JP2014233185A - スイッチトリラクタンスモータの駆動制御方法及びスイッチトリラクタンスモータの駆動制御装置 - Google Patents

スイッチトリラクタンスモータの駆動制御方法及びスイッチトリラクタンスモータの駆動制御装置 Download PDF

Info

Publication number
JP2014233185A
JP2014233185A JP2013114101A JP2013114101A JP2014233185A JP 2014233185 A JP2014233185 A JP 2014233185A JP 2013114101 A JP2013114101 A JP 2013114101A JP 2013114101 A JP2013114101 A JP 2013114101A JP 2014233185 A JP2014233185 A JP 2014233185A
Authority
JP
Japan
Prior art keywords
phase
period
reluctance motor
switched reluctance
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013114101A
Other languages
English (en)
Inventor
匡泰 福島
Tadayasu Fukushima
匡泰 福島
隆弘 山田
Takahiro Yamada
隆弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013114101A priority Critical patent/JP2014233185A/ja
Publication of JP2014233185A publication Critical patent/JP2014233185A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】電流の脈動を抑制して駆動効率を向上させることができるスイッチトリラクタンスモータの駆動制御方法を提供する。
【解決手段】SRM制御器22は、SRM15の励磁相への通電量が増加する第1期間と、消磁相への通電量が減少する第2期間とが重複する二相通電期間において、インバータ回路10の出力電圧が指令電圧を上回ると、前記出力電圧の実効電圧を低下させるようにインバータ回路10をスイッチング制御する。
【選択図】図1

