WO2016029816A1 - 一种四相开关磁阻电机转矩脉动三电平抑制方法 - Google Patents

一种四相开关磁阻电机转矩脉动三电平抑制方法 Download PDF

Info

Publication number
WO2016029816A1
WO2016029816A1 PCT/CN2015/087501 CN2015087501W WO2016029816A1 WO 2016029816 A1 WO2016029816 A1 WO 2016029816A1 CN 2015087501 W CN2015087501 W CN 2015087501W WO 2016029816 A1 WO2016029816 A1 WO 2016029816A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
torque
excitation
excitation state
state
Prior art date
Application number
PCT/CN2015/087501
Other languages
English (en)
French (fr)
Inventor
陈昊
曾辉
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US15/124,238 priority Critical patent/US9787238B2/en
Priority to RU2016125155A priority patent/RU2637494C1/ru
Priority to AU2015309386A priority patent/AU2015309386B2/en
Publication of WO2016029816A1 publication Critical patent/WO2016029816A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/098Arrangements for reducing torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • the invention relates to a three-level suppression method for torque ripple of a switched reluctance motor, which is suitable for a four-phase switched reluctance motor drive system.
  • Switched reluctance motors have attracted much attention due to their simple and robust structure, low manufacturing cost and good speed regulation performance.
  • its special double salient pole structure and switching excitation method make the output electromagnetic torque have large pulsation, which seriously restricts its application in the field.
  • researchers have proposed various methods to eliminate the torque.
  • the pulsation also minimizes the copper loss.
  • the switched reluctance motor system has an upper current limit, and the current limitation allows the switched reluctance motor to output only a limited range of smooth torque. Therefore, there is a certain operable range for the control of all output smoothing torques.
  • the object of the present invention is to overcome the problems in the prior art and to provide a three-phase suppression method for torque ripple of a four-phase switched reluctance motor.
  • the four-phase switched reluctance motor torque ripple three-level suppression method of the present invention comprises the following steps:
  • the rotor position 0° is the minimum phase inductance position
  • the rotor position ⁇ r is the pitch angle, that is, one rotor period, and the half rotor period is ⁇ r /2;
  • the excitation state S B is set to the B-phase power supply excitation state
  • the expected total smoothing torque is T e ;
  • the A-phase power supply excitation ratio B-phase power supply excitation advances ⁇ r /4, at this time, A is related to break, B phase is open, and the A-phase to B-phase is divided into two
  • the commutation process of the interval realizes the suppression of the three-level torque ripple of the four-phase switched reluctance motor.
  • phase A continues to use the second set of torque thresholds (th2 low , th2 zero , th2 up ), and phase B continues to use the first set of torque thresholds (th1 Low ,th1 zero ,th1 up );
  • the present invention only needs to set two sets of torque thresholds and set adjacent A-phase and B-phase excitation states, respectively, so that the A-phase and B-phase are positive and zero in the excitation excitation voltage, respectively.
  • Switching between three kinds of excitation states controlling the total torque between the two sets of torque thresholds, suppressing the torque ripple of the four-phase switched reluctance motor, realizing the direct instantaneous torque smoothing control of the four-phase switched reluctance motor, the motor
  • the excitation voltage waveform of the winding has the same characteristics as the desired voltage waveform, and the actual phase current is highly consistent with the desired phase current, so that the switched reluctance motor outputs the maximum range of smooth torque. It has strong versatility and is suitable for four-phase switched reluctance motor drive systems of various types and structures. It has good practical effects and wide application prospects.
  • FIG. 1 is a schematic diagram showing a three-level torque threshold setting of a switched reluctance motor of the present invention
  • FIG. 2(a) is a schematic diagram showing the conversion of the B-phase power supply excitation state of the present invention
  • 2(b) is a schematic diagram showing the conversion of the phase A excitation state of the present invention.
  • Fig. 3 is a diagram showing the torque waveform of the switched reluctance motor of the present invention.
  • the rotor position 0° is the minimum phase inductance position
  • the rotor position ⁇ r is the pitch angle, that is, one rotor period, and the half rotor period is ⁇ r /2;
  • the A-phase power supply excitation ratio B-phase power supply excitation advances ⁇ r /4, at this time, A is related to break, B phase is open, as shown in Figure 1, A phase to B
  • the phase commutation process is divided into two intervals:
  • phase A continues to use the second set of torque thresholds (th2 low , th2 zero , th2 up ), and phase B continues to use the first set of torque thresholds (th1 Low ,th1 zero ,th1 up );
  • the D-phase power supply excitation ratio A-phase power supply excitation advances ⁇ r /4 when the torque threshold setting, the commutation process, the D-phase and the A-phase excitation state switching transfer method, and The above situation is similar.

