство, управляемое давлением тормозной текучей среды;
- главный тормозной цилиндр, который управляет давлением тормозной текучей среды и который приводится в действие подвижным приводным органом, выполненным с возможностью перемещения между положением покоя и крайним рабочим положением;
- сервотормоз, расположенный между приводным органом и главным тормозным цилиндром для увеличения усилия приводного органа при помощи разрежения, создаваемого в резервуаре, поддерживаемом под разрежением, до значения давления усиления, когда двигатель запущен;
- средство обнаружения перемещения приводного органа за пределы промежуточного положения свободного хода;
- датчик давления, выполненный с возможностью измерения давления торможения тормозной текучей среды.
Уровень техники
Как правило, автотранспортные средства оборудованы тормозными устройствами, такими как дисковые тормоза, которыми управляет давление тормозной текучей среды. Давлением тормозной текучей среды управляет, в частности, главный тормозной цилиндр, который приводит в действие водитель через приводной орган, обычно представляющий собой педаль тормоза. Давление, необходимое для эффективной работы тормозных устройств, является очень высоким. Для помощи водителю в его усилии торможения, как известно, транспортное средство оборудуют вакуумным сервотормозом, называемым также "brake booster" или "master vac". Для этого сервотормоз использует разрежение, создаваемое после запуска двигателя. Разрежение создает, например, вакуумный насос, вращаемый двигателем, или оно появляется непосредственно при работе двигателя на уровне впускного воздушного коллектора.
Кроме того, чтобы снизить вредные выбросы и уменьшить расход топлива, как известно, автотранспортные средства с двигателем внутреннего сгорания оборудуют автоматической системой выключения и запуска, более известной под англо-саксонским названием "start and stop". Такая система позволяет автоматически выключать двигатель внутреннего сгорания, когда транспортное средство кратковременно останавливается, например, перед красным сигналом светофора или при движении в пробках. Двигатель повторно запускается автоматически, когда водитель осуществляет маневр для трогания с места, например, нажимая на педаль акселератора или включая передачу.
Однако недостатком такого устройства является прерывание создания разрежения двигателем, даже если транспортное средство остается в ситуации дорожного движения. Таким образом, если водитель нажимает на педаль тормоза во время автоматической остановки двигателя, разрежения в сервотормозе не хватает для обеспечения эффективного приведения в действие главного тормозного цилиндра.
Для решения этой проблемы, как известно, между источником разрежения и сервотормозом располагают вакуумный резервуар. Этот резервуар позволяет водителю располагать достаточным запасом разрежения для многократного приведения в действие главного тормозного цилиндра.
Однако это решение не предусмотрено для всех ситуаций.
Так, было предложено производить автоматический повторный запуск двигателя внутреннего сгорания, когда давление в вакуумном резервуаре становится выше определенного максимального порога. Для этого, как известно, производят прямое измерение давления в вакуумном резервуаре при помощи датчика давления.
Однако, если это решение является удовлетворительном в техническом плане, оно не является экономичным, так как требует установки датчика давления специально для вакуумного резервуара.
Раскрытие изобретения
Изобретением предложено решение этой проблемы за счет оценки давления в вакуумном резервуаре с использованием датчиков, уже существующих на транспортном средстве. В связи с этим объектом изобретения является вышеуказанный способ, отличающийся тем, что содержит:
- первый этап вычисления давления торможения, который повторяют циклически;
- второй этап вычисления амплитуды снижения давления, в ходе которого максимум, а затем минимум, достигаемые последовательно давлением торможения, сохраняют в памяти и в ходе которого амплитуду этого снижения давления торможения вычисляют путем определения разности между максимумом и минимумом;
- третий этап, который начинается по завершении второго этапа и в ходе которого оценивают повышение давления в вакуумном резервуаре в зависимости от амплитуды, вычисленной на втором этапе.
Согласно другим отличительным признакам изобретения:
- в ходе первого этапа вычисленное давление торможения равно:
- значению покоя, пока не обнаруживается никакое перемещение приводного органа; или
- наибольшему значению между измерением давления торможения датчиком и минимальным давлением, определенным, когда обнаруживается перемещение приводного органа;
- третий этап начинается, когда двигатель выключается;
- способ содержит четвертый этап запроса повторного запуска, в ходе которого двигатель запускается повторно, если давление в резервуаре превышает определенный порог;
- в ходе третьего этапа оценивают повышение давления в резервуаре в зависимости от амплитуды понижения давления при помощи заранее определенной кривой соответствия;
