RU2637494C1 - Способ трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя - Google Patents

Способ трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя Download PDF

Info

Publication number
RU2637494C1
RU2637494C1 RU2016125155A RU2016125155A RU2637494C1 RU 2637494 C1 RU2637494 C1 RU 2637494C1 RU 2016125155 A RU2016125155 A RU 2016125155A RU 2016125155 A RU2016125155 A RU 2016125155A RU 2637494 C1 RU2637494 C1 RU 2637494C1
Authority
RU
Russia
Prior art keywords
phase
torque
excited state
total
total torque
Prior art date
Application number
RU2016125155A
Other languages
English (en)
Inventor
Хао ЧЭНЬ
Хуэй ЦЗЭН
Original Assignee
Чайна Юниверсити Оф Майнинг Энд Текнолоджи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Чайна Юниверсити Оф Майнинг Энд Текнолоджи filed Critical Чайна Юниверсити Оф Майнинг Энд Текнолоджи
Application granted granted Critical
Publication of RU2637494C1 publication Critical patent/RU2637494C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/098Arrangements for reducing torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Synchronous Machinery (AREA)

Abstract

Изобретение относится к области электротехники и может быть использовано для управления вентильными реактивными электродвигателями. Техническим результатом является расширение диапазона обеспечения плавного крутящего момента. В способе трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя первый набор пороговых значений вращающего момента устанавливают в интервале [0°, θr/4] положений ротора. Второй набор пороговых значений вращающего момента устанавливают в интервале [θr/4, θr/2] положений ротора. Питание подают на смежные фазу А и фазу В для возбуждения. Сигнал питания, подаваемый для возбуждения на фазу А, опережает сигнал питания, подаваемый для возбуждения на фазу В, на θr/4. Весь процесс коммутации из фазы А в фазу В разделен на два интервала. В интервале [0°, θ1] положений ротора фаза А использует второй набор пороговых значений вращающего момента, в то время как фаза В использует первый набор пороговых значений вращающего момента. Критическое положение θ1 автоматически возникает в процессе коммутации, тем самым устраняя необходимость для дополнительных вычислений. Общим вращающим моментом управляют в интервале [Тe+th2low, Тe+th2up]. В интервале [θ1, θr/4] положений ротора фаза А продолжает использовать второй набор пороговых значений вращающего момента, а фаза В продолжает использовать первый набор пороговых значений вращающего момента, а общим вращающим моментом управляют в интервале [Тe+th1low, Тe+th1up]. Это подавляет пульсации вращающего момента четырехфазного вентильного реактивного электродвигателя и обеспечивает высокую ценность для технических приложений. 2 н.п. ф-лы, 4 ил.