Abstract

一种四相开关磁阻电机转矩脉动三电平抑制方法,在转子位置区间[0°,θr/4]设置第一组转矩阈值,在转子位置区间[θr/4,θr/2]设置第二组转矩阈值,对相邻的A相和B相供电励磁,A相供电励磁比B相供电励磁超前θr/4,A相到B相的整个换相过程分为两个区间,在转子位置区间[0°,θ1]区间A相使用第二组转矩阈值,B相使用第一组转矩阈值,临界位置θ1是在换相过程中自动出现的,无需额外进行计算,总转矩控制在[Te+th2low,Te+th2up]之间;在转子位置区间[θ1,θr/4]区间A相继续使用第二组转矩阈值,B相继续使用第一组转矩阈值,总转矩被控制在[Te+th1low,Te+th1up]之间,抑制了四相开关磁阻电机转矩脉动,具有良好的工程应用价值。

Description

一种四相开关磁阻电机转矩脉动三电平抑制方法 技术领域
本发明涉及一种开关磁阻电机转矩脉动三电平抑制方法,适用于四相开关磁阻电机驱动系统。
背景技术
开关磁阻电机以其结构简单坚固,制造成本低以及良好的调速性能而广受关注。然而其特殊的双凸极结构以及开关式的励磁方式,使之输出的电磁转矩存在较大脉动,严重制约了其领域的应用,为此研究者们提出了多种方法,在消除转矩脉动的同时还实现了铜损最小化,这些方法在一定速度范围段取得了良好的效果,然而当转速较高时,由于受有限的直流供电电压限制,系统控制跟踪期望电流、期望磁链、期望转矩的能力减弱,转矩脉动难以有效消除。此外,受绕组所能承受的最大电流及半导体器件伏安容量的限制,开关磁阻电机系统存在电流上限,电流的限制使得开关磁阻电机只能输出有限范围的平滑转矩。因此,对于所有输出平滑转矩的控制都存在一定的可操作范围。
发明内容
本发明的目的是克服已有技术中存在的问题,提供一种四相开关磁阻电机转矩脉动三电平抑制方法。
本发明的四相开关磁阻电机转矩脉动三电平抑制方法,包括如下步骤:
a.在转子位置区间[0°,θr/4]设置第一组转矩阈值(th1low,th1zero,th1up),在转子位置区间[θr/4,θr/2]设置第二组转矩阈值(th2low,th2zero,th2up),这6个转矩阈值满足条件:
th1up>th1zero>th2up>0    (1)
0>th1low>th2zero>th2low   (2)
|th1zero|=|th2zero|  (3)
|th1up|=|th2low|  (4)
|th2up|=|th1low|  (5)
其中,转子位置0°为最小相电感位置,转子位置θr为齿距角即一个转子周期,半个转子周期是θr/2;
b.设置励磁状态SA为A相供电励磁状态,励磁状态SA=1表示A相励磁电压为正,励磁状态SA=0表示A相励磁电压为零,励磁状态SA=-1表示A相励磁电压为负;设置励磁状态SB为B相供电励磁状态,励磁状态SB=1表示B相励磁电压为正,励磁状态SB=0 表示B相励磁电压为零,励磁状态SB=-1表示B相励磁电压为负,期望的总平滑转矩为Te
c.对相邻的A相和B相供电励磁,A相供电励磁比B相供电励磁超前θr/4,此时,A相关断,B相开通,通过将A相到B相分为两个区间的换相过程,实现四相开关磁阻电机转矩脉动三电平的抑制。
所述将A相到B相分为两个区间的换相过程如下:
(1)在转子位置区间[0°,θ1],A相使用第二组转矩阈值(th2low,th2zero,th2up),B相使用第一组转矩阈值(th1low,th1zero,th1up),临界位置θ1是在换相过程中自动出现的,无需额外进行计算;
(1.1)在转子位置0°位置进入B相导通周期,设定初始励磁状态SB=1,B相电流和转矩从0开始增大;励磁状态SA保持原有状态SA=1,A相电流与转矩增加。总转矩增加;
(1.2)当总转矩增加到转矩值Te+th2up,励磁状态SA由1转换为-1,A相转矩减小;B相保持原有状态,B相转矩继续增加。由于此时B相电感变化率及相电流较小,B相转矩增加速率小于A相转矩下降速率,总转矩变化趋势由A相决定,总转矩减小;
(1.3)当总转矩首先减小到转矩值Te+th1low,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续减小;
(1.4)当总转矩减小到转矩值Te+th2zero,触发A相由励磁状态SA=-1转变为励磁状态SA=0,A相转矩减小,但减小速率比励磁状态SA=-1时要小;B相保持原有励磁状态,转矩继续增加。此时在励磁状态SA=0和励磁状态SB=1的情况下,A相转矩减小速率大于B相转矩增加速率,总转矩减小;
(1.5)当总转矩减小到转矩值Te+th2low,满足A相状态转移条件,A相由励磁状态SA=0转变为励磁状态SA=1,A相转矩增大;B相保持原有状态,转矩继续增加;总转矩增加;
(1.6)当总转矩依次增加到转矩值Te+th2zero与Te+th1low,但均不满足A、B相的状态转移条件,总转矩继续增加;
(1.7)当总转矩增加到转矩值Te+th2up,重复步骤(1.2)~(1.6),B相状态未被触发而改变,保持励磁状态SB=1;A相励磁状态SA在1、0和-1间切换,将总转矩控制在[Te+th2low,Te+th2up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[0°,θ1]的脉动;
(1.8)随着转子位置增大,B相电感变化率及电流增大到一定水平,在某一临界位置之后,当励磁状态SA=0,励磁状态SB=1时,A相转矩减小速率小于B相转矩增加速率,总转矩上升;
(2)在转子位置区间[θ1,θr/4],A相继续使用第二组转矩阈值(th2low,th2zero,th2up),B相继续使用第一组转矩阈值(th1low,th1zero,th1up);
