RU2637375C2 - Датчик с уплотнением его корпуса, выполненным из синтетических каучуков с разной эластичностью - Google Patents

Датчик с уплотнением его корпуса, выполненным из синтетических каучуков с разной эластичностью Download PDF

Info

Publication number
RU2637375C2
RU2637375C2 RU2014113159A RU2014113159A RU2637375C2 RU 2637375 C2 RU2637375 C2 RU 2637375C2 RU 2014113159 A RU2014113159 A RU 2014113159A RU 2014113159 A RU2014113159 A RU 2014113159A RU 2637375 C2 RU2637375 C2 RU 2637375C2
Authority
RU
Russia
Prior art keywords
sealing element
sensor
section
housing
plasticizer
Prior art date
Application number
RU2014113159A
Other languages
English (en)
Other versions
RU2014113159A (ru
Inventor
Бернд РАТТАЙ
Йенс ШНАЙДЕР
Гуидо СУАЕ
Арно КЛАУСС
Original Assignee
Роберт Бош Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Роберт Бош Гмбх filed Critical Роберт Бош Гмбх
Publication of RU2014113159A publication Critical patent/RU2014113159A/ru
Application granted granted Critical
Publication of RU2637375C2 publication Critical patent/RU2637375C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4062Electrical connectors associated therewith
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/013Sealing means for cable inlets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Sealing Material Composition (AREA)
  • Gasket Seals (AREA)
  • Measuring Volume Flow (AREA)
  • Insertion, Bundling And Securing Of Wires For Electric Apparatuses (AREA)

Abstract

В заявке описан датчик (10) для определения по меньшей мере одного свойства анализируемого газа в заполненном им пространстве. Такой датчик (10), имеющий корпус (12) с отверстием (14), через которое из корпуса (12) выведен по меньшей мере один соединительный провод (18), и по меньшей мере один уплотнительный элемент (20), прежде всего проходную втулку, который по меньшей мере частично окружает соединительный провод (18) и имеет по меньшей мере один первый участок (28) и по меньшей мере один второй участок (30), из которых первый участок (28) обладает большей деформируемостью, чем второй участок (30), отличающийся тем, что уплотнительный элемент (20) выполнен из по меньшей мере одного полимерного материала, содержащего по меньшей мере один пластификатор, при этом первый участок (28) и второй участок (30) содержат пластификатор в полимерном материале в разном количестве. Техническим результатом является надежное уплотнение на граничных поверхностях между уплотнительным элементом и корпусом, а также между уплотнительным элементом и соединительным проводом. 11 з.п. ф-лы, 6 ил.

