WO2016029815A1 - 一种四相开关磁阻电机转矩脉动两电平抑制方法 - Google Patents

一种四相开关磁阻电机转矩脉动两电平抑制方法 Download PDF

Info

Publication number
WO2016029815A1
WO2016029815A1 PCT/CN2015/087498 CN2015087498W WO2016029815A1 WO 2016029815 A1 WO2016029815 A1 WO 2016029815A1 CN 2015087498 W CN2015087498 W CN 2015087498W WO 2016029815 A1 WO2016029815 A1 WO 2016029815A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
torque
state
excitation
low
Prior art date
Application number
PCT/CN2015/087498
Other languages
English (en)
French (fr)
Inventor
陈昊
曾辉
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to RU2016120216A priority Critical patent/RU2643800C9/ru
Priority to AU2015309385A priority patent/AU2015309385B2/en
Priority to US15/114,052 priority patent/US9866166B2/en
Publication of WO2016029815A1 publication Critical patent/WO2016029815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/098Arrangements for reducing torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/086Commutation
    • H02P25/089Sensorless control

Definitions

  • the invention relates to a two-level suppression method for torque ripple of a switched reluctance motor, which is suitable for a four-phase switched reluctance motor drive system.
  • the traditional switched reluctance motor direct torque control is used to eliminate the torque ripple. It is necessary to set the power switch main switch off angle. Different power converter main switch cutoff angles have an important impact on the torque control performance. To smooth out the output torque, the turn-off angle needs to be determined by off-line calculation or online adjustment. In order to generate the maximum smoothing torque, the excitation current needs to be established quickly. Therefore, once entering the conduction interval, the current should be increased at the maximum rate. To avoid negative torque, the current should be decreased at the maximum rate, and the main switch of the power converter is turned off. The angle should be in the proper position. If it is in front, the current cannot rise to a certain level, the torque is lower than the expected value; after it is biased, the current enters the negative torque zone. Demanding and practical. Therefore, a new method of torque ripple suppression of switched reluctance motor is needed, which does not need to consider the influence of the main switch off angle of the power converter on the torque control performance, and can realize the maximum range of output torque smoothing control.
  • the object of the present invention is to overcome the problems in the prior art and to provide a two-level suppression method for torque ripple of a four-phase switched reluctance motor.
  • the method for suppressing torque ripple two-level of a four-phase switched reluctance motor according to the present invention comprises the following steps:
  • the rotor position 0° is the minimum phase inductance position
  • the rotor position ⁇ r is the pitch angle, that is, one rotor period, and the half rotor period is ⁇ r /2;
  • B is the state of excitation of the B-phase power supply.
  • the A-phase power supply excitation ratio B-phase power supply excitation advances ⁇ r /4, at this time, A is related to break, B phase is open, and the A-phase to B-phase is divided into two
  • the commutation process of the interval realizes the suppression of the two-level torque ripple of the four-phase switched reluctance motor.
  • excitation state S B is always maintained in state 1, that is, phase B is excited by positive voltage, phase B current and torque are increased at maximum rate; excitation state S A is at -1 and Switching between 1 and controlling the total torque between [T e +th2 low , T e +th2 up ], thereby suppressing the ripple of the four-phase switched reluctance motor torque in the rotor position interval [0°, ⁇ 1 ] ;
  • phase A continues to use the second set of torque thresholds (th2 low , th2 up ), and phase B continues to use the first set of torque thresholds (th1 low , th1 ) Up );
  • the present invention does not need to consider the influence of the main switch off angle of different power converters on the torque control performance, and does not need to determine the turn-off angle by means of offline calculation or online adjustment, only by setting two Set the torque threshold and set the adjacent A-phase and B-phase excitation states, respectively, so that the A-phase and B-phase are switched between the positive and negative excitation states of the power supply excitation voltage, and the total torque is controlled at two sets of torque thresholds. Between the two, the instantaneous torque of the four-phase switched reluctance motor can be smoothly controlled, and the torque ripple of the four-phase switched reluctance motor is suppressed.
  • the actual excitation voltage waveform of the motor winding has the same characteristics as the desired voltage waveform, and the actual phase current waveform and expectation
  • the phase current waveform is highly consistent and practical, and is suitable for four-phase switched reluctance motor drive systems of various types and structures, and has wide application prospects.
  • FIG. 1 is a schematic diagram of setting a two-level torque threshold of a switched reluctance motor according to the present invention
  • FIG. 2(a) is a schematic diagram showing the conversion of the B-phase power supply excitation state of the present invention
  • 2(b) is a schematic diagram showing the conversion of the phase A excitation state of the present invention.
  • Fig. 3 is a diagram showing the torque waveform of the switched reluctance motor of the present invention.
  • the rotor position 0° is the minimum phase inductance position
  • the rotor position ⁇ r is the pitch angle, that is, one rotor period, and the half rotor period is ⁇ r /2;
  • the A-phase power supply excitation ratio B-phase power supply excitation advances ⁇ r /4, at this time, A is related to break, B phase is open, as shown in Figure 1, A phase to B
  • the phase commutation process is divided into two intervals:
  • excitation state S B is always maintained in state 1, that is, phase B is excited by positive voltage, phase B current and torque are increased at maximum rate; excitation state S A is at -1 and Switching between 1 and controlling the total torque between [T e +th2 low , T e +th2 up ], thereby suppressing the ripple of the four-phase switched reluctance motor torque in the rotor position interval [0°, ⁇ 1 ] ;
  • phase A continues to use the second set of torque thresholds (th2 low , th2 up ), and phase B continues to use the first set of torque thresholds (th1 low , th1 Up );
  • the D-phase power supply excitation ratio A-phase power supply excitation advances ⁇ r /4 when the torque threshold setting, the commutation process, the D-phase and the A-phase excitation state switching transfer method, and The above situation is similar.