(2.1)在转子位置θ1位置,总转矩达到转矩值Te+th2up,A相状态切换为励磁状态SA=-1;B相保持励磁状态SB=1。在该位置A相转矩在负供电电压激励下的下降速率大于B相转矩在正供电电压激励下的增加速率,因此总转矩下降。然而该状况在随后发生改变,随着转子位置增加,尽管A、B两相励磁状态均未变,但A相在励磁状态SA=-1状态下的转矩下降速率小于B相在励磁状态SB=1状态下的转矩增加速率,从而总转矩上升;
(2.2)当总转矩上升到转矩值Te+th2up,励磁状态SA和励磁状态SB均未被触发改变状态,总转矩继续上升;
(2.3)当总转矩达到转矩值Te+th1zero,满足B相状态转移条件,励磁状态SB转换为0,B相转矩减小;A相保持原有励磁状态SA=-1,总转矩减小;
(2.4)当总转矩减小到转矩值Te+th2up,励磁状态SA和励磁状态SB均未被触发改变状态,总转矩继续减小;
(2.5)当总转矩减小到转矩值Te+th1low,满足B相状态转移条件,励磁状态SB转换为1,B相转矩增加;A相保持原有励磁状态SA=-1,总转矩上升;
(2.6)重复步骤(2.2)~(2.5),励磁状态SA保持-1,A相转矩和电流持续变小;励磁状态SB在0和1之间切换,总转矩被控制在[Te+th1low,Te+th1zero]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动;
(2.7)当转子位于临界位置,B相转矩在励磁状态SB=0时转矩增加,且增加速率大于A相在励磁状态SA=-1时转矩下降速率,此时总转矩上升;
(2.8)当总转矩上升至转矩值Te+th1up,B相状态被触发改变,励磁状态SB从0转为-1,B相转矩减小;A相转矩继续减小,总转矩减小;
(2.9)当总转矩依次减小到转矩值Te+th1zero与转矩值Te+th2up,励磁状态SA和励磁状态SB均未被触发改变状态,总转矩继续减小;
(2.10)当总转矩减小到转矩值Te+th1low,励磁状态SB被触发改变为1,B相转矩增加;A相保持原有状态,A相转矩继续减小,总转矩增加;
(2.11)当总转矩增加到转矩值Te+th1zero,励磁状态SB被触发改变为0,励磁状态SA保持为-1,此时情况与(2.7)相同,重复步骤(2.7)~(2.11),励磁状态SA保持-1,励磁状态SB在-1,0和1之间切换,总转矩被控制在[Te+th1low,Te+th1up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动;
(2.12)当转子位于临界位置,B相转矩在励磁状态SB=0、励磁状态SA=-1时总转矩不再增加,而是降低,从此刻起重复步骤(2.2)~(2.5),总转矩被控制在[Te+th1low,Te+th1zero]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动。
有益效果:由于采用了上述技术方案,本发明只需通过设置两组转矩阈值和设置相邻的A相和B相励磁状态,分别使A相和B相在供电励磁电压为正、零、负三种励磁状态之间切换,控制总转矩在两组转矩阈值之间,抑制了四相开关磁阻电机转矩脉动,实现了四相开关磁阻电机直接瞬时转矩平滑控制,电机绕组所受激励电压波形与期望电压波形具有相同的特征,实际相电流与期望相电流高度吻合,使开关磁阻电机输出最大范围的平滑转矩。通用性强,适用于各种类型、各种结构的四相开关磁阻电机驱动系统,实用效果好,具有广泛的应用前景。
附图说明
图1是本发明的开关磁阻电机三电平转矩阈值设定示意图;
图2(a)是本发明的B相供电励磁状态的转换示意图;
图2(b)是本发明的A相供电励磁状态的转换示意图;
图3是本发明的开关磁阻电机转矩波形。
具体实施方式
下面结合附图中的实施例对本发明作进一步的描述:
如图1所示,针对一台四相开关磁阻电机,具体步骤如下:
a.在转子位置区间[0°,θr/4]设置第一组转矩阈值(th1low,th1zero,th1up),在转子位置区间[θr/4,θr/2]设置第二组转矩阈值(th2low,th2zero,th2up),这6个转矩阈值满足条件:
th1up>th1zero>th2up>0      (1)
0>th1low>th2zero>th2low  (2)
|th1zero|=|th2zero|   (3)
|th1up|=|th2low|     (4)
|th2up|=|th1low|   (5)
其中,转子位置0°为最小相电感位置,转子位置θr为齿距角即一个转子周期,半个转子周期是θr/2;
b.如图2所示,设置励磁状态SA为A相供电励磁状态,励磁状态SA=1表示A相励磁电压为正,励磁状态SA=0表示A相励磁电压为零,励磁状态SA=-1表示A相励磁电压为负;设置励磁状态SB为B相供电励磁状态,励磁状态SB=1表示B相励磁电压为正,励磁状态SB=0表示B相励磁电压为零,励磁状态SB=-1表示B相励磁电压为负,期望的总平滑转矩为Te
c.对相邻的A相和B相供电励磁,A相供电励磁比B相供电励磁超前θr/4,此时,A相关断,B相开通,如图1所示,A相到B相的换相过程分为两个区间:
(1)在转子位置区间[0°,θ1],A相使用第二组转矩阈值(th2low,th2zero,th2up),B相使用第一组转矩阈值(th1low,th1zero,th1up),临界位置θ1是在换相过程中自动出现的,无需额外进行计算;
