RU2641214C1 - Способ изготовления листов из титанового сплава от4 - Google Patents

Способ изготовления листов из титанового сплава от4 Download PDF

Info

Publication number
RU2641214C1
RU2641214C1 RU2017100413A RU2017100413A RU2641214C1 RU 2641214 C1 RU2641214 C1 RU 2641214C1 RU 2017100413 A RU2017100413 A RU 2017100413A RU 2017100413 A RU2017100413 A RU 2017100413A RU 2641214 C1 RU2641214 C1 RU 2641214C1
Authority
RU
Russia
Prior art keywords
stage
rolling
temperature range
slab
deformation
Prior art date
Application number
RU2017100413A
Other languages
English (en)
Inventor
Наталья Вячеславовна Шеремет
Александр Владимирович Берестов
Александр Николаевич Козлов
Original Assignee
Публичное Акционерное Общество "Корпорация Всмпо-Ависма"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное Акционерное Общество "Корпорация Всмпо-Ависма" filed Critical Публичное Акционерное Общество "Корпорация Всмпо-Ависма"
Priority to RU2017100413A priority Critical patent/RU2641214C1/ru
Application granted granted Critical
Publication of RU2641214C1 publication Critical patent/RU2641214C1/ru

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

Изобретение относится к области металлургии, а именно к изготовлению листов из титанового сплава ОТ4, и может быть использовано для получения изделий сложной конфигурации глубокой вытяжкой и штамповкой. Способ изготовления листов из титанового сплава ОТ4 включает деформацию слитка в сляб, механическую обработку сляба, многоэтапную прокатку сляба на подкат, резку подката на листовые заготовки, их сборку в пакет, прокатку листовых заготовок в листы в составе пакета и адъюстажные операции листов после пакетной прокатки. Слиток деформируют в сляб в два этапа, при этом на первом этапе в β-области в интервале температур выше температуры полиморфного превращения (ТПП) на 150-250°C с суммарной степенью деформации 30-80%, а на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-50°C с суммарной степенью деформации 20-50%, многоэтапную прокатку сляба на подкат осуществляют последовательно в четыре этапа, при этом на первом этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 30-90%, на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 15-40%, на третьем этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 15-25% и на четвертом этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 40-70%, разрезают подкат на листовые заготовки, собирают их в пакет, укладывают с обеспечением перпендикулярности предыдущей прокатки листовой заготовки к направлению последующей прокатки листовой заготовки и прокатывают пакет на готовый размер в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 40-70%. Полученные листы имеют высокие значения пластичности, низкую анизотропию механических свойств. 5 ил., 3 табл.