Abstract

一种四相开关磁阻电机转矩脉动两电平抑制方法,在转子位置区间[0°,θr/4]设置第一组转矩阈值,在转子位置区间[θr/4,θr/2]设置第二组转矩阈值,对相邻的A相和B相供电励磁,A相供电励磁比B相供电励磁超前θr/4,A相到B相的整个换相过程分为两个区间,在转子位置区间[0°,θ1]区间A相使用第二组转矩阈值,B相使用第一组转矩阈值,临界位置θ1是在换相过程中自动出现的,无需额外进行计算,总转矩控制在[Te+th2low,Te+th2up]之间;在转子位置区间[θ1,θr/4]区间A相继续使用第二组转矩阈值,B相继续使用第一组转矩阈值,总转矩被控制在[Te+th1low,Te+th1up]之间,抑制了四相开关磁阻电机转矩脉动,具有良好的工程应用价值。

Description

一种四相开关磁阻电机转矩脉动两电平抑制方法 技术领域
本发明涉及一种开关磁阻电机转矩脉动两电平抑制方法,适用于四相开关磁阻电机驱动系统。
背景技术
传统的开关磁阻电机直接转矩控制用于消除转矩脉动,需要对功率变换器主开关关断角进行设定,不同的功率变换器主开关关断角对转矩控制性能具有重要影响,为平滑输出转矩,需要通过离线计算或在线调节的方式确定关断角。为产生最大平滑转矩,需迅速建立励磁电流,因此一旦进入导通区间,应使电流以最大速率上升,为避免产生负转矩,应使电流以最大速率下降,功率变换器主开关关断角应位于恰当位置,其靠前,则电流不能上升到一定水平,转矩低于期望值;其偏后,则电流进入负转矩区。要求苛刻,实用性不好。因此,需要一种新的开关磁阻电机转矩脉动抑制方法,无需考虑功率变换器主开关关断角对转矩控制性能的影响,可实现最大范围的输出转矩平滑控制。
发明内容
本发明的目的是克服已有技术中存在的问题,提供一种四相开关磁阻电机转矩脉动两电平抑制方法。
本发明的四相开关磁阻电机转矩脉动两电平抑制方法,包括如下步骤:
a.在转子位置区间[0°,θr/4]设置第一组转矩阈值(th1low,th1up),在转子位置区间[θr/4,θr/2]设置第二组转矩阈值(th2low,th2up),这4个转矩阈值满足条件:
th1up>th2up>0                  (1)
th2low<th1low<0              (2)
|th1up|=|th2low|               (3)
|th2up|=|th1low|               (4)
其中,转子位置0°为最小相电感位置,转子位置θr为齿距角即一个转子周期,半个转子周期是θr/2;
b.设置励磁状态SA为A相供电励磁的状态,励磁状态SA=1表示A相供电励磁电压为正,励磁状态SA=-1表示A相供电励磁电压为负;设置励磁状态SB为B相供电励磁的状态,励磁状态SB=1表示B相供电励磁电压为正,励磁状态SB=-1表示B相供电励磁电压为负,期望的总平滑转矩为Te
c.对相邻的A相和B相供电励磁,A相供电励磁比B相供电励磁超前θr/4,此时, A相关断,B相开通,通过将A相到B相分为两个区间的换相过程,实现四相开关磁阻电机转矩脉动两电平的抑制。
所述将A相到B相分为两个区间的换相过程如下:
(1)在转子位置区间[0°,θ1],A相使用第二组转矩阈值(th2low,th2up),B相使用第一组转矩阈值(th1low,th1up),临界位置θ1是在换相过程中自动出现的,无需额外进行计算;
(1.1)在转子位置0°位置进入B相导通周期,设定初始励磁状态SB=1,B相电流和转矩从0开始增大;励磁状态SA保持原有状态SA=-1,A相电流与转矩减小。由于B相在该位置电感变化率及电流较小,因此B相转矩增大速率小于A相转矩减小速率,总转矩随A相减小;
(1.2)当总转矩首先达到转矩值Te+th1low,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续减小;
(1.3)当总转矩减小到转矩值Te+th2low,满足A相状态转移条件,励磁状态SA从-1切换到1,A相转矩增大;B相保持原有状态,B相转矩继续增大。从而总转矩增大;