Description

Область техники
Настоящее изобретение относится к способу трехуровневого подавления пульсаций вращающего момента вентильного реактивного электродвигателя и применимо к системе привода четырехфазного вентильного реактивного электродвигателя.
Уровень техники
Вентильный реактивный электродвигатель привлекает большое внимание благодаря своей простой и прочной конструкции, низкой стоимости изготовления и хорошими рабочими характеристиками регулирования скорости. Тем не менее, его особая конструкция с двумя типами выступающих полюсов и коммутационный тип возбуждающего режима приводят к тому, что в электромагнитном моменте на выходе присутствуют большие пульсации, которые существенно ухудшают использование вентильного реактивного электродвигателя в его областях применения. Поэтому исследователи предложили различные способы для того, чтобы устранить пульсации крутящего момента и при этом обеспечить минимальный расход меди. Эти способы достигают хорошего эффекта в определенном диапазоне скоростей. Тем не менее, когда скорость вращения высока, из-за ограниченного напряжения источника постоянного тока, способность системы контролировать и отслеживать желаемый ток, желаемое потокосцепление и желаемый крутящий момент ухудшаются и становится трудно эффективно устранить пульсации крутящего момента. Более того, из-за ограничения максимального тока обмотки и вольтамперной нагрузки полупроводниковых приборов система вентильного реактивного электродвигателя ограничена сверху по току, а ограничение по току приводит к тому, что плавный крутящий момент вентильного реактивного электродвигателя на выходе может быть обеспечен только в ограниченном диапазоне. Таким образом, все элементы управления плавными крутящими моментами на выходе имеют определенный рабочий диапазон.
Раскрытие сущности изобретения
Задачей настоящего изобретения является устранение проблемы, указанной в уровне техники, и получение способа трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя.
Настоящее изобретение предоставляет способ трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя, при этом способ включает в себя следующие этапы:
а. установку первой группы пороговых значений (th1low, th1zero, th1up) вращающего момента в интервале [0°, θr/4] положений ротора и второй группы пороговых значений (th2low, th2zero, th2up) вращающего момента в интервале [θr/4, θr/2] положений ротора, при этом указанные шесть пороговых значений вращающего момента удовлетворяют следующим условиям:
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
, при этом
положение 0° ротора является положением с минимальной фазовой индуктивностью,
положение θr ротора является угловым шагом, т.е. одним оборотом ротора, а
θr/2 является половиной оборота ротора;
b. установку возбужденного состояния SA в качестве питания возбужденного состояния фазы А, при этом
возбужденное состояние SA=1 обозначает, что возбуждающее напряжение фазы А положительное,
возбужденное состояние SA=0 обозначает, что напряжение фазы А нулевое, а
возбужденное состояние SA=-1 обозначает, что напряжение фазы А отрицательное;
установку возбужденного состояния SB в качестве питания возбужденного состояния фазы В, при этом
возбужденное состояние SB=1 обозначает, что возбуждающее напряжение фазы В положительное,
возбужденное состояние SB=0 обозначает, что напряжение фазы В нулевое, а
возбужденное состояние SB=-1 обозначает, что напряжение фазы В отрицательное; а
Те - желаемый плавный общий вращающий момент;
c. подачу питания на смежные фазу А и фазу В для возбуждений, при этом
сигнал питания, подаваемый для возбуждения на фазе А опережает сигнал питания, подаваемый для возбуждения на фазе В на θr/4 и в этот момент фазу А отключают, фазу В подключают и осуществляют трехуровневое подавление пульсации вращающего момента четырехфазного вентильного реактивного электродвигателя путем деления процесса коммутации из фазы А в фазу В на два интервала.
Разделение процесса коммутации из фазы А в фазу В на два интервала осуществляют следующим образом:
(1) В интервале [0°, θ1] положений ротора для фазы А используют вторую группу пороговых значений (th2low, th2zero, th2up) вращающего момента, для фазы В используют первую группу пороговых значений (th1low, th1zero, th1up) вращающего момента, критическое положение θ1 автоматически возникает в процессе коммутации, так что не требуется дополнительных вычислений;
(1.1) фазу В цикла проводимости начинают в положении ротора 0°,
устанавливают изначальное возбужденное состояние SB=1, а
ток и вращающий момент фазы В увеличиваются от 0;
возбужденное состояние SA оставляют в изначальном состоянии SA=1, а ток и вращающий момент фазы А увеличивают и увеличивают общий вращающий момент;
(1.2) когда общий вращающий момент увеличен до значения Te+th2up вращающего момента, возбужденное состояние SA переводят из значения 1 в значение -1 и уменьшают вращающий момент фазы А;
фазу В оставляют в исходном состоянии, а вращающий момент фазы В продолжают увеличивать; так как скорость изменения индуктивности в фазе В и фазовый ток малы в этот момент, то скорость увеличения вращающего момента фазы В меньше, чем скорость уменьшения вращающего момента фазы А, характер изменения общего вращающего момента определен фазой А и общий вращающий момент уменьшен;
(1.3) когда общий вращающий момент впервые уменьшен до значения Те+th1low вращающего момента, условия изменения состояния фазы А и фазы В не выполнены, возбужденные состояния SA и SB остаются в исходных состояниях и продолжают уменьшение общего вращающего момента;
(1.4) когда общий вращающий момент уменьшен до значения Te+th2zero вращающего момента, в фазе А запускают переход из возбужденного состояния SA=-1 в возбужденное состояние SA=0, и уменьшают вращающий момент фазы А, но скорость уменьшения меньше, чем та, что в возбужденном состоянии SA=-1;
фазу В оставляют в исходном возбужденном состоянии и продолжают увеличивать вращающий момент; в этот момент при условии, что возбужденное состояние SA=0 и возбужденное состояние SB=1, скорость уменьшения вращающего момента фазы А больше, чем скорость увеличения вращающего момента фазы В и общий вращающий момент уменьшен;