Description

Изобретение относится к области обработки металлов давлением, а именно к способам изготовления листов (листовых полуфабрикатов) из титанового сплава ОТ4, которые могут быть использованы в машиностроительной, аэрокосмической, энергетической, химической и других областях народного хозяйства.
Тенденция на повышение технологических свойств листового полуфабриката всегда была определяющей. С одной стороны, это продиктовано проблемой экономии металла, с другой, - ужесточением требований потребителей в связи со спецификой ряда отраслей промышленности.
Сплав ОТ4 относится к псевдо-α-титановым сплавам, которые характеризуются анизотропией механических свойств, в значительной степени обусловленной кристаллографической текстурой α-фазы, имеющей гексагональную кристаллическую решетку с более низкой симметрией, чем β-фаза, имеющей объемно-центрированную кубическую решетку.
Кристаллографическая текстура в процессе термомеханической обработки может сохраниться, исчезнуть или возникнуть новая. Это создает основу для управления формированием изотропности, хотя связи между текстурами деформации и условиями внешнего воздействия на металл чаще всего неоднозначные и могут быть оптимизированы опытным путем.
Известен способ производства тонких листов и фольги из технически чистого титана, включающий горячую прокатку полосы толщиной 3-6 мм, отжиг в воздушной атмосфере, очистку поверхности от окалины, кислотное травление, шлифование, холодную прокатку, финишную отделку поверхности (Титан, 1995, т. 43, N 4, с. 239-246).
Листы из прочных и высокопрочных сплавов толщиной менее 3 мм по указанной технологии не производят. Способ не предусматривает управления формированием изотропности.
В качестве наиболее близкого аналога может быть принят способ изготовления листов из титанового сплава ОТ4, раскрытый в RU 2522252 С1, C22F 1/18, 10.07.2014. Способ включает деформацию слитка в сляб, механическую обработку сляба, многоэтапную прокатку сляба на подкат, резку подката на листовые заготовки, их сборку в пакет, прокатку листовых заготовок в листы в составе пакета и адъюстажные операции листов после пакетной прокатки.
Указанное изобретение позволяет получить из псевдо-α-титановых сплавов тонкие листы, обладающие высоким уровнем механических свойств при низкой анизотропии, однородной структурой, а также удовлетворительным качеством поверхности.
Изготовление листов по известной технологии из псевдо-α-титановых сплавов, в частности сплава ОТ4, позволяет получать листы с углом изгиба не менее 70° в поперечном направлении. По статистике предельные значения угла изгиба не превышали 105°. Однако эти свойства не стабильны и не обеспечивают требуемую пластичность, которая необходима при изготовлении деталей у заказчиков, т.е. при штамповке деталей сложной формы выявляются многочисленные дефекты в виде трещин по радиусу изгиба, которые не всегда удаляются зачисткой, что приводит к отбраковке деталей.
Задачей данного изобретения является повышение пластических свойств листового полуфабриката из титанового сплав ОТ4, позволяющего осуществлять глубокую вытяжку и штамповку изделий сложной конфигурации.
Технический результат, достигаемый при осуществлении изобретения, заключается в получении качественного листового полуфабриката с низкой анизотропией механических свойств листов и высокой пластичностью при комнатной температуре за счет управления формированием кристаллографической текстуры при прокатке.
Указанный технический результат достигается тем, что в способе изготовления листов из титанового сплава ОТ4, включающем деформацию слитка в сляб, механическую обработку сляба, многоэтапную прокатку сляба на подкат, резку подката на листовые заготовки, их сборку в пакет, прокатку листовых заготовок в листы в составе пакета и адъюстажные операции листов после пакетной прокатки, согласно изобретению слиток деформируют в сляб в два этапа, при этом на первом этапе в β-области в интервале температур выше температуры полиморфного превращения (ТПП) на 150-250°C с суммарной степенью деформации 30÷80%, а на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-50°C с суммарной степенью деформации 20-50%, многоэтапную прокатку сляба на подкат осуществляют последовательно в четыре этапа, при этом на первом этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 30-90%, на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 15-40%, на третьем этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 15-25% и на четвертом этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 40-70%, разрезают подкат на листовые заготовки, собирают их в пакет, укладывают с обеспечением перпендикулярности предыдущей прокатки листовой заготовки к направлению последующий прокатки листовой заготовки и прокатывают пакет на готовый размер в интервале температур ниже ТПП на 30-70° с суммарной степенью деформации 40-70%.
Изобретение иллюстрируется следующими чертежами:
Фиг. 1. - Текстурное состояние подката после третьего этапа прокатки, где позиция 1 - β-кристалл, 2 - α-кристалл;
Фиг. 2. - Текстурное состояние подката после четвертого этапа прокатки;
Фиг. 3. - Текстурное состояние листа;
Фиг. 4. - Схема прокатки (где ε - суммарная степень деформации;
Figure 00000001
- поперечная прокатка; → - продольная прокатка);
Фиг. 5. - Образцы после испытаний на угол изгиба на оправке радиусом 1,5Т.
Сущность изобретения заключается в следующем.