(1.4)当总转矩增大到转矩值Te+th1low,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续增大;
(1.5)当总转矩增大到转矩值Te+th2up,满足A相状态转移条件,励磁状态SA从1切换到-1,A相转矩减小;由于未满足B相状态转移条件,励磁状态SB保持原有状态,总转矩开始减小;
(1.6)重复步骤(1.2)~(1.5),励磁状态SB一直保持状态1,即B相受正电压激励,B相电流和转矩以最大速率增大;励磁状态SA在-1和1之间切换,将总转矩控制在[Te+th2low,Te+th2up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[0°,θ1]的脉动;
(2)在转子位置区间[θ1,θr/4],A相继续使用第二组转矩阈值(th2low,th2up),B相继续使用第一组转矩阈值(th1low,th1up);
(2.1)在转子位置θ1位置,此时B相电感变化率及相电流已达到一定水平,当励磁状态SB=1,励磁状态SA=-1时,B相转矩上升速率不再小于A相转矩下降速率,总转矩变化趋势由B相决定,总转矩增大;
(2.2)当总转矩上升至转矩值Te+th1up,满足B相状态转移条件,励磁状态SB由1转为-1,B相转矩下降;励磁状态SA保持-1状态,总转矩下降;
(2.3)当总转矩首先下降到转矩值Te+th2up,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续下降;
(2.4)当总转矩下降到转矩值Te+th1low,满足B相状态转移条件,励磁状态SB由-1转为1,B相转矩增加;励磁状态SA保持-1状态。总转矩随B相转矩而增加;
(2.5)当总转矩增加到转矩值Te+th2up,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续增加;
(2.6)当总转矩增加到转矩值Te+th1up,重复步骤(2.2)~(2.5),励磁状态SA保持-1状态,励磁状态SB在-1和1之间切换,总转矩被控制在[Te+th1low,Te+th1up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动。
有益效果:由于采用了上述技术方案,本发明不用考虑不同功率变换器主开关关断角对转矩控制性能的影响,不需要通过离线计算或在线调节的方式确定关断角,只是通过设置两组转矩阈值和设置相邻的A相和B相励磁状态,分别使A相和B相在供电励磁电压为正、负两种励磁状态之间切换,控制总转矩在两组转矩阈值之间,就能平滑控制四相开关磁阻电机瞬时转矩,抑制了四相开关磁阻电机转矩脉动,电机绕组实际激励电压波形与期望电压波形具有相同的特征,实际相电流波形与期望相电流波形高度吻合,实用性强,适用于各种类型、各种结构的四相开关磁阻电机驱动系统,具有广泛的应用前景。
附图说明
图1是本发明的开关磁阻电机两电平转矩阈值设定示意图;
图2(a)是本发明的B相供电励磁状态的转换示意图;
图2(b)是本发明的A相供电励磁状态的转换示意图;
图3是本发明的开关磁阻电机转矩波形。
具体实施方式
下面结合附图中的实施例对本发明作进一步的描述:
如图1所示,针对一台四相开关磁阻电机,具体步骤如下:
a.在转子位置区间[0°,θr/4]设置第一组转矩阈值(th1low,th1up),在转子位置区间[θr/4,θr/2]设置第二组转矩阈值(th2low,th2up),这4个转矩阈值满足条件:
th1up>th2up>0                    (1)
th2low<th1low<0             (2)
|th1up|=|th2low|             (3)
|th2up|=|th1low|               (4)
其中,转子位置0°为最小相电感位置,转子位置θr为齿距角即一个转子周期,半个转子周期是θr/2;
b.如图2所示,设置励磁状态SA为A相供电励磁的状态,励磁状态SA=1表示A相供电励磁电压为正,励磁状态SA=-1表示A相供电励磁电压为负;设置励磁状态SB为B相供电励磁的状态,励磁状态SB=1表示B相供电励磁电压为正,励磁状态SB=-1表示B相供电励磁电压为负,期望的总平滑转矩为Te