Description

本発明は、スイッチトリラクタンスモータの各相固定子巻線にインバータ回路を介して通電を行い、前記モータを駆動制御する方法及び装置に関する。
スイッチトリラクタンスモータを駆動制御する際に、駆動電圧を変化させる技術については、従来様々なものが提案されている。例えば、特許文献1には、電圧が異なる2種類の電源を切り換えて使用することで、駆動効率を向上させる構成が開示されている。
特開2000−80314号公報
しかしながら、特許文献1の技術では、ヒステリシスコンパレータを用いて電流制御を行っているため電流の脈動が抑制できず、損失の低減効果が低いということに加えて、電流の脈動によりトルクリップルが発生することが問題となる。
本発明は上記事情に鑑みてなされたものであり、その目的は、電流の脈動を抑制してトルクリップルを低減し、駆動効率を向上させることができるスイッチトリラクタンスモータの駆動制御方法及び駆動制御装置を提供することにある。
請求項1記載のスイッチトリラクタンスモータの駆動制御方法によれば、励磁相への通電量が増加する第1期間と、消磁相への通電量が減少する第2期間とが重複する二相通電期間において、インバータ回路の出力電圧が指令電圧を上回ると、前記出力電圧の実効電圧を低下させるようにインバータ回路をスイッチング制御する。すなわち、第1期間と第2期間とが重複する二相通電期間は、出力電圧を指令電圧に追従させることが難しく、前者が後者を上回る状態になるとトルクリップルが発生し、駆動効率が低下する。そこで、出力電圧の実効電圧を低下させ両者を一致させるように制御すれば、トルクリップルを抑制して駆動効率を向上させることができる。
請求項2,3記載のスイッチトリラクタンスモータの駆動制御方法によれば、第1期間については,インバータ回路の励磁相アームに対応する2つのスイッチング素子の何れか一方をオン状態に維持し、他方をスイッチング制御する(請求項2)。そして、前記スイッチング制御を、指令電圧をインバータ回路の駆動電源電圧で除して得られるデューティ比に基づくPWM制御により行う(請求項3)。このように制御すれば、出力電圧が指令電圧に一致するようにスイッチング制御できる。
請求項6,7記載のスイッチトリラクタンスモータの駆動制御方法によれば、第1期間と、第2期間と、一相通電期間とについて、インバータ回路の駆動電源電圧を個別に変圧制御する(請求項6)。そして、一相通電期間における駆動電源電圧を、指令トルクとスイッチトリラクタンスモータの磁気的特性とに基づいて決定し、変圧制御を行う(請求項7)。すなわち、出力トルクは、スイッチトリラクタンスモータの磁気的特性と駆動電流とに基づいて決まり、前記磁気的特性はロータの回転位置に応じて変化する。したがって、指令トルクと磁気的特性とに基づいて駆動電源電圧を制御すれば、指令トルクを出力するために最適な電圧をスイッチトリラクタンスモータの固定子巻線に印加することができる。
一実施形態であり、スイッチトリラクタンスモータの駆動制御装置の構成を示す図 SRM制御器の構成を示す機能ブロック図 (a)は指令トルク発生器の処理内容を示すフローチャート、(b)は2相について通電期間の定義を説明する図 PAM制御の理論を説明する図 相切替領域判定器の処理内容を示すフローチャート 指令出力電圧発生器の処理内容を示すフローチャート ゲート信号発生器におけるコンバータのスイッチングパターン発生処理の内容を示すフローチャート 同インバータ回路の図7相当図 図8の制御に対応するタイミングチャート 本実施形態の制御と、従来の制御とについて電流波形をシミュレーションした結果を示す図 本実施形態の制御と、従来の制御とについてトルクリップルをシミュレーションした結果を示す図
図1に示すように、直流電源1の両端には、コンデンサ2と、NチャネルMOSFET(スイッチング素子)3及び4の直列回路が接続されており、NチャネルMOSFET3及び4の共通接続点にはリアクトル5の一端が接続されている。リアクトル5の他端は、直列に接続されているNチャネルMOSFET6及び7の共通接続点に接続されている。NチャネルMOSFET3,4,6及び7のドレイン−ソース間には、それぞれフリーホイールダイオード3d,4d,6d及び7dが接続されている。そして、NチャネルMOSFET3,4,6及び7とリアクトル5とは、コンバータ8を構成している。
NチャネルMOSFET6及び7からなる直列回路の両端には、コンデンサ9とインバータ回路10とが接続されている。インバータ回路10は、各相アーム10U,10V,10Wからなり、これらはそれぞれ、NチャネルMOSFET11(高電位側スイッチング素子)及び逆方向のダイオード12の直列回路と、逆方向のダイオード13及びNチャネルMOSFET14(低電位側スイッチング素子)の直列回路とを有している。そして、ダイオード12のカソードとダイオード13のアノードとの間には、スイッチトリラクタンスモータ(以下、SRM)15の各相固定子巻線16(U,V,W)が接続されている。また、ダイオード12の両端には電圧センサ17が接続されており、ダイオード12のカソードと電圧センサ17とを接続する線間には電流センサ18が接続されている。