(1.5) когда общий вращающий момент уменьшен до значения Te+th2low вращающего момента, выполняются условия для изменения состояния фазы А, состояние фазы А переходит из возбужденного состояния SA=0 в возбужденное состояние SA=1 и вращающий момент фазы А увеличен;
фазу В оставляют в исходном состоянии и вращающий момент продолжают увеличивать; увеличивают общий вращающий момент;
(1.6) когда общий вращающий момент увеличен до значения Te+th2zero и затем до Te+th1low, условия изменения состояния фазы А и фазы В не выполняются в обоих случаях, общий вращающий момент продолжают увеличивать;
(1.7) когда общий вращающий момент увеличен до значения Te+th2up вращающего момента, этапы (1.2)~(1.6) повторяют, и состояние фазы В не переключают, не изменяют и оставляют возбужденным состоянием SB=1;
возбужденное состояние SA фазы А переключают между значениями 1, 0 и -1 и общим вращающим моментом управляют в диапазоне [Te+th2low, Te+th2up], тем самым подавляя пульсации четырехфазного вентильного реактивного электродвигателя в интервале [0°, θ1] положений ротора;
(1.8) с увеличением положения ротора, скорость изменения индуктивности и ток фазы В увеличивают до определенного уровня;
после того как достигнуто определенное критическое положение, при возбужденном состоянии SA=0 и возбужденном состоянии SB=1, скорость уменьшения вращающего момента фазы А меньше, чем скорость увеличения вращающего момента фазы В и общий момент увеличен;
(2) в интервале [θ1, θr/4] положений ротора для фазы А продолжают использовать вторую группу пороговых значений (th2low, th2zero, th2up) вращающего момента, а для фазы В продолжают использовать первую группу пороговых значений (th1low, th1zero, th1up) вращающего момента;
(2.1) в положении θ1 ротора общий вращающий момент доводят до значения Te+th2up и состояние в фазе А переключают в возбужденное состояние SA=-1;
фазу В оставляют в возбужденном состоянии SB=1, и в этом положении скорость уменьшения вращающего момента фазы А при отрицательном сигнале питания больше, чем скорость увеличения вращающего момента фазы В при положительном сигнале питания, так что общий вращающий момент уменьшается;
однако эту ситуацию изменяют в дальнейшем; следуя за увеличением положения ротора, несмотря на то что возбужденные состояния фазы А и фазы В остаются неизменными, скорость уменьшения вращающего момента в фазе А в возбужденном состоянии SA=-1 меньше, чем скорость увеличения вращающего момента в фазе В в возбужденном состоянии SB=1, тем самым увеличивают общий вращающий момент;
(2.2) когда общий вращающий момент увеличен до значения Te+th2up, ни возбужденное состояние SA, ни возбужденное состояние SB не запускают и не изменяют и продолжают увеличивать общий вращающий момент;
(2.3) когда общий вращающий момент доводят до значения Te+th1zero, выполняются условия изменения состояния в фазе В и возбужденное состояние SB переводят в 0 и вращающий момент фазы В уменьшается; фазу А оставляют в исходном возбужденном состоянии SA=-1 и уменьшают общий вращающий момент;
(2.4) когда общий вращающий момент уменьшен до значения Te+th2up, ни возбужденное состояние SA, ни возбужденное состояние SB не запускаются и не изменяются и общий вращающий момент продолжает уменьшаться;
(2.5) когда общий вращающий момент уменьшен до значения Te+th1low, выполняются условия изменения состояния в фазе В и возбужденное состояние SB переводят в 1 и вращающий момент фазы В увеличивается;
фазу А оставляют в исходном возбужденном состоянии SA=-1 и увеличивают общий вращающий момент;
(2.6) повторяют этапы (2.2)-(2.5), возбужденное состояние SA оставляют равным -1 и вращающий момент и ток фазы А продолжают уменьшать;
возбужденное состояние SB переключают между 0 и 1 и общим вращающим моментом управляют в интервале [Te+th1low, Te+th1zero], тем самым подавляя пульсации четырехфазного вентильного реактивного электродвигателя в интервале положений ротора [θ1, θr/4];
(2.7) когда ротор находится в критическом положении и вращающий момент фазы В увеличен в возбужденном состоянии SB=0, скорость увеличения больше, чем скорость уменьшения вращающего момента фазы А в возбужденном состоянии SA=-1; в этот момент, общий вращающий момент увеличен;
(2.8) когда общий вращающий момент доведен до значения Te+th1up, производят запуск и изменение состояния фазы В, возбужденное состояние SB переводят из 0 в -1 и вращающий момент фазы В уменьшают;
вращающий момент фазы А продолжают уменьшать и уменьшают общий вращающий момент;
(2.9) когда общий вращающий момент уменьшен до значения Te+th1zero и затем до Te+th2up, ни возбужденное состояние SA, ни возбужденное состояние SB не запускают и не изменяют и общий вращающий момент продолжают уменьшать;
(2.10) когда общий вращающий момент уменьшен до значения Te+th1low, возбужденное состояние SB включают и изменяют на 1 и увеличивают вращающий момент фазы В;
фазу А оставляют в исходном состоянии, вращающий момент фазы А продолжают уменьшать и увеличивают общий вращающий момент;
(2.11) когда общий вращающий момент увеличен до значения Te+th1zero, возбужденное состояние SB запускают и переводят на 0, а возбужденное состояние SA оставляют равным -1; ситуация в этот момент такая же, как на этапе (2.7);
повторяют этапы (2.7)-(2.11), возбужденное состояние SA оставляют равным -1, возбужденное состояние SB переключают между значениями -1, 0 и 1 и общим вращающим моментом управляют в интервале [Te+th1low, Te+th1up], тем самым подавляя пульсации четырехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/4] положений ротора;
(2.12) когда ротор находится в критическом положении и вращающий момент фазы В больше не увеличивается, а наоборот, уменьшается при возбужденном состоянии SB=0 и возбужденном состоянии SA=-1,
этапы (2.2)-(2.5) повторяют с этого момента и вращающий момент управляется в интервале [Te+th1low, Te+th1zero], тем самым подавляя пульсации четырехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/4] положений ротора.
Положительный эффект:
Благодаря применению упомянутой выше технической схемы, путем установки двух групп пороговых значений вращающего момента и смежных возбужденных состояний фазы А и фазы В, настоящее изобретение обеспечивает переключение между тремя возбужденным состояниями в фазе А и фазе В, в которых возбуждающий сигнал питания положительный, нулевой и отрицательный соответственно, управляет общим вращающим моментом в интервале двух групп пороговых значений вращающего момента, подавляет пульсации четырехфазного вентильного реактивного электродвигателя и осуществляет плавное управление прямым и переходным вращающим моментом четырехфазного вентильного реактивного электродвигателя. Характеристики сигнала возбуждающего напряжения, подаваемого на обмотки электродвигателя, и сигнала желаемого напряжения совпадают. Действующее значение тока фазы идентично желаемому значению тока фазы, так что вентильный реактивный электродвигатель выдает пологий вращающий момент в максимальном диапазоне. Настоящее изобретение имеет высокую универсальность, желаемый практический эффект и широкие перспективы применения и применимо к различным типам систем привода четырехфазных вентильных реактивных электродвигателей различных конструкций.
Краткое описание чертежей
На ФИГ. 1 представлена принципиальная схема установки трехуровневых пороговых значений вращающего момента вентильного реактивного электродвигателя по настоящему изобретению;
На ФИГ. 2 (a) представлена принципиальная схема переключения сигнала питания возбужденного состояния фазы В вентильного реактивного электродвигателя по настоящему изобретению;
На ФИГ. 2 (б) представлена принципиальная схема переключения сигнала питания возбужденного состояния фазы А вентильного реактивного электродвигателя по настоящему изобретению;
На ФИГ. 3 представлен сигнал вращающего момента вентильного реактивного электродвигателя по настоящему изобретению.
Осуществление изобретения
Настоящее изобретение описано ниже посредством представленных вариантов реализации со ссылками на сопутствующие графические материалы:
Согласно ФИГ. 1 для одного четырехфазного вентильного реактивного электродвигателя приведены следующие определенные этапы:
а. Установка первой группы пороговых значений (th1low, th1zero, th1up) вращающего момента в интервале [θ°, θr/4] положений ротора и второй группы пороговых значений (th2low, th2zero, th2up) вращающего момента в интервале [θr/4, θr/2] положений ротора, при этом указанные шесть пороговых значений вращающего момента удовлетворяют следующим условиям:
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
, при этом
положение 0° ротора является положением с минимальной фазовой индуктивностью,
положение θr ротора является угловым шагом, т.е. одним оборотом ротора, а
θr/2 является половиной оборота ротора;
b. Согласно ФИГ. 2 установка возбужденного состояния SA в качестве питания возбужденного состояния фазы А, при этом
возбужденное состояние SA=1 обозначает, что возбуждающее напряжение фазы А положительное,
возбужденное состояние SA=0 обозначает, что напряжение фазы А нулевое, а
возбужденное состояние SA=-1 обозначает, что напряжение фазы А отрицательное;
установка возбужденного состояния SB в качестве питания возбужденного состояния фазы В, при этом
возбужденное состояние SB=1 обозначает, что возбуждающее напряжение фазы В положительное,
возбужденное состояние SB=0 обозначает, что напряжение фазы В нулевое, а
возбужденное состояние SB=-1 обозначает, что напряжение фазы В отрицательное; а Тe - желаемый плавный общий вращающий момент;
c. Подача питания на смежные фазу А и фазу В для возбуждений, при этом
сигнал питания, подаваемый для возбуждения на фазе А, опережает сигнал питания, подаваемый для возбуждения на фазе В на θr/4 и в этот момент фазу А отключают, фазу В подключают, и процесс коммутации между из фазы А в фазу В разделен на два интервала, как показано на ФИГ. 1:
(1) в интервале [0°, θ1] положений ротора для фазы А используют вторую группу пороговых значений (th2low, th2zero, th2up) вращающего момента, для фазы В используют первую группу пороговых значений (th1low, th1zero, th1up) вращающего момента, критическое положение θ1 автоматически возникает в процессе коммутации, так что не требуется дополнительных вычислений;
(1.1) фазу В интервала проводимости начинают в положении 0° ротора,
устанавливают изначальное возбужденное состояние SB=1, а
ток и вращающий момент В увеличивают от 0;
возбужденное состояние SA оставляют в изначальном состоянии SA=1, а ток и вращающий момент фазы А увеличивают и увеличивают общий вращающий момент;
(1.2) когда общий вращающий момент увеличен до значения Te+th2up, то возбужденное состояние SA переводят из значения 1 в значение -1 и уменьшают вращающий момент фазы А;
фазу В оставляют в исходном состоянии, а вращающий момент фазы В продолжают увеличивать; так как скорость изменения индуктивности в фазе В и фазовый ток малы в этот момент, то скорость увеличения вращающего момента фазы В меньше, чем скорость уменьшения вращающего момента фазы А, характер изменения общего вращающего момента определен фазой А, и общий вращающий момент уменьшен;
(1.3) когда общий вращающий момент впервые уменьшен до значения Te+th1low, условия изменения состояния фазы А и фазы В не выполнены, возбужденные состояния SA и SB остаются в исходных состояниях, и продолжают уменьшение общего вращающего момента;
(1.4) когда общий вращающий момент уменьшен до значения Te+th2zero, в фазе А запускают переход из возбужденного состояния SA=-1 в возбужденное состояние SA=0 и уменьшают вращающий момент фазы А, но скорость уменьшения меньше, чем та, что в возбужденном состоянии SA=-1;
фазу В оставляют в исходном возбужденном состоянии и вращающий момент продолжают увеличивать; в этот момент при условии, что возбужденное состояние SA=0 и возбужденное состояние SB=1, скорость уменьшения вращающего момента фазы А больше, чем скорость увеличения вращающего момента фазы В, и общий вращающий момент уменьшен;
(1.5) когда общий вращающий момент уменьшен до значения Te+th2low, выполнены условия для изменения состояния фазы А, состояние фазы А переходит из возбужденного состояния SA=0 в возбужденное состояние SA=1 и вращающий момент фазы А увеличивается;
фазу В оставляют в исходном состоянии и вращающий момент продолжают увеличивать; увеличивают общий вращающий момент;
(1.6) когда общий вращающий момент увеличен до значения Te+th2zero и затем до Te+th1low, но условия изменения состояния фазы А и фазы В не выполнены в обоих случаях, общий вращающий момент продолжают увеличивать;