c.对相邻的A相和B相供电励磁,A相供电励磁比B相供电励磁超前θr/4,此时,A相关断,B相开通,如图1所示,A相到B相的换相过程分为两个区间:
(1)在转子位置区间[0°,θ1],A相使用第二组转矩阈值(th2low,th2up),B相使用第一组转矩阈值(th1low,th1up),临界位置θ1是在换相过程中自动出现的,无需额外进行计算;
(1.1)在转子位置0°位置进入B相导通周期,设定初始励磁状态SB=1,B相电流和转矩从0开始增大;励磁状态SA保持原有状态SA=-1,A相电流与转矩减小。由于B相在该位置电感变化率及电流较小,因此B相转矩增大速率小于A相转矩减小速率,总转矩随A相减小;
(1.2)当总转矩首先达到转矩值Te+th1low,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续减小;
(1.3)当总转矩减小到转矩值Te+th2low,满足A相状态转移条件,励磁状态SA从-1切换到1,A相转矩增大;B相保持原有状态,B相转矩继续增大。从而总转矩增大;
(1.4)当总转矩增大到转矩值Te+th1low,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续增大;
(1.5)当总转矩增大到转矩值Te+th2up,满足A相状态转移条件,励磁状态SA从1切换到-1,A相转矩减小;由于未满足B相状态转移条件,励磁状态SB保持原有状态,总转矩开始减小;
(1.6)重复步骤(1.2)~(1.5),励磁状态SB一直保持状态1,即B相受正电压激励,B相电流和转矩以最大速率增大;励磁状态SA在-1和1之间切换,将总转矩控制在[Te+th2low,Te+th2up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[0°,θ1]的脉动;
(2)在转子位置区间[θ1,θr/4],A相继续使用第二组转矩阈值(th2low,th2up),B 相继续使用第一组转矩阈值(th1low,th1up);
(2.1)在转子位置θ1位置,此时B相电感变化率及相电流已达到一定水平,当励磁状态SB=1,励磁状态SA=-1时,B相转矩上升速率不再小于A相转矩下降速率,总转矩变化趋势由B相决定,总转矩增大;
(2.2)当总转矩上升至转矩值Te+th1up,满足B相状态转移条件,励磁状态SB由1转为-1,B相转矩下降;励磁状态SA保持-1状态,总转矩下降;
(2.3)当总转矩首先下降到转矩值Te+th2up,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续下降;
(2.4)当总转矩下降到转矩值Te+th1low,满足B相状态转移条件,励磁状态SB由-1转为1,B相转矩增加;励磁状态SA保持-1状态。总转矩随B相转矩而增加;
(2.5)当总转矩增加到转矩值Te+th2up,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续增加;
(2.6)当总转矩增加到转矩值Te+th1up,重复步骤(2.2)~(2.5),励磁状态SA保持-1状态,励磁状态SB在-1和1之间切换,总转矩被控制在[Te+th1low,Te+th1up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动。
对相邻的B相和C相供电励磁,B相供电励磁比C相供电励磁超前θr/4时的转矩阈值设定、换相过程、B相和C相励磁状态切换转移方法,与上述情况类似。
对相邻的C相和D相供电励磁,C相供电励磁比D相供电励磁超前θr/4时的转矩阈值设定、换相过程、C相和D相励磁状态切换转移方法,与上述情况类似。
对相邻的D相和A相供电励磁,D相供电励磁比A相供电励磁超前θr/4时的转矩阈值设定、换相过程、D相和A相励磁状态切换转移方法,与上述情况类似。
所获得的开关磁阻电机转矩波形如图3所示。