Выплавленный слиток нагревают до температуры на 150÷250°C выше ТПП и подвергают ковке с суммарной степенью деформации 30÷80%, что разрушает литую структуру, усредняет химический состав сплава, уплотняет заготовку, устраняя такие литейные дефекты, как пустоты, раковины и др. Температура нагрева ниже указанного предела приводит к снижению пластических характеристик, затруднению деформации и появлению поверхностного растрескивания, температура нагрева выше указанного предела вызывает значительное увеличение газонасыщенного слоя, что приводит к поверхностным надрывам при деформации, ухудшению качества поверхности металла. Следующая деформация заготовки с суммарной степенью 20÷50% после нагрева на 30÷50°C ниже ТПП позволяет измельчить размер зерна по отношению к исходному состоянию, увеличить плотность дислокаций, т.е. осуществляют деформационный наклеп. Для полного удаления поверхностных дефектов полученный сляб механически обрабатывают со всех сторон.
На первом этапе прокатки механически обработанный сляб подвергают продольной деформации на подкат в β-области при температуре ТПП + (90-160)°C с суммарной деформацией 30-90%. При данном температурном режиме происходит интенсивное измельчение зерна и сплав обладает достаточной пластичностью, которая позволяет предать заготовке требуемые геометрические размеры. Превышение температуры деформации приводит к росту зерен.
После деформации в β-области на втором этапе прокатку осуществляют при нагреве до температуры на 30-70°С ниже ТПП и осуществляют прокатку с суммарной деформацией 15-40% для разрушения большеугловых границ зерен, увеличения плотности дислокаций, т.е. осуществляют деформационный наклеп. Суммарная степень деформации достаточна для обеспечения однородных свойств сплава во всем объеме. Полученный подкат имеет повышенную внутреннюю энергию и на третьем этапе продольной прокатки при температуре на 90-160°С выше ТПП с суммарной деформацией 15-25% происходит интенсивное измельчение зерен по всему объему металла. При данной суммарной деформации в металлах с кубической решеткой характерно образование многокомпонентной не острой текстуры (фиг. 1).
На четвертом этапе продольной прокатки подката в (α+β) - области в интервале температур ниже ТПП на 30-70°С с суммарной степенью деформации 40-70% после горячей прокатки подката в β-области главным механизмом деформации становится двойникование, потому что плоскости скольжения превращенной α-фазы заблокированы, поскольку не совпадают с направлением сдвиговых касательных напряжений. Кристаллиты, ориентированные в исходном состоянии направлением базиса <0001> вдоль направления прокатки (НП), уже после небольших степеней деформации поднимаются на угол, близкий к 30°, к НП. Когда в деформацию вовлекается скольжение, то в поперечном направлении (ПН) увеличивается плотность выхода базиса и усиливается призматическая плоскость (фиг. 2).
Последующая поперечная прокатка проводится в составе пакета. Пакетная прокатка уменьшает концентрацию деформирующих сил на ограниченной площади пластической деформации, что позволяет:
- производить деформацию тонкой листовой заготовки с необходимой высокой степенью суммарной деформации равной 40-70% в (α+β)-области в интервале температур ниже ТПП на 30-70°С;
- создаются более благоприятные условия для формирований требуемой кристаллографической текстуры - типа «(11.0)<0001>». В НП (бывшем ПН) в результате двойникования исчезает базис, переходя к положению вблизи 10-60° от нормального направления (НН). В ПН базис при прокатке с Е=30% в этом температурном интервале не успевает сформироваться, остается ориентировка призмы 1-го рода
Figure 00000002
. То же и в направлении НП, вследствие чего формируется текстура типа «(11.0)<0001>» с наличием компоненты отклоненного базиса в НН листов, обеспечивающая изотропность механических свойств в плоскости листа. Текстурное состояние листов после поперечной пакетной прокатки показано на фиг. 3.
Термомеханические параметры пакетной прокатки в ПН аналогичны параметрам прокатки в продольном направлении на последнем этапе (4-й этап). Данные режимы являются оптимальными и подобраны опытным путем, вследствие чего формируется текстура, обеспечивающая изотропность механических свойств листа.
Ниже приведен пример реализации предлагаемой технологии при изготовлении листов сплава ОТ4 размерами 1,5×800×2000 мм и 1,8×600×2000 мм.
Для проведения работ по отработке технологии изготовления листов толщиной 1,5/1,8 мм из сплава ОТ4 с повышенными пластическими свойствами и высоким углом изгиба с применением пакетной прокатки был выплавлен промышленный слиток массой 1760 кг.
Химический состав слитков приведен в таблице 1.
Figure 00000003
Листы обработаны согласно схеме прокатки, приведенной на фиг. 4.
Были проведены исследования кристаллографических текстур подката толщиной 17 мм, листовой заготовки толщиной 6,35 мм и листов толщиной 1,5 и 1,8 мм. Исследование образцов проведено на дифрактометре Bruker D8 Advance, медное излучение (U=40kB, I=40 мА), детектор LynxEye. Дифрактограммы для построения обратных полюсных фигур (ОПФ) сняты в режиме: шаг 0.02°, 0,5 сек, 2θ=34-156°. Обратные полюсные фигуры построены для трех ортогональных сечений: в плоскости листа на поверхности и на половине толщины подката (относительно НН), для поперечного (относительно НП) и долевого (относительно ПН) сечений. ОПФ получены с поверхности, после ее шлифования и травления образцов. На основе ОПФ были определены интенсивность полюсных плотностей и тип текстур, которые приведены в таблице 2.
Figure 00000004
Figure 00000005
Механические свойства листов толщиной 1,8/1,5 мм после стандартного отжига приведены в таблице 3.
Figure 00000006
На фиг. 5 показаны образцы после испытаний на угол изгиба на оправке радиусом 1,5Т (Т - толщина листа).
Разработанный технологический процесс позволяет производить листы из титанового сплава ОТ4 с повышенными пластическими свойствами, с низкой анизотропией механических свойств листов и высоким углом изгиба при комнатной температуре (до 170°).
Результаты исследования кристаллографической текстуры показали, что разработанная технология сформировала в листах текстуру типа (11.0)<0001> с компонентами базиса (00.1) и отклоненного базиса (10.3) на ОПФ в плоскости листа, которая обеспечила высокие изотропные пластические свойства в листах сплава ОТ4.