- заранее определенная кривая имеет ступенчатый вид для приведения в соответствие определенного повышения давления с определенным интервалом значений амплитуды понижения давления торможения;
- когда двигатель повторно запускается, давление в резервуаре опять доводят до минимального значения;
- во время второго этапа первое значение давления принимают за максимум давления, если второе значение давления, вычисленное на следующем цикле первого этапа, строго меньше первого значения;
- во время второго этапа первое значение давления принимают за минимум, если:
- ранее был достигнут максимум;
- и второе значение давления, вычисленное на следующем цикле, превышает или равно первому значению давления;
- второй этап повторяют, если достигнут минимум.
Краткое описание чертежей
Отличительные признаки и преимущества изобретения будут более очевидны из нижеследующего подробного описания со ссылками на прилагаемые чертежи, на которых:
фиг. 1 - схема автотранспортного средства с двигателем внутреннего сгорания, оборудованного тормозным устройством, содержащим вакуумный сервотормоз;
фиг. 2 - вид в разрезе вакуумного сервотормоза, показанного на фиг. 1, в состоянии покоя;
фиг. 3 - вид, аналогичный фиг. 2, в котором сервотормоз находится в рабочем состоянии;
фиг. 4 - блок-схема способа оценки давления в вакуумном резервуаре сервотормоза в соответствии с изобретением;
фиг. 5 - блок-схема второго этапа способа, представленного на фиг. 4;
фиг. 6 - диаграмма изменения давления тормозной текучей среды в зависимости от времени;
фиг. 7 - диаграмма оценочного повышения давления усиления в резервуаре в зависимости от амплитуды снижения давления торможения.
Осуществление изобретения
В дальнейшем тексте описания элементы, имеющие одинаковую конструкцию или аналогичные функции, будут иметь одинаковые цифровые значения.
На фиг. 1 показано автотранспортное средство 10, приводимое в движение двигателем 12 внутреннего сгорания. Двигатель 12 внутреннего сгорания выполнен с возможностью автоматического выключения и повторного запуска электронным блоком 14 управления.
Транспортное средство 10 содержит также средства торможения транспортного средства. В данном случае средства торможения содержат несколько тормозных устройств 16, каждое из которых связано с колесом 18 транспортного средства 10. Для упрощения чертежей показаны только одно колесо 18 и связанное с ним тормозное устройство 16.
Например, тормозное устройство 16 выполнено в виде дискового тормоза, который содержит тормозные колодки (не показаны), установленные в неподвижной обойме и выполненные с возможностью перемещения между положением покоя, в котором они находятся на удалении от диска, и положением прижатия к тормозному диску (не показан), вращающемуся вместе с колесом 18.
Переходом тормозного устройства 16 между его положением покоя и его положением прижатия управляет давление "Pmc" тормозной текучей среды, которая содержится в гидравлическом контуре 20. Как известно, в данном случае тормозная текучая среда является несжимаемой жидкостью.
Давлением "Pmc" тормозной текучей среды управляет главный тормозной цилиндр 22. Проще говоря, главный тормозной цилиндр 22 действует как поршень, который может перемещаться между положением покоя и положением сжатия тормозной текучей среды, содержащейся в гидравлическом контуре 20.
Из соображений безопасности гидравлический контур 20 содержит датчик 23 давления, выполненный с возможностью измерения в любой момент давления "Pmc" тормозной текучей среды. В дальнейшем это давление будет называться «давлением торможения Pmc». Датчик 23 направляет сигнал, характеризующий давление "Pmc" торможения, в электронный блок 14 управления.
Шток 27, толкающий поршень главного тормозного цилиндра 22, выполнен с возможностью воздействия на него со стороны водителя транспортного средства 10 через приводной орган 24. В данном случае приводной орган 24 является педалью тормоза, выполненной с возможностью перемещения между положением покоя, в котором она постоянно находится под действием упругого возвратного усилия, и крайним рабочим положением, в котором давление "Pmc" тормозной текучей среды повышается для перемещения тормозного устройства 16 в его положение торможения.
Однако давление торможения "Pmc", необходимое для того, чтобы тормозное устройство 16 обеспечивало эффективное торможение транспортного средства 10, требует очень большого усилия на толкающий шток 27 главного тормозного цилиндра 22.
Поэтому для оказания содействия водителю, как известно, между приводным органом 24 и главным тормозным цилиндром 26 установлен вакуумный сервотормоз 26 для увеличения усилия приводного органа при помощи разрежения, создаваемого в резервуаре 28, поддерживаемом под разрежением, когда двигатель 12 запущен. При этом давление в резервуаре 28 равно минимальному давлению усиления "Pass_min".
Более подробное описание принципа работы вакуумного сервотормоза 26 представлено со ссылками на фиг. 2 и 3.
Сервотормоз 26 содержит жесткий картер 30, разделенный гибкой перегородкой 32 на заднюю камеру 34 и переднюю камеру 36. Перегородка 32 выполнена с возможностью воздействия на толкающий шток 27 главного тормозного цилиндра 22 для его перемещения в положение сжатия тормозной текучей среды. Перегородка 32 содержит также два клапана 38, 40, которые управляются приводным органом 24.