Claims (2)

  1. 一种四相开关磁阻电机转矩脉动两电平抑制方法,其特征在于,包括如下步骤:
    a.在转子位置区间[0°,θr/4]设置第一组转矩阈值(th1low,th1up),在转子位置区间[θr/4,θr/2]设置第二组转矩阈值(th2low,th2up),这4个转矩阈值满足条件:
    th1up>th2up>0  (1)
    th2low<th1low<0  (2)
    |th1up|=|th2low|  (3)
    |th2up|=|th1low|  (4)
    其中,转子位置0°为最小相电感位置,转子位置θr为齿距角即一个转子周期,半个转子周期是θr/2;
    b.设置励磁状态SA为A相供电励磁的状态,励磁状态SA=1表示A相供电励磁电压为正,励磁状态SA=-1表示A相供电励磁电压为负;设置励磁状态SB为B相供电励磁的状态,励磁状态SB=1表示B相供电励磁电压为正,励磁状态SB=-1表示B相供电励磁电压为负,期望的总平滑转矩为Te
    c.对相邻的A相和B相供电励磁,A相供电励磁比B相供电励磁超前θr/4,此时,A相关断,B相开通,通过将A相到B相分为两个区间的换相过程,实现四相开关磁阻电机转矩脉动两电平的抑制。
  2. 根据权利要求1所述的一种四相开关磁阻电机转矩脉动两电平抑制方法,其特征在于:所述将A相到B相分为两个区间的换相过程如下:
    (1)在转子位置区间[0°,θ1],A相使用第二组转矩阈值(th2low,th2up),B相使用第一组转矩阈值(th1low,th1up),临界位置θ1是在换相过程中自动出现的,无需额外进行计算;
    (1.1)在转子位置0°位置进入B相导通周期,设定初始励磁状态SB=1,B相电流和转矩从0开始增大;励磁状态SA保持原有状态SA=-1,A相电流与转矩减小。由于B相在该位置电感变化率及电流较小,因此B相转矩增大速率小于A相转矩减小速率,总转矩随A相减小;
    (1.2)当总转矩首先达到转矩值Te+th1low,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续减小;
    (1.3)当总转矩减小到转矩值Te+th2low,满足A相状态转移条件,励磁状态SA从-1 切换到1,A相转矩增大;B相保持原有状态,B相转矩继续增大。从而总转矩增大;
    (1.4)当总转矩增大到转矩值Te+th1low,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续增大;
    (1.5)当总转矩增大到转矩值Te+th2up,满足A相状态转移条件,励磁状态SA从1切换到-1,A相转矩减小;由于未满足B相状态转移条件,励磁状态SB保持原有状态,总转矩开始减小;
    (1.6)重复步骤(1.2)~(1.5),励磁状态SB一直保持状态1,即B相受正电压激励,B相电流和转矩以最大速率增大;励磁状态SA在-1和1之间切换,将总转矩控制在[Te+th2low,Te+th2up]之间,从而抑制四相开关磁阻电机转矩在转子位置区间[0°,θ1]的脉动;
    (2)在转子位置区间[θ1,θr/4],A相继续使用第二组转矩阈值(th2low,th2up),B相继续使用第一组转矩阈值(th1low,th1up);
    (2.1)在转子位置θ1位置,此时B相电感变化率及相电流已达到一定水平,当励磁状态SB=1,励磁状态SA=-1时,B相转矩上升速率不再小于A相转矩下降速率,总转矩变化趋势由B相决定,总转矩增大;
    (2.2)当总转矩上升至转矩值Te+th1up,满足B相状态转移条件,励磁状态SB由1转为-1,B相转矩下降;励磁状态SA保持-1状态,总转矩下降;
    (2.3)当总转矩首先下降到转矩值Te+th2up,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续下降;
    (2.4)当总转矩下降到转矩值Te+th1low,满足B相状态转移条件,励磁状态SB由-1转为1,B相转矩增加;励磁状态SA保持-1状态。总转矩随B相转矩而增加;
    (2.5)当总转矩增加到转矩值Te+th2up,不满足A、B两相状态转移条件,励磁状态SA和SB保持原有状态,总转矩继续增加;
    (2.6)当总转矩增加到转矩值Te+th1up,重复步骤(2.2)~(2.5),励磁状态SA保持-1状态,励磁状态SB在-1和1之间切换,总转矩被控制在[Te+th1low,Te+th1up],从而抑制四相开关磁阻电机转矩在转子位置区间[θ1,θr/4]的脉动。
PCT/CN2015/087498 2014-08-27 2015-08-19 一种四相开关磁阻电机转矩脉动两电平抑制方法 WO2016029815A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2016120216A RU2643800C9 (ru) 2014-08-27 2015-08-19 Способ двухуровневого подавления пульсации крутящего момента четырехфазного вентильного реактивного двигателя
AU2015309385A AU2015309385B2 (en) 2014-08-27 2015-08-19 Four-phase switched reluctance motor torque ripple two-level suppression method
US15/114,052 US9866166B2 (en) 2014-08-27 2015-08-19 Four-phase switched reluctance motor torque ripple two-level suppression method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410432965.8 2014-08-27
CN201410432965.8A CN104201855B (zh) 2014-08-27 2014-08-27 一种四相开关磁阻电机转矩脉动两电平抑制方法