Description

Уровень техники
Из уровня техники известно большое разнообразие датчиков и способов определения по меньшей мере одного свойства анализируемого газа в заполненном им пространстве. Речь в данном случае в принципе может идти о любых физических и/или химических свойствах газа, при этом возможна регистрация одного или нескольких таких свойств. Ниже изобретение описано прежде всего применительно к качественному и/или количественному определению газового компонента, прежде всего применительно к определении содержания кислорода в газе. Содержание кислорода можно определять, например, в виде парциального давления и/или в виде относительного количества в процентах. Однако альтернативно этому или дополнительно к этому возможно также определение иных свойств газа, например его температуры.
Подобные датчики могут быть выполнены, например, в виде так называемых лямбда-зондов (кислородных датчиков), известных, например, из публикации "Sensoren im Kraftfahrzeug", под ред. Konrad Reif, 1-е изд., 2010, сс. 160-165. С помощью широкополосных и триггерных лямбда-зондов, прежде всего планарных широкополосных и триггерных лямбда-зондов, можно, например, определять концентрацию кислорода в отработавших газах в одной точке или на протяженном участке и таким путем делать вывод о соотношении между воздухом и топливом в камере сгорания. Однако альтернативно этому равным образом возможно выполнение лямбда-зонда в виде стержневого датчика. Указанное соотношение между воздухом и топливом описывается коэффициентом избытка воздуха λ.
Подобные датчики обычно имеют корпус с отверстием, через которое выведены соединительные провода (кабели), и расположенный в этом отверстии уплотнительный элемент, через который проходят соединительные провода. Такой уплотнительный элемент представляет собой изготовленную из гомогенной эластомерной массы заглушку, через которую пропускают соединительные провода и которую затем зачеканивают на выполненном в виде металлической гильзы участке корпуса. Датчик в таком исполнении описан, например, в ЕР 2192403 А1. К таким датчикам и прежде всего к выводам соединительных проводов предъявляются высокие требования касательно температуростойкости и водо- и газонепроницаемости. Для регулирования эластичных свойств, улучшающих переработку и герметизацию, к эластомеру при изготовлении из него уплотнительного элемента добавляют пластификаторы, которые гомогенно распределяют в эластомерной массе.
Несмотря на многочисленные преимущества, присущие известным из уровня техники датчикам, тем не менее все еще остается потенциал для их совершенствования. Так, например, высокое содержание пластификаторов в эластомерной массе приводит к высокой эластичности, хорошей перерабатываемости в новом состоянии, хорошей уплотняющей способности прежде всего в зоне прохода соединительных проводов через уплотнительный элемент, но и одновременно к повышенному уносу материала при термическом старении с сопутствующими усадкой и охрупчиванием. По этой причине в месте вывода соединительных проводов из датчика возможно образование критичных неплотностей. Низкое же содержание пластификаторов в эластомерной массе приводит к ухудшению перерабатываемости и ухудшению уплотняющей способности, но и вместе с тем к улучшению поведения при старении, поскольку при термической нагрузке уносится лишь малое количество летучих органических компонентов и соответственно свойства уплотнительного элемента практически не изменяются.
Краткое изложение сущности изобретения
Исходя из вышеизложенного, в изобретении предлагаются датчик для определения по меньшей мере одного свойства анализируемого газа в заполненном им пространстве, а также способ изготовления такого датчика, каковые датчик и способ позволяют по меньшей мере во многом избежать недостатков известных датчиков.
Предлагаемый в изобретении датчик имеет корпус с отверстием, через которое из корпуса выведен по меньшей один соединительный провод. Датчик имеет далее по меньшей мере один уплотнительный элемент, прежде всего проходную втулку, который по меньшей мере частично окружает соединительный провод. Уплотнительный элемент имеет по меньшей мере один первый участок и по меньшей мере один второй участок, из которых первый участок обладает большей деформируемостью, чем второй участок.
Деформируемость может представлять собой эластичность и/или пластичность, и/или сжимаемость. Уплотнительный элемент может по меньшей мере частично располагаться в отверстии корпуса. Уплотнительный элемент может быть выполнен из по меньшей мере одного полимерного материала, содержащего по меньшей мере один пластификатор, при этом первый участок и второй участок содержат пластификатор в полимерном материале в разном количестве, прежде всего содержание пластификатора на первом участке выше, чем на втором участке. Содержание по меньшей мере одного пластификатора в полимерном материале может составлять от 0,1 до 15 мас. %, предпочтительно от 0,25 до 12,5 мас. %, более предпочтительно от 0,5 до 10 мас. %, например 5 мас. %. По меньшей мере один пластификатор может содержать фтор. Полимерный материал может содержать по меньшей мере один эластомер. Такой эластомер может быть выбран из группы, включающей фторкаучук, прежде всего фторкаучук с содержанием фтора по меньшей мере 50 мас. %, предпочтительно по меньшей мере 55 мас. %, более предпочтительно по меньшей мере 60 мас. %, например 65 мас. %, и перфторкаучук, прежде всего перфторкаучук с содержанием фтора по меньшей мере 50 мас. %, предпочтительно по меньшей мере 55 мас. %, более предпочтительно по меньшей мере 60 мас. %, например 65 мас. %. Первый участок может окружать по меньшей мере один соединительный провод. Второй участок может быть расположен коаксиально первому участку. Второй участок может быть расположен внутри первого участка. Корпус может иметь стенку, которая ограничивает его отверстие и с которой соприкасается первый участок уплотнительного элемента. Корпус может определять продольную ось, коаксиально которой в перпендикулярной ей секущей плоскости могут быть расположены два вторых участка, которые разделены первым участком и через один из которых при этом проходит продольная ось.