Обе камеры 34, 36 могут сообщаться друг с другом через первый клапан 38, управляемый приводным органом 24.
Задняя камера 34 может сообщаться с атмосферным давлением "Patm" через второй клапан 40, которым тоже управляет приводной орган 24.
Передняя камера 36 выполнена с возможностью питания первым давлением "Pass", называемым давлением усиления, которое ниже атмосферного давления "Patm", через отверстие 42, сообщающееся с вакуумным резервуаром 28.
Когда приводной орган 24 находится в своем положении покоя, как показано на фиг. 2, обе камеры 34, 36 сообщаются между собой через первый клапан 38, тогда как второй клапан 40 закрыт.
Когда тормозной орган 24 приводится в действие, первый клапан 38 закрывается, изолируя таким образом обе камеры 34, 36. Второй клапан 40 открывается, впуская воздух под атмосферным давлением "Patm" в заднюю камеру 34. Разность давления "Patm-Pass" между двумя камерами 34, 36 приводит к перемещению перегородки 32 и, следовательно, толкающего штока 27 главного тормозного цилиндра 22 вперед до закрывания второго клапана 40, при этом первый клапан 38 остается закрытым. Количество атмосферного воздуха, впускаемое в заднюю камеру 34, тем больше, чем сильнее нажатие на приводной орган 24. Иначе говоря, давление торможения "Pmc" повышается с увеличением объема воздуха под атмосферным давлением "Patm", поступающего в заднюю камеру 34 сервотормоза 26.
Когда водитель перестает нажимать на приводной орган 24, первый клапан 38 открывается, тогда как второй клапан 40 остается закрытым. Это приводит к восстановлению баланса давления между двумя камерами 34, 36 и к выталкиванию воздуха под атмосферным давлением в вакуумный резервуар 28.
Таким образом, как было указано выше, во время остановки двигателя давление усиления "Pass" в вакуумном резервуаре 28 повышается, только если приводной орган 24 возвращается в свое положение покоя, то есть когда давление торможения "Pmc" снижается.
Кроме того, как показано на фиг. 1, приводной орган 24 заставляет срабатывать средство 25 обнаружения, когда он перемещается из своего положения покоя за пределы промежуточного положения свободного хода. Средство 25 обнаружения выполнено, например, в виде контактора или выключателя.
Перемещение приводного органа 24 между положением покоя и промежуточным положением свободного хода не приводит к открыванию второго клапана 40 в сервотормозе 26. Речь идет о «холостом» перемещении.
За пределами положения свободного хода срабатывает контактор 25. Этот контактор 25 включает также стоп-сигналы транспортного средства 10. За пределами положения свободного хода второй клапан 40 открывается, что приводит к перемещению толкающего штока 27 главного тормозного цилиндра 22. Однако в начале этого перемещения давление торможения "Pmc" еще не влияет на датчик 23. Действительно, в положении покоя тормозные колодки удалены от тормозного диска с зазором, позволяющим диску вращаться без трения. Начало перемещения поршня соответствует перемещению колодок до контакта с диском. Такое перемещение не требует значительного повышения давления торможения "Pmc".
Исходя из вышеизложенного изобретением предложен способ оценки давления усиления "Pass" в вакуумном резервуаре 28, когда двигатель выключен. Этот способ описан со ссылками на фиг. 4 и 5.
Способ содержит первый этап «Е1» вычисления давления торможения "Pmc". Электронный блок 14 управления осуществляет этот этап «Е1» циклично с повышенной частотностью.
В определенный момент "t" давление торможения "Pmc" равно определенному минимальному значению покоя "V0", когда контактор 25 не обнаруживает перемещения приводного органа 24. В противном случае, если контактор 25 обнаруживает перемещение приводного органа 24, давление торможения "Pmc" равно наибольшему значению между измерением давления датчиком "Vmes" и определенным давлением свободного хода "V1".
Минимальное давление покоя "V0" соответствует давлению тормозной текучей среды, когда колодки находятся в своем положении покоя.
Давление свободного хода "V1" соответствует давлению, необходимому для перемещения колодок до контакта с диском. Поскольку это давление "V1" не обнаруживается или слабо ощущается датчиком 23, оно сохраняется непосредственно в памяти электронного блока 14 управления. Таким образом, вместо измерения датчиком 23 оно выдается электронным блоком 14 измерения во время срабатывания контактора 25.
На следующем цикле "t+1" электронный блок 14 управления вычисляет новое значение давления торможения "Pmcn+1".
Предпочтительно хронологическая последовательность значений давления торможения "Pmc" образует сигнал давления торможения, который может быть фильтрован фильтром первого порядка (не показан).
На втором этапе «Е2» вычисления снижения давления электронный блок 14 управления вычисляет амплитуду "ΔPmc" уменьшения давления во время понижения этого давления.
Второй этап «Е2» более подробно представлен на фиг. 5. В ходе этого этапа «Е2» максимум "Pmc_max", а затем минимум "Pmc_min", последовательно достигаемые давлением торможения "Pmc", сохраняются в памяти электронного блока 14 управления.