Publications (1)

Publication Number Publication Date
WO2016029815A1 true WO2016029815A1 (zh) 2016-03-03

Family

ID=52087104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087498 WO2016029815A1 (zh) 2014-08-27 2015-08-19 一种四相开关磁阻电机转矩脉动两电平抑制方法

Country Status (5)

Country Link
US (1) US9866166B2 (zh)
CN (1) CN104201855B (zh)
AU (1) AU2015309385B2 (zh)
RU (1) RU2643800C9 (zh)
WO (1) WO2016029815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906182B2 (en) 2014-08-27 2018-02-27 China University Of Mining And Technology Three-phase switched reluctance motor torque ripple two-level suppression method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201855B (zh) * 2014-08-27 2016-08-24 中国矿业大学 一种四相开关磁阻电机转矩脉动两电平抑制方法
CN106908722B (zh) * 2016-12-12 2019-04-05 大连理工大学 一种开关磁阻电机的相电流故障的诊断方法
CN112953315B (zh) * 2021-01-14 2022-06-07 山东省科学院自动化研究所 一种开关磁阻电机的实时转矩脉动抑制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758528A (zh) * 2005-10-11 2006-04-12 中国矿业大学 开关磁阻伺服电动机输出转矩消脉动控制方法
CN201113871Y (zh) * 2007-10-19 2008-09-10 河北工业大学 单电流传感器的开关磁阻电机控制装置
CN104201855A (zh) * 2014-08-27 2014-12-10 中国矿业大学 一种四相开关磁阻电机转矩脉动两电平抑制方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1480045A1 (ru) * 1986-11-17 1989-05-15 Всесоюзный Научно-Исследовательский Институт Электромашиностроения Способ компенсации пульсаций вращающего момента вентильного электродвигател
JPH04109896A (ja) * 1990-08-28 1992-04-10 Secoh Giken Inc リラクタンス型電動機のトルクリプル除去装置
US5489831A (en) * 1993-09-16 1996-02-06 Honeywell Inc. Pulse width modulating motor controller
KR100393309B1 (ko) * 1995-03-02 2003-10-22 휴렛-팩커드 컴퍼니(델라웨어주법인) 펄스폭변조제어장치및방법
US6028385A (en) * 1995-10-19 2000-02-22 Tridelta Industries, Inc. Switched reluctance motor
GB9610846D0 (en) * 1996-05-23 1996-07-31 Switched Reluctance Drives Ltd Output smoothing in a switched reluctance machine
GB2319908B (en) * 1996-11-28 2000-09-13 Pwm Drives Limited Self-starting and direction control of two-phase switched reluctance machines
US5998952A (en) * 1997-04-09 1999-12-07 Trw Inc. Method and apparatus for reducing torque ripple in an electric motor using anticasual filtering
US6002226A (en) * 1998-06-17 1999-12-14 General Motors Corporation Brushless DC motor control method and apparatus for reduced commutation noise
US6448724B1 (en) * 1999-10-28 2002-09-10 Delphi Technologies, Inc. Apparatus and method for commutation noise reduction
US6380709B2 (en) * 1999-12-07 2002-04-30 Rohm Co., Ltd. PWM motor driving device
KR100408053B1 (ko) * 2001-02-13 2003-12-01 엘지전자 주식회사 에스알엠의 토크리플 저감방법
RU2189685C1 (ru) * 2001-05-15 2002-09-20 Московский государственный авиационный институт (технический университет) Вентильно-индукторная машина
ITMI20011623A1 (it) * 2001-07-26 2003-01-26 St Microelectronics Srl Dispositivo di pilotaggio di motori elettrici
US6900607B2 (en) * 2001-08-17 2005-05-31 Delphi Technologies, Inc. Combined feedforward and feedback parameter estimation for electric machines
US6803740B2 (en) * 2002-10-25 2004-10-12 Delphi Technologies, Inc. Method and apparatus for determining phase current of switched reluctance electric machines
US7157878B2 (en) * 2002-11-19 2007-01-02 Delphi Technologies, Inc. Transient compensation voltage estimation for feedforward sinusoidal brushless motor control
CN1259771C (zh) * 2004-04-06 2006-06-14 东南大学 8/6极双凸极电机的转矩脉动减小方法及其8/6极双凸极电机
JP4798075B2 (ja) * 2007-06-26 2011-10-19 トヨタ自動車株式会社 モータ駆動システム
US8544580B2 (en) * 2010-05-18 2013-10-01 The Hong Kong Polytechnic University In-wheel switched reluctance motor drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758528A (zh) * 2005-10-11 2006-04-12 中国矿业大学 开关磁阻伺服电动机输出转矩消脉动控制方法
CN201113871Y (zh) * 2007-10-19 2008-09-10 河北工业大学 单电流传感器的开关磁阻电机控制装置
CN104201855A (zh) * 2014-08-27 2014-12-10 中国矿业大学 一种四相开关磁阻电机转矩脉动两电平抑制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, CHAO ET AL.: "Control Strategies of Switched Reluctance Motors", S & M ELECTRIC MACHINES, vol. 28, no. 2, 1 April 2001 (2001-04-01), pages 31 - 35 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9906182B2 (en) 2014-08-27 2018-02-27 China University Of Mining And Technology Three-phase switched reluctance motor torque ripple two-level suppression method