SRM15は、断面形状が概ね円環である固定子鉄心19の内周側に突出した形状の複数のティース部を有しており、それらのティース部に各相の固定子巻線16が巻装されている。固定子鉄心19の中空部には、断面形状が概ね十字状の回転子鉄心20(ロータ)が配置されている。
SRM15のロータには、例えばロータリエンコーダなどのロータ位置検出器21が配置されており、ロータ位置の検出信号はSRM制御器22に入力されている。また、電圧センサ17,電流センサ18より出力される各センサ信号(電圧フィードバック(F/B),電流F/B)もSRM制御器22に入力されている。SRM制御器22は、例えばマイクロコンピュータにより構成され、入力される各センサ信号等に基づいて、コンバータ8を構成するNチャネルMOSFET3,4,6及び7のゲートや、インバータ回路10の各相アーム10U,10V,10Wを構成するNチャネルMOSFET11及び14のゲートに駆動信号を出力する。
ここで図3(b)を参照する。この図はU,Vの二相についてのみ示すが、指令トルクに対するそれぞれの出力トルクを示すものである。指令トルクを満たすため、2つの波形の一部に重複が生じる。これを5つの期間(1)〜(5)に区分すると、以下のように定義される。
<期間(1)>
励磁相であるU相の出力トルクを指令トルクにまで増加させる第1期間(励磁領域)。尚、本実施形態における「領域」とは、時間的領域(期間と同義)である。
<期間(2)>
U相の出力トルクが指令トルクに追従し、一定となる一相通電期間。
<期間(3)(二相通電期間)>
消磁相となるU相に負電圧が印加され、出力トルクが減少する第2期間(消磁領域)であると共に、励磁相であるV相の出力トルクが増加する期間(第1期間,励磁領域)。
<期間(4)>
V相の出力トルクが指令トルクに追従し、一定となる一相通電期間。
<期間(5)>
消磁相となるV相に負電圧が印加され、出力トルクが減少する第2期間(消磁領域)。
となる。
これらに第3相であるW相も併せて示すとすれば、期間(1)は消磁相となるV相の第2期間が重複する二相通電期間(通電相切替領域)となり、期間(5)は励磁相となるU相に対する通電電流が線形に上昇する第1期間が重複する二相通電期間となる。
以上のように定義した上で、本実施形態におけるSRM15の制御理論について説明する。図4に示すように、(a)のインダクタンスは、固定子巻線を含むSRMの構造によって決まり、回転に伴うロータ位置によって変化するが、その変化特性は実測することができる。このようなインダクタンスの変化に対して、(c)に示すように電流を通電して(b)に示すようにトルクを発生させるには、固定子巻線に印加する電圧をどのように変化させるべきか、つまりPAM(Pulse Amplitude Modulation)制御をどのように行うべきかを考察する。
固定子巻線のターン数をN,通電電流をI,磁束をφとすると、インダクタンスLは(1)式で表され、
L=N・dφ/dI …(1)
電圧Vは(2)式で表される。
V=N・dφ/dt …(2)
そして、ロータ位置をθ(deg)とすると、トルクTは(3)式で表される。
T=1/2・(dL/dθ)・I …(3)
第1期間については、通電電流を急速に増加させる必要があるので、駆動電圧Vは昇圧可能な最大電圧とする。(1)式を時間t0から(t0+ton)まで積分すると、
V・ton=Nφ …(4)
となり、(2)式を電流0からIonまで積分すると、
Ion・L=Nφ …(5)
したがって、駆動電圧Vの印加時間tonは、
ton=Ion・L/V …(6)
となる。
第2期間は通電電流を急速に減少させる必要があるので、駆動電圧Vはやはり昇圧可能な最大電圧とする。(1)式を時間tstaから(tsta+toff)まで積分すると、
V・toff=Nφ …(7)
となり、(2)式を電流Ioffから0まで積分すると、
Ioff・L=−Nφ …(8)
したがって、駆動電圧Vの印加時間toffは、
toff=−Ioff・L/V …(9)
となる。この場合、電圧Vの極性は負(通電電流方向に対して逆極性)である。
一相通電期間については、インダクタンスLの変化に対して電流I及びトルクTが一定となるように駆動電圧Vを変化させる必要がある。電圧Vは、
V=L・dI/dt …(10)
でも表せる。そして、(3)式より、電流Iを求めると、
I=√{2T/(dL/dθ)} …(11)
となるから、L’=dL/dθとすると、(10)式は、
V=L・d/dt√(2T/L’)}…(12)
となる。
すなわち、本実施形態では、第1期間,第2期間については最大に昇圧した駆動電圧Vを印加時間ton,toffで印加する。そして、一相通電期間については駆動電圧Vを(12)式に従い設定し、印加時間は(t0+ton)からtstaとする。その結果、一相通電期間における駆動電圧Vは、0Vから漸増する波形となる。また、図4中に記載している「バス電圧」とは、コンバータ9の出力電圧が印加されるインバータ回路10の直流母線電圧である。このようにしてPAM制御を行う。