Для этого, как показано на фиг. 5, тест «Т1» позволяет убедиться, что максимум "Pmc_max" еще не обнаружен. Это относится к случаю, когда первая булева переменная "Flag_max" равна нулю.
В этом случае тест «Т2» позволяет проверить, что давление торможения "Pmcn", вычисленное в ходе текущего цикла “t”, строго ниже давления торможения "Pmcn-1", вычисленного на предыдущем цикле "t-1".
Если это не так, давление торможения "Pmc" продолжает повышаться или, по крайней мере, остается на одном уровне. Таким образом, считается, что максимум "Pmc_max" не достигнут. В этом случае этап «Е2» повторяют.
Если это так, значит давление торможения "Pmc" начинает понижаться. Предыдущее значение давления торможения "Pmcn-1" принимают за максимум "Pmc_max" и сохраняют в памяти электронного блока 14 управления. Значение первой булевой переменной "Flag_max" становится равным единице. Пример обнаружения двух максимумов "Pmc_max1" и "Pmc_max2" представлен на фиг. 6.
Этап «Е2» повторяют опять, однако учитывая изменение значения первой булевой переменной "Flag_max", теперь при помощи теста «Т3» проверяют, достигло ли давление торможения "Pmc" своего минимума. Для этого при каждой итерации второго этапа «Е2» проверяют, что давление торможения "Pmcn", вычисленное на текущем цикле "t", больше или равно давлению торможения "Pmcn-1", вычисленному на предыдущем цикле "t-1".
Если это не так, давление торможения "Pmc" продолжает снижаться. Следовательно, минимум "Pmc_min" не был достигнут. Этап «Е2» повторяют.
Если это так, значит, давление торможения "Pmc" опять начало повышаться или по крайней мере остается на одном уровне. Предыдущее значение давления торможения "Pmc" принимают за минимум "Pmc_min". Его сохраняют в памяти электронного блока 14 управления. Значение булевой переменной "Flag_max" опять становится равным нулю. Пример обнаружения двух минимумов "Pmc_min1" и "Pmc_min2" представлен на фиг. 6.
Затем электронный блок 14 управления вычисляет амплитуду "ΔPmc" снижения давления торможения, определяя разность между сохраненными в памяти максимумом "Pmc_max" и минимумом "Pmc_min". Для оповещения, что это уменьшение вычислено, вторая булева переменная “Flag_diff” становится равной единице.
Третий этап «Е3» оценки начинается по завершении второго этапа «Е2», когда вторая булева переменная “Flag_diff” равна нулю.
В ходе этого третьего этапа оценивают повышение "Conso" давления усиления "Pass" в вакуумном резервуаре 28 в зависимости от амплитуды "ΔPmc", вычисленной на втором этапе «Е2».
Сначала повышение "Conso" давления усиления "Pass" оценивают в зависимости от амплитуды "ΔPmc" при помощи заранее определенной кривой «С1» соответствия. Кривую «С1» соответствия определяют заранее, например, экспериментальным путем и сохраняют в постоянной памяти электронного блока 14 управления.
В примере, представленном на фиг. 7, заранее определенная кривая «С1» имеет ступенчатый вид, чтобы согласовывать определенное повышение "Conso" давления усиления "Pass" с определенным интервалом амплитуды "ΔPmc". Таким образом, если амплитуда "ΔPmc" меньше первого порога "S1", повышение давления усиления "Pass" равно первому значению "Conso_1". Если амплитуда "ΔPmc" находится между первым порогом "S1" и более высоким вторым порогом "S2", повышение давления усиления "Pass" равно второму значению "Conso_2", превышающему первое значение, и так далее.
По истечении определенного времени задержки вторая булева переменная "Flagg_diff", значение амплитуды "ΔPmc" и значения давления торможения, максимальное "Pmc_max" и минимальное "Pmc_min", опять становятся равными нулю. После этого повторяют второй этап «Е2» способа.
Когда двигатель 12 запускается повторно, оценочное давление усиления "Pass" в резервуаре 28 опять доводят до его минимального давления "Pass_min", заранее определенного, например, экспериментальным путем.
Чтобы избежать лишних вычислений, осуществление второго и/или третьего этапа «Е2, Е3» можно поставить в зависимость от автоматической остановки двигателя 12 электронным блоком 14 управления.
Способ содержит также четвертый этап «Е4» повторного запуска, в ходе которого происходит повторный запуск двигателя 12, когда оценочное давление усиления "Pass" в резервуаре 28 становится выше определенного порога "Pass_max", сверх которого считается, что сервотормоз 26 больше не может создавать достаточное усилие для обеспечения эффективного торможения транспортного средства.
Разумеется, этот четвертый этап «Е4» тоже зависит от автоматической остановки двигателя 12 электронным блоком 14 управления.
Таким образом, способ в соответствии с изобретением позволяет точно оценивать давление усиления вакуумного резервуара, когда происходит автоматическая остановка двигателя. Оценка является экономичной, поскольку применяют датчик измерения давления тормозной текучей среды, который уже используется для управления торможением транспортного средства, и применяют средство обнаружения перемещения приводного органа, которое уже используется для включения стоп-сигналов транспортного средства.
Способ оценки, осуществляемый электронным блоком управления, обеспечивает быструю и точную оценку давления усиления в вакуумном резервуаре.