Also Published As

Publication number Publication date
AU2015309385A1 (en) 2016-08-25
RU2643800C9 (ru) 2018-04-11
AU2015309385B2 (en) 2017-06-22
US9866166B2 (en) 2018-01-09
RU2643800C2 (ru) 2018-02-07
US20170272022A1 (en) 2017-09-21
CN104201855A (zh) 2014-12-10
CN104201855B (zh) 2016-08-24
RU2016120216A (ru) 2017-11-28

Similar Documents

Publication Publication Date Title
US10554130B2 (en) Control method for buck-boost power converters
WO2016029815A1 (zh) 一种四相开关磁阻电机转矩脉动两电平抑制方法
WO2016029810A1 (zh) 一种三相开关磁阻电机转矩脉动两电平抑制方法
US20170187314A1 (en) Switch reluctance motor wide speed-regulation range cross-control method
US9160238B2 (en) Power converter with current feedback loop
US20140198538A1 (en) Power converter with current feedback loop
DE102011001032A1 (de) Fahrzeuggenerator
CN102931894A (zh) 动态调整无刷直流马达在换相期间空载时间的方法及装置
WO2016029816A1 (zh) 一种四相开关磁阻电机转矩脉动三电平抑制方法
WO2016029777A1 (zh) 一种三相开关磁阻电机转矩脉动三电平抑制方法
CN109347371A (zh) 一种基于电流预测的无刷直流电机换相转矩脉动抑制方法
CN111108680A (zh) 用于操作多相开关磁阻电机以及校正单元的控制器系统以及方法
JP6350218B2 (ja) 電力変換装置
CN109600078B (zh) 基于级联式变换器的永磁无刷直流电机力矩波动抑制方法
JP2014233185A (ja) スイッチトリラクタンスモータの駆動制御方法及びスイッチトリラクタンスモータの駆動制御装置
JP6567234B1 (ja) 電力変換装置
JP2017055535A (ja) 太陽光発電用電力変換装置および太陽光発電システム
Wuti et al. Improving output performance of a two-switch forward converter with a lead-lag controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016120216

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15114052

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015309385

Country of ref document: AU

Date of ref document: 20150819

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836860

Country of ref document: EP

Kind code of ref document: A1