(1.7) когда общий вращающий момент увеличен до значения Te+th2up, этапы (1.2)-(1.6) повторяют и состояние фазы В не запускают, не изменяют и оставляют возбужденным состоянием SB=1;
возбужденное состояние фазы А переключают между значениями 1, 0 и -1 и общим вращающим моментом управляют в диапазоне [Te+th2low, Te+th2up], тем самым подавляя пульсации четырехфазного вентильного реактивного электродвигателя в интервале [0°, θ1] положений ротора;
(1.8) с увеличением положения ротора скорость изменения индуктивности и ток фазы В увеличивают до определенного уровня;
после того как достигнуто критическое положение, при возбужденном состоянии SA=0 и возбужденном состоянии SB=1, скорость уменьшения вращающего момента фазы А меньше, чем скорость увеличения вращающего момента фазы В и общий момент увеличен;
(2) в интервале [θ1, θr/4] положений ротора для фазы А продолжают использовать вторую группу пороговых значений (th2low, th2zero, th2up) вращающего момента, а для фазы В продолжают использовать первую группу пороговых значений (th1low, th1zero, th1up) вращающего момента;
(2.1) в положении θ1 ротора общий вращающий момент доводят до значения Te+th2up и состояние в фазе А переключают в возбужденное состояние SA=-1;
фазу В оставляют в возбужденном состоянии SB=1 и в этом положении скорость уменьшения вращающего момента в фазе А при отрицательном сигнале питания больше, чем скорость увеличения вращающего момента в фазе В при положительном сигнале питания, так что общий вращающий момент уменьшен;
однако эту ситуацию изменяют в дальнейшем; следуя за увеличением положения ротора, несмотря на то что возбужденные состояния фазы А и фазы В остаются неизменными, скорость уменьшения вращающего момента в фазе А в возбужденном состоянии SA=-1 меньше, чем скорость увеличения вращающего момента в фазе В в возбужденном состоянии SB=1, тем самым увеличивают общий вращающий момент;
(2.2) когда общий вращающий момент увеличен до значения Te+th2up, ни возбужденное состояние SA, ни возбужденное состояние SB не запускают и не изменяют и продолжают увеличивать общий вращающий момент;
(2.3) когда общий вращающий момент доведен до значения Te+th1zero, выполнены условия изменения состояния в фазе В и возбужденное состояние SB переводят в 0 и вращающий момент фазы В уменьшен;
фазу А оставляют в исходном возбужденном состоянии SA=-1 и уменьшают общий вращающий момент;
(2.4) когда общий вращающий момент уменьшен до значения Te+th2up, ни возбужденное состояние SA, ни возбужденное состояние SB не запускают и не изменяют и продолжают уменьшать общий вращающий момент;
(2.5) когда общий вращающий момент уменьшен до значения Te+th1low, выполнены условия изменения состояния в фазе В и возбужденное состояние SB переводят в 1 и вращающий момент фазы В увеличен;
фазу А оставляют в исходном возбужденном состоянии SA=-1 и увеличивают общий вращающий момент;
(2.6) повторяют этапы (2.2)-(2.5), возбужденное состояние SA оставляют равным -1 и вращающий момент и ток фазы А продолжают уменьшать;
возбужденное состояние SB переключают между 0 и 1 и общим вращающим моментом управляют в интервале [Te+th1low, Te+th1zero], тем самым подавляя пульсации четырехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/4] положений ротора;
(2.7) когда ротор находится в критическом положении и вращающий момент фазы В увеличен в возбужденном состоянии SB=0, скорость увеличения больше, чем скорость уменьшения вращающего момента фазы А в возбужденном состоянии SA=-1; в этот момент общий вращающий момент увеличен;
(2.8) когда общий вращающий момент доведен до значения Te+th1up, производят запуск и изменение состояния фазы В, возбужденное состояние SB переводят из 0 в -1 и вращающий момент фазы В уменьшают;
вращающий момент фазы А продолжают уменьшать и уменьшают общий вращающий момент;
(2.9) когда общий вращающий момент уменьшен до значения Te+th1zero и затем до Te+th2up, ни возбужденное состояние SA, ни возбужденное состояние SB не запускают и не изменяют и общий вращающий момент продолжают уменьшать;
(2.10) когда общий вращающий момент уменьшен до значения Te+th1low, возбужденное состояние SB включают и изменяют на 1 и увеличивают вращающий момент фазы В;
фазу А оставляют в исходном состоянии, вращающий момент фазы А продолжают уменьшать и увеличивают общий вращающий момент;
(2.11) когда общий вращающий момент увеличен до значения Te+th1zero, возбужденное состояние SB запускают и изменяют на 0, а возбужденное состояние SA оставляют равным -1; ситуация в этот момент такая же, как на этапе (2.7);
повторяют этапы (2.7)-(2.11), возбужденное состояние SA оставляют равным -1, возбужденное состояние SB переключают между значениями -1, 0 и 1 и общим вращающим моментом управляют в интервале [Te+th1low, Te+th1up], тем самым подавляя пульсации четырехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/4] положений ротора;
(2.12) когда ротор находится в критическом положении и вращающий момент фазы В в возбужденном состоянии SB=0, а возбужденное состояние SA=-1, общий вращающий момент более не увеличивают, а наоборот, уменьшают;
этапы (2.2)-(2.5) повторяют с этого момента и общим вращающим моментом управляют в интервале [Te+th1low, Te+th1zero], тем самым подавляя пульсации четырехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/4] положений ротора.
Для смежных сигналов питания фазы В и фазы С, когда сигнал питания фазы В опережает на θr/4 сигнал питания фазы С, установка пороговых значений вращающего момента, процесс коммутации и способы переключения и перехода возбужденных состояний фазы В и фазы С аналогичны предыдущему случаю.
Для смежных сигналов питания фазы С и фазы D, когда сигнал питания фазы С опережает на θr/4 сигнал питания фазы D, установка пороговых значений вращающего момента, процесс коммутации и способы переключения и перехода возбужденных состояний фазы С и фазы D аналогичны предыдущему случаю.
Для смежных сигналов питания фазы D и фазы А, когда сигнал питания фазы D опережает на θr/4 сигнал питания фазы А, установка пороговых значений вращающего момента, процесс коммутации и способы переключения и перехода возбужденных состояний фазы D и фазы А аналогичны предыдущему случаю.
Экспериментально измеренный сигнал вращающего момента вентильного реактивного электродвигателя представлен на ФИГ. 3.