図2に示すように、SRM制御器22の指令トルク発生器23には、電流センサ18(U,V,W)より出力される各センサ信号と、ロータ位置検出器21より出力されるロータ位置検出信号とが入力されている。ここで、図3(a)を参照する。指令トルク発生器23は、第2期間にある通電相のトルクTを、入力される相電流とロータ位置とに基づいて(3)式により推定する(S1)。次に、第1期間にある通電相の指令トルクを、SRM15の制御条件に応じて外部より入力される指令トルクより、ステップS1で推定したトルクTを減じて求める(S2)。そして、求めた指令トルクを指令電圧発生器24に出力する(S3)。
図2において、磁束算出器25は、電圧センサ17(U,V,W)より入力される電圧を時間積分して磁束を算出し、相切替領域判定器26に出力する。図5(a)に示すように、相切替領域判定器26は、先ず磁束をゼロにするまでに要する時間toffを算出する(S11)。この処理は図5(b)に示すように、(7)式に基づき磁束Nφを最大電圧Vで除して求め(S19)、時間toffを出力する(S20)。
次に、相切替領域判定器26は、相切替完了までの猶予時間を求める(S12)。この処理は図5(c)に示すように、先ず猶予角度を、相切替が完了となるロータ位置から現在のロータ位置を減じて求める(S21)。そして、猶予角度をSRM15の回転速度で除して猶予時間を求め(S22)出力する(S23)。
次に、相切替領域判定器26は、ステップS11で求めた時間toffが、ステップS11で求めた猶予時間以上か否かを判断し(S13)、toff<(猶予時間)であれば(NO)一相通電期間であるから現状を維持する(S17)。一方、toff≧(猶予時間)であれば(YES)、相切替(通電相切替),つまり一相通電期間から二相通電期間への移行を開始する(S14)。そして、磁束がゼロでなければ(S15:YES)相切替継続を出力し(S16)、磁束がゼロになれば(S15:NO)相切替終了を出力する(S18)。
指令出力電圧発生器24は、図6に示すように、相切替領域判定器26より入力される信号が相切替領域(相切替継続)か否かを判断し(S31)、相切替領域(二相通電期間)であれば(YES)、コンバータ8の出力電圧を最大とするように制御する(S32)。一方、上記信号が相切替領域でなければ(一相通電期間,NO)、コンバータ8の出力電圧を(12)式で決定するように制御する(S33)。
ゲート信号発生器27には、相切替領域判定器26より領域判定信号が、指令出力電圧発生器24より指令出力電圧信号が入力されている(図7,S41)。そして、図7に示すように、指令出力電圧(Vout)が電源電圧(Vin)よりも大きければ(S42:YES)、コンバータ8のNチャネルMOSFET(スイッチ)3を常にオンすると共に(S43)、NチャネルMOSFET4を常にオフさせる(S44)。
また、NチャネルMOSFET6については、NチャネルMOSFET7との関係で排他的にオンオフさせ(S45)、NチャネルMOSFET7については、電圧比(Vout/Vin)に応じてオンオフ時間比を設定する(S46)。つまり、コンバータ8を昇圧動作させる。
Vout/Vin=(T7_ON+T7_OFF)/T7_OFF…(13)
一方、ステップS42において、指令出力電圧(Vout)が電源電圧(Vin)以下であれば(NO)、NチャネルMOSFET3については、電圧比(Vout/Vin)に応じてオンオフ時間比を設定する(S47)。つまり、コンバータ8を降圧動作させる。
Vout/Vin=T3_ON/(T3_ON+T3_OFF) …(14)
また、NチャネルMOSFET4については、NチャネルMOSFET3との関係で排他的にオンオフさせ(S48)、NチャネルMOSFET6を常にオンすると共に(S49)、NチャネルMOSFET7を常にオフさせる(S50)。
また、ゲート信号発生器27は、図8に示すようにインバータ回路10をスイッチング制御する。尚、図8に示すフローチャートは、U,V,Wの各相について共通である。先ず、ロータ位置に応じてそれぞれの通電する領域(つまり、励磁領域又は消磁領域)か否かを判断する(S51)。通電しない領域であれば(NO)対応する相の上下アームを何れもオフにし(S52)、通電する領域であれば(YES)相切替領域判定器26より入力されている信号が通電相切替領域(S16)を示しているか否かを判断する(S53)。上記信号が通電相切替領域を示していなければ(NO)一相通電期間に対応するので、対応する相の上下アームを何れもオンにする(S58)。
一方、ステップS53において上記信号が通電相切替領域を示していれば(YES)、当該相が消磁領域か否かを判断し(S54)、消磁領域であれば(YES)ステップS52に移行する(図9(b)参照)。また、消磁領域でなければ(NO)励磁領域であるから、電圧センサ17により検出される印加電圧が指令出力電圧よりも大きいか否かを判断する(S55)。
印加電圧が指令出力電圧以下であれば(NO)ステップS58に移行し、(印加電圧)>(指令出力電圧)であれば(YES)、チョッピング制御のためのデューティ比を指令出力電圧と印加電圧との比で設定する(S56)。そして、対応する相の上アームはオンにして、下アームを上記デューティ比でチョッピングさせて印加電圧を降圧させる(S57,図9(c,d)参照)。つまり、インバータ回路10が出力する電圧の実効電圧を低下させる。尚、ステップS57において上下アームのオンオフ制御を逆にして、チョッピングを上アーム側で行っても良い。尚、以上の構成において、SRM15を除いたものが、駆動制御装置30を構成している。