Claims (1)

  1. Способ изготовления листов из титанового сплава ОТ4, включающий деформацию слитка в сляб, механическую обработку сляба, многоэтапную прокатку сляба на подкат, резку подката на листовые заготовки, их сборку в пакет, прокатку листовых заготовок в листы в составе пакета и адъюстажные операции листов после пакетной прокатки, отличающийся тем, что слиток деформируют в сляб в два этапа, при этом на первом этапе в β-области в интервале температур выше температуры полиморфного превращения (ТПП) на 150-250°C с суммарной степенью деформации 30-80%, а на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-50°C с суммарной степенью деформации 20-50%, многоэтапную прокатку сляба на подкат осуществляют последовательно в четыре этапа, при этом на первом этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 30-90%, на втором этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 15-40%, на третьем этапе в β-области в интервале температур выше ТПП на 90-160°C с суммарной степенью деформации 15-25% и на четвертом этапе в (α+β)-области в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 40-70%, разрезают подкат на листовые заготовки, собирают их в пакет, укладывают с обеспечением перпендикулярности предыдущей прокатки листовой заготовки к направлению последующей прокатки листовой заготовки и прокатывают пакет на готовый размер в интервале температур ниже ТПП на 30-70°C с суммарной степенью деформации 40-70%.
RU2017100413A 2017-01-09 2017-01-09 Способ изготовления листов из титанового сплава от4 RU2641214C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017100413A RU2641214C1 (ru) 2017-01-09 2017-01-09 Способ изготовления листов из титанового сплава от4

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017100413A RU2641214C1 (ru) 2017-01-09 2017-01-09 Способ изготовления листов из титанового сплава от4