Claims (61)

1. Способ трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя, включающий в себя следующие этапы:
a. установку первой группы пороговых значений (th1low, th1zero, th1up) вращающего момента в интервале [0°, θr/4] положений ротора и второй группы пороговых значений (th2low, th2zero, th2up) вращающего момента в интервале [θr/4, θr/2] положений ротора, при этом указанные шесть пороговых значений вращающего момента удовлетворяют следующим условиям:
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
, при этом
положение 0° ротора является положением с минимальной фазовой индуктивностью,
положение θr ротора является угловым шагом, т.е. одним оборотом ротора, а
θr/2 является половиной оборота ротора;
b. установку возбужденного состояния SА в качестве питания возбужденного состояния фазы А, при этом
возбужденное состояние SА=1 обозначает, что возбуждающее напряжение фазы А положительное,
возбужденное состояние SА=0 обозначает, что напряжение фазы А нулевое, а
возбужденное состояние SА=-1 обозначает, что напряжение фазы А отрицательное;
установку возбужденного состояния SВ в качестве питания возбужденного состояния фазы В, при этом
возбужденное состояние SВ=1 обозначает, что возбуждающее напряжение фазы В положительное,
возбужденное состояние SВ=0 обозначает, что напряжение фазы В нулевое, а
возбужденное состояние SВ=-1 обозначает, что напряжение фазы В отрицательное; а
Тe - желаемый плавный общий вращающий момент;
c. подачу питания на смежные фазу А и фазу В для возбуждений, при этом
сигнал питания, подаваемый для возбуждения на фазе А, опережает сигнал питания, подаваемый для возбуждения на фазе В, на θr/4 и в этот момент фазу А отключают, фазу В подключают и осуществляют трехуровневое подавление пульсации вращающего момента четырехфазного вентильного реактивного электродвигателя путем деления процесса коммутации из фазы А в фазу В на два интервала.
2. Способ трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя по п. 1, согласно которому деление процесса коммутации из фазы А в фазу В на два интервала осуществляют следующим образом:
(1) в интервале [0°, θ1] положений ротора для фазы А используют вторую группу пороговых значений (th2low, th2zero, th2up) вращающего момента, для фазы В используют первую группу пороговых значений (th1low, th1zero, th1up) вращающего момента, критическое положение θ1 автоматически возникает в процессе коммутации, так что не требуется дополнительных вычислений;
(1.1) фазу В интервала проводимости начинают в положении 0° ротора,
устанавливают изначальное возбужденное состояние SB=1, а
ток и вращающий момент фазы В увеличивают от 0;
возбужденное состояние SA оставляют в изначальном состоянии SA=1, а ток и вращающий момент фазы А увеличивают и увеличивают общий вращающий момент;
(1.2) когда общий вращающий момент увеличен до значения Te+th2up вращающего момента, возбужденное состояние SA переводят из значения 1 в значение -1 и уменьшают вращающий момент фазы А;
фазу В оставляют в исходном состоянии, а вращающий момент фазы В продолжают увеличивать; так как скорость изменения индуктивности в фазе В и фазовый ток малы в этот момент, то скорость увеличения вращающего момента фазы В меньше, чем скорость уменьшения вращающего момента фазы А, характер изменения общего вращающего момента определен фазой А и общий вращающий момент уменьшен;
(1.3) когда общий вращающий момент впервые уменьшен до значения Тe+th1low вращающего момента, условия изменения состояния фазы А и фазы В не выполнены, возбужденные состояния SA и SB остаются исходными состояниями, и продолжают уменьшение общего вращающего момента;
(1.4) когда общий вращающий момент уменьшен до значения Te+th2zero вращающего момента, в фазе А запускают переход из возбужденного состояния SA=-1 в возбужденное состояние SA=0 и уменьшают вращающий момент фазы А, но скорость уменьшения меньше, чем та, что в возбужденном состоянии SA=-1;
фазу В оставляют в исходном возбужденном состоянии и продолжают увеличивать вращающий момент; в этот момент при условии, что возбужденное состояние SA=0 и возбужденное состояние SB=1, скорость уменьшения вращающего момента фазы А больше, чем скорость увеличения вращающего момента фазы В и общий вращающий момент уменьшен;
(1.5) когда общий вращающий момент уменьшен до значения Te+th2low вращающего момента, выполнены условия для изменения состояния фазы А, состояние фазы А переходит из возбужденного состояния SA=0 в возбужденное состояние SA=1 и вращающий момент фазы А увеличивают;
фазу В оставляют в исходном состоянии и вращающий момент продолжают увеличивать; увеличивают общий вращающий момент;
(1.6) когда общий вращающий момент увеличен до значения Te+th2zero вращающего момента и затем до значения Te+th1low, условия изменения состояния фазы А и фазы В не выполняются в обоих случаях, общий вращающий момент продолжают увеличивать;
(1.7) когда общий вращающий момент увеличен до значения Te+th2up вращающего момента, этапы (1.2)-(1.6) повторяют и состояние фазы В не переключают, не изменяют и оставляют возбужденным состоянием SB=1;
возбужденное состояние фазы А переключают между значениями 1, 0 и -1 и общим вращающим моментом управляют в диапазоне [Te+th2low, Te+th2up], тем самым подавляя пульсации вращающего момента четырехфазного вентильного реактивного электродвигателя в интервале [0°, θ1] положений ротора;
(1.8) с увеличением положения ротора скорость изменения индуктивности и ток в фазе В увеличивают до определенного уровня;
после того как достигнуто определенное критическое положение, при возбужденном состоянии SA=0 и возбужденном состоянии SB=1, скорость уменьшения вращающего момента в фазе А меньше, чем скорость увеличения вращающего момента в фазе В и общий вращающий момент увеличен;
(2) в интервале [θ1, θr/4] положений ротора для фазы А продолжают использовать вторую группу пороговых значений (th2low, th2zero, th2up) вращающего момента, а для фазы В продолжают использовать первую группу пороговых значений (th1low, th1zero, th1up) вращающего момента;
(2.1) в положении ротора θ1 общий вращающий момент доводят до значения Tе+th2up и состояние в фазе А переключают в возбужденное состояние SA=-1;
фазу В оставляют в возбужденном состоянии SB=1, и в этом положении скорость уменьшения вращающего момента в фазе А при отрицательном сигнале напряжения питания больше, чем скорость увеличения вращающего момента в фазе В при положительном сигнале напряжения питания, так что общий вращающий момент уменьшен;
однако эту ситуацию изменяют в дальнейшем; следуя за увеличением положения ротора, несмотря на то что возбужденные состояния фазы А и фазы В остаются неизменными, скорость уменьшения вращающего момента в фазе А в возбужденном состоянии SA=-1 меньше, чем скорость увеличения вращающего момента в фазе В в возбужденном состоянии SB=1, тем самым увеличивают общий вращающий момент;
(2.2) когда общий вращающий момент увеличен до значения Te+th2up вращающего момента, ни возбужденное состояние SA, ни возбужденное состояние SB не запускают и не изменяют и продолжают увеличивать общий вращающий момент;
(2.3) когда общий вращающий момент доведен до значения Te+th1zero вращающего момента, выполнены условия изменения состояния в фазе В и возбужденное состояние SB переводят в 0 и вращающий момент фазы В уменьшен;
фазу А оставляют в исходном возбужденном состоянии SA=-1 и уменьшают общий вращающий момент;
(2.4) когда общий вращающий момент уменьшен до значения Te+th2up вращающего момента, ни возбужденное состояние SA, ни возбужденное состояние SB не запускают и не изменяют и продолжают уменьшать общий вращающий момент;
(2.5) когда общий вращающий момент уменьшен до значения Te+th1low вращающего момента, выполнены условия изменения состояния в фазе В и возбужденное состояние SB переводят в 1 и вращающий момент фазы В увеличен;
фазу А оставляют в исходном возбужденном состоянии SA=-1 и увеличивают общий вращающий момент;
(2.6) повторяют этапы (2.2)-(2.5), возбужденное состояние SA оставляют равным -1 и вращающий момент и ток фазы А продолжают уменьшать;
возбужденное состояние SB переключают между 0 и 1 и общим вращающим моментом управляют в интервале [Te+th1low, Te+th1zero], тем самым подавляя пульсации вращающего момента четырехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/4] положений ротора;
(2.7) когда ротор находится в критическом положении и вращающий момент фазы В увеличен в возбужденном состоянии SB=0, скорость увеличения больше, чем скорость уменьшения вращающего момента в фазе А в возбужденном состоянии SA=-1; в этот момент общий вращающий момент увеличен;
(2.8) когда общий вращающий момент доведен до значения Te+th1up вращающего момента, производят запуск и изменение состояния фазы В, возбужденное состояние SB переводят из 0 в -1 и вращающий момент фазы В уменьшают;
вращающий момент фазы А продолжают уменьшать и уменьшают общий вращающий момент;
(2.9) когда общий вращающий момент уменьшен до значения Te+th1zero вращающего момента и затем до Te+th2up вращающего момента, ни возбужденное состояние SA, ни возбужденное состояние SB не запускают и не изменяют и общий вращающий момент продолжают уменьшать;
(2.10) когда общий вращающий момент уменьшен до значения Te+th1low вращающего момента, возбужденное состояние SB включают и изменяют на 1 и увеличивают вращающий момент фазы В;
фазу А оставляют в исходном состоянии, вращающий момент фазы А продолжают уменьшать и увеличивают общий вращающий момент;
(2.11) когда общий вращающий момент увеличен до значения Te+th1zero вращающего момента, возбужденное состояние SB запускают и переводят в 0, а возбужденное состояние SA оставляют в -1; ситуация в этот момент такая же, как в (2.7);
повторяют этапы (2.7)-(2.11), возбужденное состояние SA оставляют равным -1, возбужденное состояние SB переключают между значениями -1, 0 и 1 и общим вращающим моментом управляют в интервале [Te+th1low, Te+th1up], тем самым подавляя пульсации вращающего момента четырехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/4] положений ротора;
(2.12) когда ротор находится в критическом положении и вращающий момент фазы В в возбужденном состоянии SB=0 и возбужденное состояние SA=-1, общий вращающий момент больше не увеличивают, а наоборот, уменьшают;
этапы (2.2)-(2.5) повторяют с этого момента и общим вращающим моментом управляют в интервале [Te+th1low, Te+th1zero], тем самым подавляя пульсации вращающего момента четырехфазного вентильного реактивного электродвигателя в интервале [θ1, θr/4] положений ротора.
RU2016125155A 2014-08-27 2015-08-19 Способ трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя RU2637494C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410432801.5 2014-08-27
CN201410432801.5A CN104242745B (zh) 2014-08-27 2014-08-27 一种四相开关磁阻电机转矩脉动三电平抑制方法
PCT/CN2015/087501 WO2016029816A1 (zh) 2014-08-27 2015-08-19 一种四相开关磁阻电机转矩脉动三电平抑制方法