以上のように制御を行うことで、SRM15をPAM制御して駆動する。その結果、図10に示すように、従来のヒステリシスコンパレータ制御と比較して以下のようなメリットがある。尚、図10に示すシミュレーションの条件は、回転数3000rpm,PWMキャリア周波数100kHz,出力トルク50N・mであり、図11に示すシミュレーションのPWMキャリア周波数及び出力トルクの条件は図10と同じである。
・電流波形の傾きが従来の制御よりも急峻になり、モータの高速回転に対応でき、出力特性が向上する。
・電流波形の脈動(リップル)が抑制されるので、モータの鉄損を低減できる。
・インバータ回路におけるスイッチング回数が減少するので、スイッチング損を低減できる。
また、図11に示すように、トルクリップルについても、最大で20%を超える低減効果がある。
以上のように本実施形態によれば、SRM制御器22は、SRM15の励磁相への通電量が増加する第1期間と、消磁相への通電量が減少する第2期間とが重複する二相通電期間において、インバータ回路10の出力電圧が指令電圧を上回ると、前記出力電圧の実効電圧を低下させるようにインバータ回路10をスイッチング制御する。すなわち、二相通電期間では出力電圧を指令電圧に追従させることが難しく、前者が後者を上回る状態になるとトルクリップルが発生し、駆動効率が低下する。そこで、出力電圧の実効電圧を低下させ両者を一致させるように制御すれば、トルクリップルを抑制して駆動効率を向上させることができる。
具体的には、第1期間についてスイッチング制御する際には、インバータ回路10の励磁相アームに対応する2つのスイッチング素子の何れか一方をオン状態に維持し、他方をスイッチング制御する。そして、前記スイッチング制御を、指令電圧(Vout)をインバータ回路10の駆動電源電圧(Vin)で除して得られるデューティ比に基づくPWM制御により行う。このように制御すれば、出力電圧が指令電圧に一致するようにスイッチング制御できる。
また、第2期間については、インバータ回路10の消磁相アームに対応する2つのスイッチング素子を何れもオフ状態に維持し、一相通電期間については、インバータ回路10の励磁相アームに対応する2つのスイッチング素子を何れもオン状態に維持するので、スイッチング損失を低減できる。
更に、SRM制御器22は、第1期間,第2期間,一相通電期間のそれぞれについて、インバータ回路10の駆動電源電圧を個別に変圧制御する。そして、一相通電期間における駆動電源電圧を、指令トルクとスイッチトリラクタンスモータの磁気的特性とに基づく(12)式により決定し、変圧制御を行う。すなわち、出力トルクは、SRM15の磁気的特性と駆動電流とに基づいて決まり、前記磁気的特性はロータの回転位置に応じて変化する。したがって、指令トルクと磁気的特性とに基づいて駆動電源電圧を制御すれば、指令トルクを出力するために最適な電圧をSRM15の固定子巻線16に印加することができる。
また、第1及び第2期間では、駆動電源電圧を昇圧可能な最大電圧に制御するので、駆動電流の傾きを急峻にしてSRM15を高速回転させる場合に対応でき、出力特性を向上させることができる。
そして、第1期間において、励磁相についての指令電圧が最大電圧を下回った際には、インバータ回路10の励磁相アームをチョッピングして、固定子巻線16に印加される実効電圧が指令電圧に等しくなるように制御するので、コンバータ8を介して供給される駆動電源電圧が最大電圧となっている状態でもトルクリップルを低減できる。また、二相通電期間では、指令トルクより消磁相の推定トルクを減じたものを、励磁相の指令トルクとするので、前記指令トルクを適切に付与することができる。
加えて、SRM制御器22は、二相通電期間において消磁相の磁束を参照し、前記磁束がゼロになるタイミングで、二相通電期間から一相通電期間(第1又は第2期間)への通電切替えを行う。したがって、負のトルクが発生しない状態で通電切り替えを行うことができ、コギングの発生を抑制できる。
本発明は上記した、又は図面に記載した実施形態にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
SRMのインダクタンスは、図4(a)に示す特性を有するものに限らない。また、SRMの形状も上記実施形態に限らず、固定子は円環でなくても良いし、回転子は十字でなくても良い。さらに、固定子が内部で回転子が外部にあっても良い。
上アーム側のスイッチング素子に、PチャネルMOSFETを用いても良い。また、スイッチング素子については、バイポーラトランジスタやIGBTなどを用いても良い。
図面中、1は直流電源、8はコンバータ、10はインバータ回路、11及び14はNチャネルMOSFET(スイッチング素子)、15はスイッチトリラクタンスモータ、16は固定子巻線、22はSRM制御器、30は駆動制御装置を示す。