(1.1)在转子位置0°位置进入B相导通周期,设定初始励磁状态SB=1,B相电流和转矩从0开始增大;励磁状态SA保持原有状态SA=1,A相电流与转矩增加。总转矩增加;
(1.2)当总转矩增加到转矩值Te+th2up,励磁状态SA由1转换为-1,A相转矩减小;B相保持原有状态,B相转矩继续增加。由于此时B相电感变化率及相电流较小,B相转矩增加速率小于A相转矩下降速率,总转矩变化趋势由A相决定,总转矩减小;
(1.3)当总转矩首先减小到转矩值Te+th1low,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续减小;
(1.4)当总转矩减小到转矩值Te+th2zero,触发A相由励磁状态SA=-1转变为励磁状态SA=0,A相转矩减小,但减小速率比励磁状态SA=-1时要小;B相保持原有励磁状态,转矩继续增加。此时在励磁状态SA=0和励磁状态SB=1的情况下,A相转矩减小速率大于B相转矩增加速率,总转矩减小;
(1.5)当总转矩减小到转矩值Te+th2low,满足A相状态转移条件,A相由励磁状态SA=0转变为励磁状态SA=1,A相转矩增大;B相保持原有状态,转矩继续增加;总转矩增加;
(1.6)当总转矩依次增加到转矩值Te+th2zero与Te+th1low,但均不满足A、B相的状态转移条件,总转矩继续增加;
(1.7)当总转矩增加到转矩值Te+th2up,重复步骤(1.2)~(1.6),B相状态未被触 发而改变,保持励磁状态SB=1;A相励磁状态SA在1、0和-1间切换,将总转矩控制在[Te+th2low,Te+th2up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[0°,θ1]的脉动;
(1.8)随着转子位置增大,B相电感变化率及电流增大到一定水平,在某一临界位置之后,当励磁状态SA=0,励磁状态SB=1时,A相转矩减小速率小于B相转矩增加速率,总转矩上升;
(2)在转子位置区间[θ1,θr/4],A相继续使用第二组转矩阈值(th2low,th2zero,th2up),B相继续使用第一组转矩阈值(th1low,th1zero,th1up);
(2.1)在转子位置θ1位置,总转矩达到转矩值Te+th2up,A相状态切换为励磁状态SA=-1;B相保持励磁状态SB=1。在该位置A相转矩在负供电电压激励下的下降速率大于B相转矩在正供电电压激励下的增加速率,因此总转矩下降。然而该状况在随后发生改变,随着转子位置增加,尽管A、B两相励磁状态均未变,但A相在励磁状态SA=-1状态下的转矩下降速率小于B相在励磁状态SB=1状态下的转矩增加速率,从而总转矩上升;
(2.2)当总转矩上升到转矩值Te+th2up,励磁状态SA和励磁状态SB均未被触发改变状态,总转矩继续上升;
(2.3)当总转矩达到转矩值Te+th1zero,满足B相状态转移条件,励磁状态SB转换为0,B相转矩减小;A相保持原有励磁状态SA=-1,总转矩减小;
(2.4)当总转矩减小到转矩值Te+th2up,励磁状态SA和励磁状态SB均未被触发改变状态,总转矩继续减小;
(2.5)当总转矩减小到转矩值Te+th1low,满足B相状态转移条件,励磁状态SB转换为1,B相转矩增加;A相保持原有励磁状态SA=-1。总转矩上升;
(2.6)重复步骤(2.2)~(2.5),励磁状态SA保持-1,A相转矩和电流持续变小;励磁状态SB在0和1之间切换,总转矩被控制在[Te+th1low,Te+th1zero]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动;
(2.7)当转子位于临界位置,B相转矩在励磁状态SB=0时转矩增加,且增加速率大于A相在励磁状态SA=-1时转矩下降速率,此时总转矩上升;
(2.8)当总转矩上升至转矩值Te+th1up,B相状态被触发改变,励磁状态SB从0转为-1,B相转矩减小;A相转矩继续减小,总转矩减小;
(2.9)当总转矩依次减小到转矩值Te+th1zero与转矩值Te+th2up,励磁状态SA和励磁 状态SB均未被触发改变状态,总转矩继续减小;
(2.10)当总转矩减小到转矩值Te+th1low,励磁状态SB被触发改变为1,B相转矩增加;A相保持原有状态,A相转矩继续减小,总转矩增加;
(2.11)当总转矩增加到转矩值Te+th1zero,励磁状态SB被触发改变为0,励磁状态SA保持为-1,此时情况与(2.7)相同,重复步骤(2.7)~(2.11),励磁状态SA保持-1,励磁状态SB在-1,0和1之间切换,总转矩被控制在[Te+th1low,Te+th1up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动;
(2.12)当转子位于临界位置,B相转矩在励磁状态SB=0、励磁状态SA=-1时总转矩不再增加,而是降低,从此刻起重复步骤(2.2)~(2.5),总转矩被控制在[Te+th1low,Te+th1zero]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动。
对相邻的B相和C相供电励磁,B相供电励磁比C相供电励磁超前θr/4时的转矩阈值设定、换相过程、B相和C相励磁状态切换转移方法,与上述情况类似。
对相邻的C相和D相供电励磁,C相供电励磁比D相供电励磁超前θr/4时的转矩阈值设定、换相过程、C相和D相励磁状态切换转移方法,与上述情况类似。
对相邻的D相和A相供电励磁,D相供电励磁比A相供电励磁超前θr/4时的转矩阈值设定、换相过程、D相和A相励磁状态切换转移方法,与上述情况类似。
所获得的开关磁阻电机转矩波形如图3所示。