Publications (1)

Publication Number Publication Date
RU2637494C1 true RU2637494C1 (ru) 2017-12-05

Family

ID=52230258

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016125155A RU2637494C1 (ru) 2014-08-27 2015-08-19 Способ трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя

Country Status (5)

Country Link
US (1) US9787238B2 (ru)
CN (1) CN104242745B (ru)
AU (1) AU2015309386B2 (ru)
RU (1) RU2637494C1 (ru)
WO (1) WO2016029816A1 (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242745B (zh) * 2014-08-27 2016-10-26 中国矿业大学 一种四相开关磁阻电机转矩脉动三电平抑制方法
CN104333276B (zh) 2014-08-27 2017-02-15 中国矿业大学 一种三相开关磁阻电机转矩脉动两电平抑制方法
CN114665771B (zh) * 2022-05-06 2023-04-11 西南交通大学 一种电励磁双凸极电机转矩脉动抑制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2313498B (en) * 1996-05-23 2000-07-26 Switched Reluctance Drives Ltd Output smoothing in a switched reluctance machine
US6559617B2 (en) * 2001-02-13 2003-05-06 Lg Electronics, Inc. Method for reducing torque ripple of switched reluctance motor
RU2260243C1 (ru) * 2003-12-17 2005-09-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Эметрон" Способ управления реактивным индукторным двигателем
RU2402148C1 (ru) * 2009-04-06 2010-10-20 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт электровозостроения" (ОАО "ВЭлНИИ") Способ управления индукторным двигателем
EP0959555B1 (en) * 1998-05-22 2011-12-21 Nidec SR Drives Ltd. Operation of switched reluctance machines
CN102790566A (zh) * 2012-08-02 2012-11-21 合肥工业大学 一种减小开关磁阻电机转矩跟踪误差的方法
RU2483416C1 (ru) * 2011-12-02 2013-05-27 Открытое Акционерное Общество "Научно-Исследовательский Проектно-Конструкторский и Технологический Институт Электромашиностроения" Шестифазный вентильно-индукторный двигатель с минимальными шумами, вибрациями и пульсациями момента, способ и устройство управления