Claims (13)

  1. スイッチトリラクタンスモータ(15)の各相固定子巻線(16)にインバータ回路(10)を介して通電を行い、前記モータを駆動制御する方法であって、
    励磁相への通電量が増加する第1期間と、消磁相への通電量が減少する第2期間とが重複する二相通電期間において、前記インバータ回路の出力電圧が指令電圧を上回ると、前記出力電圧の実効電圧を低下させるように前記インバータ回路をスイッチング制御することを特徴とするスイッチトリラクタンスモータの駆動制御方法。
  2. 前記第1期間については、前記インバータ回路の励磁相アームに対応する2つのスイッチング素子(11,14)の何れか一方をオン状態に維持し、他方をスイッチング制御することを特徴とする請求項1記載のスイッチトリラクタンスモータの駆動制御方法。
  3. 前記スイッチング制御は、前記指令電圧を前記インバータ回路の駆動電源電圧で除して得られるデューティ比に基づくPWM制御により行うことを特徴とする請求項2記載のスイッチトリラクタンスモータの駆動制御方法。
  4. 前記第2期間については、前記インバータ回路の消磁相アームに対応する2つのスイッチング素子を、何れもオフ状態に維持することを特徴とする請求項1から3の何れか一項に記載のスイッチトリラクタンスモータの駆動制御方法。
  5. 前記二相通電期間を除く一相通電期間については、前記インバータ回路の励磁相アームに対応する2つのスイッチング素子を、何れもオン状態に維持することを特徴とする請求項1から4の何れか一項に記載のスイッチトリラクタンスモータの駆動制御方法。
  6. 前記第1期間と、前記第2期間と、これらの期間を除く一相通電期間とについて、前記インバータ回路の駆動電源電圧を個別に変圧制御することを特徴とする請求項1から5の何れか一項に記載のスイッチトリラクタンスモータの駆動制御方法。
  7. 前記一相通電期間における前記駆動電源電圧を、指令トルクと前記スイッチトリラクタンスモータの磁気的特性とに基づいて決定し、前記変圧制御を行うことを特徴とする請求項6記載のスイッチトリラクタンスモータの駆動制御方法。
  8. 前記指令トルクをT,前記スイッチトリラクタンスモータのインダクタンスをL,前記スイッチトリラクタンスモータのロータ回転位置をθとすると、前記駆動電源電圧Vを、次式により決定することを特徴とする請求項7記載のスイッチトリラクタンスモータの駆動制御方法。
    V=L(d/dt)√(2T/L’),但しL’=dL/dθ
  9. 前記第1期間と、前記第2期間とでは、前記駆動電源電圧を昇圧可能な最大電圧に制御することを特徴とする請求項6から8の何れか一項に記載のスイッチトリラクタンスモータの駆動制御方法。
  10. 前記第1期間において、励磁相についての指令電圧が前記最大電圧を下回った際には、前記インバータ回路の励磁相アームをチョッピングして、前記固定子巻線に印加される実効電圧が前記指令電圧に等しくなるように制御することを特徴とする請求項9記載のスイッチトリラクタンスモータの駆動制御方法。
  11. 前記二相通電期間では、指令トルクより消磁相の推定トルクを減じたものを、励磁相の指令トルクとすることを特徴とする請求項1から10の何れか一項に記載のスイッチトリラクタンスモータの駆動制御方法。
  12. 前記二相通電期間において消磁相の磁束を参照し、前記磁束がゼロになるタイミングで、前記二相通電期間から、前記二相通電期間を除く一相通電期間への通電切替えを行うことを特徴とする請求項1から11の何れか一項に記載のスイッチトリラクタンスモータの駆動制御方法。
  13. 請求項1から12の何れか一項に記載のスイッチトリラクタンスモータの駆動制御方法を実施することを特徴とするスイッチトリラクタンスモータの駆動制御装置。
JP2013114101A 2013-05-30 2013-05-30 スイッチトリラクタンスモータの駆動制御方法及びスイッチトリラクタンスモータの駆動制御装置 Pending JP2014233185A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013114101A JP2014233185A (ja) 2013-05-30 2013-05-30 スイッチトリラクタンスモータの駆動制御方法及びスイッチトリラクタンスモータの駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013114101A JP2014233185A (ja) 2013-05-30 2013-05-30 スイッチトリラクタンスモータの駆動制御方法及びスイッチトリラクタンスモータの駆動制御装置