Claims (2)

  1. 一种四相开关磁阻电机转矩脉动三电平抑制方法,其特征在于,包括如下步骤:
    a.在转子位置区间[0°,θr/4]设置第一组转矩阈值(th1low,th1zero,th1up),在转子位置区间[θr/4,θr/2]设置第二组转矩阈值(th2low,th2zero,th2up),这6个转矩阈值满足条件:
    th1up>th1zero>th2up>0  (1)
    0>th1low>th2zero>th2low  (2)
    |th1zero|=|th2zero|  (3)
    |th1up|=|th2low|  (4)
    |th2up|=|th1low|  (5)
    其中,转子位置0°为最小相电感位置,转子位置θr为齿距角即一个转子周期,半个转子周期是θr/2;
    b.设置励磁状态SA为A相供电励磁状态,励磁状态SA=1表示A相励磁电压为正,励磁状态SA=0表示A相励磁电压为零,励磁状态SA=-1表示A相励磁电压为负;设置励磁状态SB为B相供电励磁状态,励磁状态SB=1表示B相励磁电压为正,励磁状态SB=0表示B相励磁电压为零,励磁状态SB=-1表示B相励磁电压为负,期望的总平滑转矩为Te
    c.对相邻的A相和B相供电励磁,A相供电励磁比B相供电励磁超前θr/4,此时,A相关断,B相开通,通过将A相到B相分为两个区间的换相过程,实现四相开关磁阻电机转矩脉动三电平的抑制。
  2. 根据权利要求1的述的一种四相开关磁阻电机转矩脉动三电平抑制方法,其特征在于:所述将A相到B相分为两个区间的换相过程如下:
    (1)在转子位置区间[0°,θ1],A相使用第二组转矩阈值(th2low,th2zero,th2up),B相使用第一组转矩阈值(th1low,th1zero,th1up),临界位置θ1是在换相过程中自动出现的,无需额外进行计算;
    (1.1)在转子位置0°位置进入B相导通周期,设定初始励磁状态SB=1,B相电流和转矩从0开始增大;励磁状态SA保持原有状态SA=1,A相电流与转矩增加。总转矩增加;
    (1.2)当总转矩增加到转矩值Te+th2up,励磁状态SA由1转换为-1,A相转矩减小; B相保持原有状态,B相转矩继续增加。由于此时B相电感变化率及相电流较小,B相转矩增加速率小于A相转矩下降速率,总转矩变化趋势由A相决定,总转矩减小;
    (1.3)当总转矩首先减小到转矩值Te+th1low,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续减小;
    (1.4)当总转矩减小到转矩值Te+th2zero,触发A相由励磁状态SA=-1转变为励磁状态SA=0,A相转矩减小,但减小速率比励磁状态SA=-1时要小;B相保持原有励磁状态,转矩继续增加。此时在励磁状态SA=0和励磁状态SB=1的情况下,A相转矩减小速率大于B相转矩增加速率,总转矩减小;
    (1.5)当总转矩减小到转矩值Te+th2low,满足A相状态转移条件,A相由励磁状态SA=0转变为励磁状态SA=1,A相转矩增大;B相保持原有状态,转矩继续增加;总转矩增加;
    (1.6)当总转矩依次增加到转矩值Te+th2zero与Te+th1low,但均不满足A、B相的状态转移条件,总转矩继续增加;
    (1.7)当总转矩增加到转矩值Te+th2up,重复步骤(1.2)~(1.6),B相状态未被触发而改变,保持励磁状态SB=1;A相励磁状态SA在1、0和-1间切换,将总转矩控制在[Te+th2low,Te+th2up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[0°,θ1]的脉动;
    (1.8)随着转子位置增大,B相电感变化率及电流增大到一定水平,在某一临界位置之后,当励磁状态SA=0,励磁状态SB=1时,A相转矩减小速率小于B相转矩增加速率,总转矩上升;
    (2)在转子位置区间[θ1,θr/4],A相继续使用第二组转矩阈值(th2low,th2zero,th2up),B相继续使用第一组转矩阈值(th1low,th1zero,th1up);
    (2.1)在转子位置θ1位置,总转矩达到转矩值Te+th2up,A相状态切换为励磁状态SA=-1;B相保持励磁状态SB=1。在该位置A相转矩在负供电电压激励下的下降速率大于B相转矩在正供电电压激励下的增加速率,因此总转矩下降。然而该状况在随后发生改变,随着转子位置增加,尽管A、B两相励磁状态均未变,但A相在励磁状态SA=-1状态下的转矩下降速率小于B相在励磁状态SB=1状态下的转矩增加速率,从而总转矩上升;