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821725A (en) * 1996-10-16 1998-10-13 Industrial Technology Research Institute Electric current compensation circuit for brushless motors for reducing ripples in output torques during phase change
US6380709B2 (en) * 1999-12-07 2002-04-30 Rohm Co., Ltd. PWM motor driving device
US6577087B2 (en) * 2001-05-10 2003-06-10 Ut-Battelle, Llc Multilevel DC link inverter
US20060091755A1 (en) * 2004-10-28 2006-05-04 Precise Automation, Llc Transverse flux switched reluctance motor and control methods
CN1326315C (zh) * 2005-10-11 2007-07-11 中国矿业大学 开关磁阻伺服电动机输出转矩消脉动控制方法
JP5168448B2 (ja) * 2007-02-26 2013-03-21 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
CN101478215A (zh) * 2008-09-28 2009-07-08 南京航空航天大学 用于缺相容错的开关磁阻电机
CN101409491A (zh) * 2008-09-28 2009-04-15 南京航空航天大学 用于缺相容错的12/8结构开关磁阻电机
CN101526823B (zh) * 2009-04-20 2011-03-30 哈尔滨工业大学 开关磁阻电机恒定转矩的控制方法
CN101982931B (zh) * 2010-10-29 2012-08-08 哈尔滨工业大学 脉动转矩补偿结构多相磁阻电机
CN102545743B (zh) * 2010-12-27 2014-08-06 北京中纺锐力机电有限公司 开关磁阻电机的转矩平滑控制方法
US10564221B2 (en) * 2013-11-13 2020-02-18 Brooks Automation, Inc. Method and apparatus for brushless electrical machine control
JP6044585B2 (ja) * 2014-05-07 2016-12-14 株式会社デンソー 多相交流モータの制御装置
CN104242745B (zh) * 2014-08-27 2016-10-26 中国矿业大学 一种四相开关磁阻电机转矩脉动三电平抑制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2313498B (en) * 1996-05-23 2000-07-26 Switched Reluctance Drives Ltd Output smoothing in a switched reluctance machine
EP0959555B1 (en) * 1998-05-22 2011-12-21 Nidec SR Drives Ltd. Operation of switched reluctance machines
US6559617B2 (en) * 2001-02-13 2003-05-06 Lg Electronics, Inc. Method for reducing torque ripple of switched reluctance motor
RU2260243C1 (ru) * 2003-12-17 2005-09-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Эметрон" Способ управления реактивным индукторным двигателем
RU2402148C1 (ru) * 2009-04-06 2010-10-20 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт электровозостроения" (ОАО "ВЭлНИИ") Способ управления индукторным двигателем
RU2483416C1 (ru) * 2011-12-02 2013-05-27 Открытое Акционерное Общество "Научно-Исследовательский Проектно-Конструкторский и Технологический Институт Электромашиностроения" Шестифазный вентильно-индукторный двигатель с минимальными шумами, вибрациями и пульсациями момента, способ и устройство управления
CN102790566A (zh) * 2012-08-02 2012-11-21 合肥工业大学 一种减小开关磁阻电机转矩跟踪误差的方法

Also Published As

Publication number Publication date
US9787238B2 (en) 2017-10-10
CN104242745B (zh) 2016-10-26
US20170019049A1 (en) 2017-01-19
AU2015309386A1 (en) 2016-10-20
CN104242745A (zh) 2014-12-24
WO2016029816A1 (zh) 2016-03-03
AU2015309386B2 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
CN103078590B (zh) 用于马达-发电机的控制装置
KR101940411B1 (ko) 회로 및 회로를 위한 제어 방법
RU2637494C1 (ru) Способ трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя
CN104993747A (zh) 12/8极三相开关磁阻电动机混合励磁电流控制方法
CN103236813B (zh) 一种永磁无刷直流电机的控制系统
CN108400742B (zh) 一种双绕组三相电机及其控制方法
JP5561792B2 (ja) ブラシレスモータの駆動装置
RU2641674C2 (ru) Способ трехуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя
RU2639309C1 (ru) Способ двухуровневого подавления пульсаций крутящего момента трехфазного вентильного реактивного электродвигателя
RU2643800C2 (ru) Способ двухуровневого подавления пульсации крутящего момента четырехфазного вентильного реактивного двигателя
Lee et al. Advanced torque control scheme for the high speed switched reluctance motor
CN107769628B (zh) 一种永磁无刷直流电机转矩脉动抑制方法及装置
JP2011259571A (ja) モータ駆動装置
CN102545743A (zh) 开关磁阻电机的转矩平滑控制方法
Joy et al. Performance comparison of a sensorless PMBLDC motor drive system with conventional and fuzzy logic controllers
JP6086429B2 (ja) Srモータの駆動回路およびその制御方法
CN109831140B (zh) 开关磁阻马达的控制装置
JP2016189678A (ja) 回転電機の制御装置
CN103956944A (zh) 永磁同步电机带速启停控制系统及控制方法
CN215835338U (zh) 一种永磁转子电机结构
JP6421681B2 (ja) 電動発電機装置
CN107222150B (zh) Sr电机驱动主电路
CN113659881A (zh) 一种永磁转子电机结构及其控制方法
Li et al. A control strategy to suppress torque ripple of brushless DC motor
Li et al. Torque Ripple Improvement by Injecting High Voltage Pulses