Publications (1)

Publication Number Publication Date
JP2014233185A true JP2014233185A (ja) 2014-12-11

Family

ID=52126278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013114101A Pending JP2014233185A (ja) 2013-05-30 2013-05-30 スイッチトリラクタンスモータの駆動制御方法及びスイッチトリラクタンスモータの駆動制御装置

Country Status (1)

Country Link
JP (1) JP2014233185A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100498A (zh) * 2016-07-21 2016-11-09 南京航空航天大学 双绕组bsrm悬浮绕组开路故障的容错补偿方法
CN113016131A (zh) * 2018-11-07 2021-06-22 三菱电机株式会社 马达驱动装置以及使用该马达驱动装置的空调机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106100498A (zh) * 2016-07-21 2016-11-09 南京航空航天大学 双绕组bsrm悬浮绕组开路故障的容错补偿方法
CN113016131A (zh) * 2018-11-07 2021-06-22 三菱电机株式会社 马达驱动装置以及使用该马达驱动装置的空调机
CN113016131B (zh) * 2018-11-07 2024-01-16 三菱电机株式会社 马达驱动装置以及使用该马达驱动装置的空调机

Similar Documents

Publication Publication Date Title
JP4941686B2 (ja) 電力変換装置
KR101495187B1 (ko) 전기차량용 모터 제어 장치 및 이를 이용한 토크리플 저감 방법
JP5862125B2 (ja) 電力変換装置の制御装置
JP6089978B2 (ja) スイッチトリラクタンスモータのpam駆動装置
JP5521914B2 (ja) 電力変換装置、及び、これを用いた電動パワーステアリング装置
US8796978B2 (en) Predictive pulse width modulation for an open delta H-bridge driven high efficiency ironless permanent magnet machine
JP5433658B2 (ja) モータ制御装置
JP2017184291A (ja) モータ駆動制御装置
CN102624298B (zh) 马达
JP4062074B2 (ja) 三相ブラシレスdcモータの制御方法
JP2014233185A (ja) スイッチトリラクタンスモータの駆動制御方法及びスイッチトリラクタンスモータの駆動制御装置
JP2012182874A (ja) モータ制御装置
JP2012060847A (ja) インバーター制御装置
JP2020048360A (ja) モータ制御装置、モータシステム及びインバータ制御方法
JP6693178B2 (ja) モータ制御装置
JP6301270B2 (ja) モータ駆動装置
JP5896564B2 (ja) インバータ装置
JP4622435B2 (ja) インバータ制御装置および密閉型電動圧縮機
JP6590457B2 (ja) 車両駆動制御装置及び車両駆動制御方法
JP2003324986A (ja) 三相ブラシレスdcモータの制御方法
Kumar et al. Multi Quadrant Operation of Brushless Direct Current Motor Drive with PI and Fuzzy Logic Controllers.
JP6577306B2 (ja) モータ駆動装置およびモータユニット
JP2016226084A (ja) スイッチトリラクタンスモータの制御装置
WO2021200236A1 (ja) モータ制御装置、モータシステム及びモータ制御方法
JP2013059154A (ja) モータ制御装置