    (2.2)当总转矩上升到转矩值Te+th2up,励磁状态SA和励磁状态SB均未被触发改变状态,总转矩继续上升;
    (2.3)当总转矩达到转矩值Te+th1zero,满足B相状态转移条件,励磁状态SB转换为0,B相转矩减小;A相保持原有励磁状态SA=-1,总转矩减小;
    (2.4)当总转矩减小到转矩值Te+th2up,励磁状态SA和励磁状态SB均未被触发改变状态,总转矩继续减小;
    (2.5)当总转矩减小到转矩值Te+th1low,满足B相状态转移条件,励磁状态SB转换为1,B相转矩增加;A相保持原有励磁状态SA=-1,总转矩上升;
    (2.6)重复步骤(2.2)~(2.5),励磁状态SA保持-1,A相转矩和电流持续变小;励磁状态SB在0和1之间切换,总转矩被控制在[Te+th1low,Te+th1zero]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动;
    (2.7)当转子位于临界位置,B相转矩在励磁状态SB=0时转矩增加,且增加速率大于A相在励磁状态SA=-1时转矩下降速率,此时总转矩上升;
    (2.8)当总转矩上升至转矩值Te+th1up,B相状态被触发改变,励磁状态SB从0转为-1,B相转矩减小;A相转矩继续减小,总转矩减小;
    (2.9)当总转矩依次减小到转矩值Te+th1zero与转矩值Te+th2up,励磁状态SA和励磁状态SB均未被触发改变状态,总转矩继续减小;
    (2.10)当总转矩减小到转矩值Te+th1low,励磁状态SB被触发改变为1,B相转矩增加;A相保持原有状态,A相转矩继续减小,总转矩增加;
    (2.11)当总转矩增加到转矩值Te+th1zero,励磁状态SB被触发改变为0,励磁状态SA保持为-1,此时情况与(2.7)相同,重复步骤(2.7)~(2.11),励磁状态SA保持-1,励磁状态SB在-1,0和1之间切换,总转矩被控制在[Te+th1low,Te+th1up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动;
    (2.12)当转子位于临界位置,B相转矩在励磁状态SB=0、励磁状态SA=-1时总转矩不再增加,而是降低,从此刻起重复步骤(2.2)~(2.5),总转矩被控制在[Te+th1low,Te+th1zero]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动。
PCT/CN2015/087501 2014-08-27 2015-08-19 一种四相开关磁阻电机转矩脉动三电平抑制方法 WO2016029816A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/124,238 US9787238B2 (en) 2014-08-27 2015-08-19 Four-phase switched reluctance motor torque ripple three-level suppression method
RU2016125155A RU2637494C1 (ru) 2014-08-27 2015-08-19 Способ трехуровневого подавления пульсаций вращающего момента четырехфазного вентильного реактивного электродвигателя
AU2015309386A AU2015309386B2 (en) 2014-08-27 2015-08-19 Four-phase switched reluctance motor torque ripple three-level suppression method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410432801.5A CN104242745B (zh) 2014-08-27 2014-08-27 一种四相开关磁阻电机转矩脉动三电平抑制方法
CN201410432801.5 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016029816A1 true WO2016029816A1 (zh) 2016-03-03