Claims (24)

1. Способ оценки давления (Pass) в вакуумном резервуаре (28) вакуумного сервотормоза (26) автотранспортного средства (10), при этом транспортное средство (10) содержит:
- двигатель (12) внутреннего сгорания;
- по меньшей мере одно тормозное устройство (16), управляемое давлением (Pmc) тормозной текучей среды;
- главный тормозной цилиндр (22), который управляет давлением (Pmc) тормозной текучей среды и который приводится в действие подвижным приводным органом (24), выполненным с возможностью перемещения между положением покоя и крайним рабочим положением;
- сервотормоз (26), расположенный между приводным органом (24) и главным тормозным цилиндром (22) для увеличения усилия приводного органа (24) при помощи разрежения, создаваемого в резервуаре (28), поддерживаемом под разрежением, до значения давления (Pass) усиления, когда двигатель (12) запущен;
- средство (25) обнаружения перемещения приводного органа (24) за пределы промежуточного положения свободного хода;
- датчик (23) давления, выполненный с возможностью измерения давления (Рmc) торможения тормозной текучей среды,
отличающийся тем, что содержит:
- первый этап (E1) вычисления давления (Pmc) торможения, который повторяют циклически;
- второй этап (Е2) вычисления амплитуды (ΔPmc) снижения давления, в ходе которого максимум (Pmc_max), а затем минимум (Pmc_min), достигаемые последовательно давлением торможения, сохраняют в памяти и в ходе которого амплитуду (ΔPmc) этого снижения давления торможения вычисляют путем определения разности между максимумом (Pmc_max) и минимумом (Pmc_min);
- третий этап (Е3), который начинается по завершении второго этапа (Е2) и в ходе которого оценивают повышение (Conso) давления в вакуумном резервуаре (28) в зависимости от амплитуды (ΔPmc), вычисленной на втором этапе (Е2).
2. Способ по п. 1, отличающийся тем, что в ходе первого этапа (E1) вычисленное давление (Рmc) торможения равно:
- значению (V0) покоя, пока не обнаруживается никакое перемещение приводного органа (24); или
- наибольшему значению между измерением (Vm) давления (Pmc) датчиком (23) и минимальным давлением (V1), определенным, когда обнаруживается перемещение приводного органа (24).
3. Способ по п. 2, отличающийся тем, что третий этап (Е3) начинается, когда двигатель (12) выключается.
4. Способ по п. 3, отличающийся тем, что содержит четвертый этап (Е4) повторного запуска, в ходе которого двигатель (12) запускается повторно, если давление (Pass) в резервуаре (28) превышает определенный порог (Pass_max).
5. Способ по любому из пп. 1-4, отличающийся тем, что в ходе третьего этапа (Е3) оценивают повышение (Conso) давления в резервуаре (28) в зависимости от амплитуды (ΔPmc) понижения давления при помощи заранее определенной кривой (C1) соответствия.
6. Способ по п. 5, отличающийся тем, что заранее определенная кривая (C1) имеет ступенчатый вид для приведения в соответствие определенного повышения (Conso) давления (Pass) с определенным интервалом значений амплитуды (ΔPmc) понижения давления торможения.
7. Способ по п. 1, отличающийся тем, что, когда двигатель (12) повторно запускается, давление (Pass) в резервуаре (28) опять доводят до минимального значения (Pass_min).
8. Способ по п. 1, отличающийся тем, что во время второго этапа (Е2) первое значение давления (Pmcn-1) принимают за максимум давления (Pmc_max), если второе значение давления (Pmcn), вычисленное на следующем цикле первого этапа (E1), строго меньше первого значения (Pmcn-1).
9. Способ по п. 1, отличающийся тем, что во время второго этапа (Е2) первое значение давления (Pmcn-1) принимают за минимум (Pmc_min), если:
- ранее был достигнут максимум (Pmc_max);
- и второе значение давления (Pmcn), вычисленное на следующем цикле первого этапа (E1), превышает или равно первому значению давления (Pmcn-1).
10. Способ по п. 1, отличающийся тем, что второй этап (Е2) повторяют, если достигнут минимум (Pmc_min).
RU2015125523A 2012-11-29 2013-10-21 Способ оценки давления в вакуумном резервуаре сервотормоза RU2641364C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1261381 2012-11-29
FR1261381A FR2998667B1 (fr) 2012-11-29 2012-11-29 "procede d'estimation de la pression dans un reservoir a depression d'un servofrein"
PCT/EP2013/071978 WO2014082793A1 (fr) 2012-11-29 2013-10-21 Procede d'estimation de la pression dans un reservoir a depression d'un servofrein