Publications (1)

Publication Number Publication Date
RU2641214C1 true RU2641214C1 (ru) 2018-01-16

Family

ID=68235473

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017100413A RU2641214C1 (ru) 2017-01-09 2017-01-09 Способ изготовления листов из титанового сплава от4

Country Status (1)

Country Link
RU (1) RU2641214C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2808020C1 (ru) * 2022-12-12 2023-11-22 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Холоднокатаная полоса для изготовления коррозионно-стойких компонентов оборудования и способ ее получения

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347604A (ja) * 1989-07-13 1991-02-28 Nippon Steel Corp α型チタン合金薄板の製造方法
RU2381297C1 (ru) * 2008-06-09 2010-02-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления особо тонких листов из высокопрочных титановых сплавов
RU2487962C2 (ru) * 2011-09-23 2013-07-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления тонких листов
RU2522252C1 (ru) * 2013-02-04 2014-07-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления тонких листов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347604A (ja) * 1989-07-13 1991-02-28 Nippon Steel Corp α型チタン合金薄板の製造方法
RU2381297C1 (ru) * 2008-06-09 2010-02-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления особо тонких листов из высокопрочных титановых сплавов
RU2487962C2 (ru) * 2011-09-23 2013-07-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления тонких листов
RU2522252C1 (ru) * 2013-02-04 2014-07-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ изготовления тонких листов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2808020C1 (ru) * 2022-12-12 2023-11-22 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Холоднокатаная полоса для изготовления коррозионно-стойких компонентов оборудования и способ ее получения

Similar Documents

Publication Publication Date Title
CN103320734B (zh) 医用细晶钛/钛合金棒材的生产方法
JP4730601B2 (ja) マグネシウム合金板の製造方法
JP5114812B2 (ja) 変形させた金属部材の製造方法
US7708845B2 (en) Method for manufacturing thin sheets of high strength titanium alloys description
JP4734578B2 (ja) マグネシウム合金板材の加工方法およびマグネシウム合金板材
RU2555267C2 (ru) Способ изготовления тонких листов из двухфазного титанового сплава и изделие из этих листов
JP2002518593A (ja) 微細で一様な構造とテキスチュアを有する金属製品及びその製造方法
WO2012032610A1 (ja) チタン材
CN112719179A (zh) 一种tc1钛合金棒材的锻造方法
CN114450425A (zh) 铝合金精密板
US10815558B2 (en) Method for preparing rods from titanium-based alloys
JP4599594B2 (ja) マグネシウム合金大クロス圧延材によるプレス成形体
RU2487962C2 (ru) Способ изготовления тонких листов
RU2522252C1 (ru) Способ изготовления тонких листов
WO2007080750A1 (ja) スパッタリング用チタン材の製造方法
JP5218923B2 (ja) マグネシウム合金板
RU2641214C1 (ru) Способ изготовления листов из титанового сплава от4
RU2691471C1 (ru) Способ изготовления листового проката из титанового сплава марки вт8
CN111394669A (zh) 一种减小深冲用纯钛薄板带各向异性的制造方法
RU2675011C1 (ru) Способ изготовления плоских изделий из гафнийсодержащего сплава на основе титана
RU2583567C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ОСОБО ТОНКИХ ЛИСТОВ ИЗ ТИТАНОВОГО СПЛАВА Ti-6,5Al-2,5Sn-4Zr-1Nb-0,7Mo-0,15Si
CN113718110B (zh) 一种采用累积能量控制板材组织的高品质铌板的制备方法
RU2569605C1 (ru) Способ получения тонких листов из титанового сплава ti-6,5al-2,5sn-4zr-1nb-0,7mo-0,15si
JP2010229467A (ja) マグネシウム合金薄板の製造方法
RU2624748C2 (ru) Способ изготовления листов из сплава Ti - 6Al - 2Sn - 4Zr - 2Mo с регламентированной текстурой