Family

ID=52230258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087501 WO2016029816A1 (zh) 2014-08-27 2015-08-19 一种四相开关磁阻电机转矩脉动三电平抑制方法

Country Status (5)

Country Link
US (1) US9787238B2 (zh)
CN (1) CN104242745B (zh)
AU (1) AU2015309386B2 (zh)
RU (1) RU2637494C1 (zh)
WO (1) WO2016029816A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906182B2 (en) 2014-08-27 2018-02-27 China University Of Mining And Technology Three-phase switched reluctance motor torque ripple two-level suppression method
CN114665771A (zh) * 2022-05-06 2022-06-24 西南交通大学 一种电励磁双凸极电机转矩脉动抑制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104242745B (zh) * 2014-08-27 2016-10-26 中国矿业大学 一种四相开关磁阻电机转矩脉动三电平抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109476A1 (en) * 2001-02-13 2002-08-15 Lg Electronics Inc. Method for reducing torque ripple of switched reluctance motor
US6577087B2 (en) * 2001-05-10 2003-06-10 Ut-Battelle, Llc Multilevel DC link inverter
CN102545743A (zh) * 2010-12-27 2012-07-04 北京中纺锐力机电有限公司 开关磁阻电机的转矩平滑控制方法
CN102790566A (zh) * 2012-08-02 2012-11-21 合肥工业大学 一种减小开关磁阻电机转矩跟踪误差的方法
CN104242745A (zh) * 2014-08-27 2014-12-24 中国矿业大学 一种四相开关磁阻电机转矩脉动三电平抑制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9610846D0 (en) * 1996-05-23 1996-07-31 Switched Reluctance Drives Ltd Output smoothing in a switched reluctance machine
US5821725A (en) * 1996-10-16 1998-10-13 Industrial Technology Research Institute Electric current compensation circuit for brushless motors for reducing ripples in output torques during phase change
GB9811167D0 (en) * 1998-05-22 1998-07-22 Switched Reluctance Drives Ltd Operation of switched reluctance machines
US6380709B2 (en) * 1999-12-07 2002-04-30 Rohm Co., Ltd. PWM motor driving device
RU2260243C1 (ru) * 2003-12-17 2005-09-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Эметрон" Способ управления реактивным индукторным двигателем
US20060091755A1 (en) * 2004-10-28 2006-05-04 Precise Automation, Llc Transverse flux switched reluctance motor and control methods
CN1326315C (zh) * 2005-10-11 2007-07-11 中国矿业大学 开关磁阻伺服电动机输出转矩消脉动控制方法
JP5168448B2 (ja) * 2007-02-26 2013-03-21 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
CN101409491A (zh) * 2008-09-28 2009-04-15 南京航空航天大学 用于缺相容错的12/8结构开关磁阻电机
CN101478215A (zh) * 2008-09-28 2009-07-08 南京航空航天大学 用于缺相容错的开关磁阻电机
RU2402148C1 (ru) * 2009-04-06 2010-10-20 Открытое акционерное общество "Всероссийский научно-исследовательский и проектно-конструкторский институт электровозостроения" (ОАО "ВЭлНИИ") Способ управления индукторным двигателем
CN101526823B (zh) * 2009-04-20 2011-03-30 哈尔滨工业大学 开关磁阻电机恒定转矩的控制方法
CN101982931B (zh) * 2010-10-29 2012-08-08 哈尔滨工业大学 脉动转矩补偿结构多相磁阻电机
RU2483416C1 (ru) * 2011-12-02 2013-05-27 Открытое Акционерное Общество "Научно-Исследовательский Проектно-Конструкторский и Технологический Институт Электромашиностроения" Шестифазный вентильно-индукторный двигатель с минимальными шумами, вибрациями и пульсациями момента, способ и устройство управления
JP6679482B2 (ja) * 2013-11-13 2020-04-15 ブルックス オートメーション インコーポレイテッド ブラシレス電気機械の制御方法および装置
JP6044585B2 (ja) * 2014-05-07 2016-12-14 株式会社デンソー 多相交流モータの制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109476A1 (en) * 2001-02-13 2002-08-15 Lg Electronics Inc. Method for reducing torque ripple of switched reluctance motor
US6577087B2 (en) * 2001-05-10 2003-06-10 Ut-Battelle, Llc Multilevel DC link inverter
CN102545743A (zh) * 2010-12-27 2012-07-04 北京中纺锐力机电有限公司 开关磁阻电机的转矩平滑控制方法
CN102790566A (zh) * 2012-08-02 2012-11-21 合肥工业大学 一种减小开关磁阻电机转矩跟踪误差的方法
CN104242745A (zh) * 2014-08-27 2014-12-24 中国矿业大学 一种四相开关磁阻电机转矩脉动三电平抑制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906182B2 (en) 2014-08-27 2018-02-27 China University Of Mining And Technology Three-phase switched reluctance motor torque ripple two-level suppression method
CN114665771A (zh) * 2022-05-06 2022-06-24 西南交通大学 一种电励磁双凸极电机转矩脉动抑制方法
CN114665771B (zh) * 2022-05-06 2023-04-11 西南交通大学 一种电励磁双凸极电机转矩脉动抑制方法