Publications (2)

Publication Number Publication Date
RU2015125523A RU2015125523A (ru) 2017-01-10
RU2641364C2 true RU2641364C2 (ru) 2018-01-17

Family

ID=47628250

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015125523A RU2641364C2 (ru) 2012-11-29 2013-10-21 Способ оценки давления в вакуумном резервуаре сервотормоза

Country Status (7)

Country Link
US (1) US20150329095A1 (ru)
EP (1) EP2925578B1 (ru)
JP (1) JP2016500039A (ru)
CN (1) CN104903168B (ru)
FR (1) FR2998667B1 (ru)
RU (1) RU2641364C2 (ru)
WO (1) WO2014082793A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809261C2 (ru) * 2019-07-08 2023-12-08 Рено С.А.С. Узел тормозной системы, тормозная система транспортного средства и транспортное средство

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3022205A1 (fr) * 2014-06-17 2015-12-18 Peugeot Citroen Automobiles Sa Dispositif de controle de l'arret temporaire du moteur thermique d'un vehicule a dispositif d'aide au freinage et systeme d'arret temporaire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829451A1 (fr) * 2001-09-11 2003-03-14 Bosch Gmbh Robert Procede de calibrage d'un servomoteur d'assistance pneumatique pour un circuit de freinage de vehicule automobile
US20070289827A1 (en) * 2004-06-16 2007-12-20 Toyota Jidosha Kabushiki Kaisha Master Cylinder With Fill-Up Function