Also Published As

Publication number Publication date
CN104242745A (zh) 2014-12-24
RU2637494C1 (ru) 2017-12-05
US9787238B2 (en) 2017-10-10
CN104242745B (zh) 2016-10-26
AU2015309386A1 (en) 2016-10-20
US20170019049A1 (en) 2017-01-19
AU2015309386B2 (en) 2017-11-23

Similar Documents

Publication Publication Date Title
CN106487287B (zh) 一种无刷直流电机换相转矩波动抑制方法
CN101478281B (zh) 基于电流反馈的无位置传感器无刷直流电机起动方法
CN104796050B (zh) 一种抑制无刷直流电机转矩脉动的延迟控制方法
WO2016029816A1 (zh) 一种四相开关磁阻电机转矩脉动三电平抑制方法
WO2016029777A1 (zh) 一种三相开关磁阻电机转矩脉动三电平抑制方法
CN104993747A (zh) 12/8极三相开关磁阻电动机混合励磁电流控制方法
WO2016029810A1 (zh) 一种三相开关磁阻电机转矩脉动两电平抑制方法
CN104410341A (zh) 基于直流电压调节的低速转矩脉动抑制装置及抑制方法
WO2016029815A1 (zh) 一种四相开关磁阻电机转矩脉动两电平抑制方法
CN107769628B (zh) 一种永磁无刷直流电机转矩脉动抑制方法及装置
CN109347371A (zh) 一种基于电流预测的无刷直流电机换相转矩脉动抑制方法
Liu et al. A torque ripple reduction method of small inductance brushless DC motor based on three-level DC converter
Chandan et al. An Experimental Study Of SEPIC Converter With BLDC Motor As Application
Li et al. Torque ripple minimization in direct torque control of brushless DC motor
CN104113254A (zh) 一种调压调磁电机控制方法
CN109905057A (zh) 一种永磁同步电机低电流谐波控制系统
Samani et al. A specially-designed converter for minimizing SRM torque ripple and improving its power factor
Huang et al. Commutation analysis and reducing torque ripple of brushless DC motor based on the coordination transformation
CN108649841B (zh) 一种抑制无刷直流电机换相消磁事件的方法
CN113437907B (zh) Dc-dc变换器抑制永磁无刷直流电机换相转矩波动方法
Wei et al. Modified current prediction control strategy for suppressing commutation torque ripple in brushless DC motor
Sun et al. An Advanced Boost Chopper Converter-Based Direct Instantaneous Torque Control for SRMs
CN114826060A (zh) 基于多输出变换器的无刷直流电机换相转矩波动抑制方法
Wang et al. New method to suppress torque ripple of BLDCM based on Tapped-Inductor Quasi-Z-Source net
Wang et al. Brushless DC motor controller design and double-loop PID parameter tuning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016125155

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15124238

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015309386

Country of ref document: AU

Date of ref document: 20150819

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834964

Country of ref document: EP

Kind code of ref document: A1