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095097A (ja) * 1998-09-22 2000-04-04 Aisin Seiki Co Ltd エンジンの負圧制御装置
JP4552365B2 (ja) * 2001-06-27 2010-09-29 株式会社デンソー エンジン自動停止再始動装置
DE102005031734A1 (de) * 2005-07-07 2007-01-18 GM Global Technology Operations, Inc., Detroit Verfahren zur Berechnung des Unterdruckes im Bremskraftverstärker eines Fahrzeugs mit Otto-Motor
JP2011016499A (ja) * 2009-07-10 2011-01-27 Honda Motor Co Ltd ブレーキ装置
CN101844556A (zh) * 2010-05-04 2010-09-29 奇瑞汽车股份有限公司 一种电动车辆制动方法和制动真空系统
CN201932148U (zh) * 2011-01-28 2011-08-17 华南理工大学 一种基于绝对压力传感器的电动汽车真空助力装置
JP5318143B2 (ja) * 2011-04-01 2013-10-16 本田技研工業株式会社 車両用ブレーキ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829451A1 (fr) * 2001-09-11 2003-03-14 Bosch Gmbh Robert Procede de calibrage d'un servomoteur d'assistance pneumatique pour un circuit de freinage de vehicule automobile
US20070289827A1 (en) * 2004-06-16 2007-12-20 Toyota Jidosha Kabushiki Kaisha Master Cylinder With Fill-Up Function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2809261C2 (ru) * 2019-07-08 2023-12-08 Рено С.А.С. Узел тормозной системы, тормозная система транспортного средства и транспортное средство

Also Published As

Publication number Publication date
CN104903168A (zh) 2015-09-09
FR2998667A1 (fr) 2014-05-30
FR2998667B1 (fr) 2014-12-26
CN104903168B (zh) 2017-08-15
WO2014082793A1 (fr) 2014-06-05
RU2015125523A (ru) 2017-01-10
JP2016500039A (ja) 2016-01-07
EP2925578A1 (fr) 2015-10-07
US20150329095A1 (en) 2015-11-19
EP2925578B1 (fr) 2017-03-29

Similar Documents

Publication Publication Date Title
US9522668B2 (en) Brake apparatus
US9434367B2 (en) Brake control apparatus
KR20130037874A (ko) 차량용 전자제어 유압 브레이크시스템의 제동장치
JP2952798B2 (ja) 流体圧システムおよび車両用流体圧ブレーキシステムにおける故障検出方法
CN109572696B (zh) 车辆的控制装置
US8875848B2 (en) Method and device for displacing and storing brake fluid for a hydraulic brake system of a vehicle
US20140110994A1 (en) Method for operating a braking system
CN107757595B (zh) 用于获取液压的制动系统中的泄漏的方法
US8457851B2 (en) Method and device for controlling the braking system of a vehicle
KR20100135234A (ko) 유압 브레이크 시스템의 강도 변동 인식 방법 및 이러한 방법을 실행하기 위한 수단을 포함하는 제어 장치
JP5972996B2 (ja) 車両の停止制御装置
RU2641364C2 (ru) Способ оценки давления в вакуумном резервуаре сервотормоза
US20080275617A1 (en) Method for Calculating the Low Pressure in the Servobrake of a Vehicle Comprising an Otto Engine
CN113085823A (zh) 真空助力器的真空泄露监测方法和监测装置
KR102563595B1 (ko) 전동식 부스터 타입 제동 시스템의 킥-백 제어 시스템 및 방법
JP6018642B2 (ja) 車両の停止制御装置
JP2005523839A (ja) アクティブ液圧ブレーキ倍力式車両ブレーキ装置およびそのための制御方法
CN106585598A (zh) 用于确定制动助力器内的压力的方法和启动/停止控制装置
EP2505446B1 (en) Vehicular brake apparatus
US20210139005A1 (en) Brake control device
BR112016010758B1 (pt) processo de estimativa da pressão em um reservatório de vácuo de um servofreio a vácuo de veículo automotivo
JP5227111B2 (ja) ブレーキ操作装置および液圧ブレーキシステム
JP6661991B2 (ja) 負圧ポンプ制御装置
JP2018138416A (ja) 制動装置
JPH0995232A (ja) 自動車用制動液圧制御装置