Согласно настоящему изобретению под деформацией некоторого тела подразумевается изменение его формы вследствие воздействия внешней силы. Деформация может проявляться в виде изменения длины, в виде изменения углового положения, в виде изменения площади или в виде изменения объема. Усилие тела, противодействующее внешней силе, называют сопротивлением деформации. Соответственно деформируемость является мерой деформации под воздействием определенной силы. Так, в частности, тела с большей деформируемостью противодействуют внешней силе с меньшим сопротивлением деформации, чем тела с меньшей деформируемостью, т.е. склонны деформироваться при приложении к ним меньшей внешней силы. Деформацию подразделяют на пластическую или необратимую деформацию и упругую или обратимую деформацию.
Необратимую, т.е. остающуюся после прекращения действия внешней силы, деформацию называют пластической деформацией. Соответствующее этому свойство материала называют пластичностью. Предпосылкой при этом является способность материала к формоизменению, т.е. низкая хрупкость.
Обратимую же, т.е. исчезающую после прекращения действия внешней силы, деформацию называют упругой деформацией. Соответствующее этому свойство материала называют упругостью, разновидностью которой является эластичность. Поэтому согласно настоящему изобретению под упругостью, соответственно эластичностью подразумевается свойство тела или материала изменять свою форму под воздействием внешней силы и вновь принимать свою первоначальную форму при исчезновении такой действующей на него силы. Большая, соответственно повышенная эластичность означает, что по сравнению с меньшей, соответственно пониженной эластичностью для достижения одинаковой деформации, например в виде растяжения или сжатия, необходимо приложить меньшую силу, соответственно для достижения большей деформации необходимо приложить такую же силу. Упругость, соответственно эластичность можно описать модулем упругости или модулем сжатия. Сжимаемость является величиной, обратной модулю сжатия, и описывает его поведение. Чем меньше модуль сжатия, тем легче материал поддается сжатию.
Согласно настоящему изобретению под эластомером подразумеваются формоустойчивые, но способные упруго деформироваться полимеры. Такие эластомерные полимеры способно упруго деформироваться под действием растягивающей и сжимающей нагрузок, однако при исчезновении нагрузки вновь принимают свою первоначальную, недеформированную форму.
Согласно настоящему изобретению под пластификаторами подразумеваются вещества, которые добавляют в полимеры, краски и лаки, резину, клеи и материалы для нанесения пленочных покрытий с целью сделать такие вещества мягче, гибче, податливее и эластичнее в применении или для последующей переработки. Пластификаторы смещают область термопластичности полимеров в область меньших температур, благодаря чему полимер в рабочем диапазоне температур обладает требуемыми свойствами "повышенной упругости (эластичности)".
Предлагаемый в изобретении датчик может быть выполнен, например, в виде стержневого датчика, т.е., например, в виде лямбда-зонда тубусообразной конструкции. Поскольку предлагаемый в изобретении датчик используется главным образом в области автомобильной техники, под пространством, заполненным анализируемым газом, может подразумеваться прежде всего выпускной тракт двигателя внутреннего сгорания (ДВС), а под газом - прежде всего отработавшие газы. Однако изобретение равным образом применимо к чувствительным элементам или датчикам любых типов, у которых требуется уплотнять или герметизировать проход для вывода соединительных проводов.
У предлагаемого в изобретении датчика отсутствует гомогенное распределение компонентов, входящих в состав материала его уплотнительного элемента, а например, присутствует градиент концентрации пластификаторов. Так, например, уплотнительный элемент можно выполнять из фторкаучука или перфторкаучука с содержанием фтора по меньшей мере 60 мас. %. В качестве пластификатора можно использовать, например, диоктилфталат. Однако в полимерную массу уплотнительного элемента из фторкаучука или перфторкаучука можно вводить и другие низкомолекулярные соединения, например в массовом количестве от 0,5 до 5 мас. %, что позволяет влиять на эластомерные свойства. В зависимости от типа фторэластомера равным образом возможно применение других имеющихся в продаже пластификаторов, таких как эфир адипиновой кислоты или эфир себациновой кислоты. В основную полимерную матрицу прежде всего можно также вводить фторсодержащие пластификаторы, такие, например, как фторсодержащие ароматические соединения, фторалканы или фторсодержащие простые полиэфиры, в количестве до 10 мас. %.
Так, в частности, особенно предпочтительно комбинировать максимально возможное содержание пластификаторов в наружных слоях уплотнительного элемента с их минимально возможным содержанием в сердцевине уплотнительного элемента. При этом при низком общем содержании пластификаторов достигается высокая эластичность уплотняющих граничных слоев. Высокая эластичность поверхности уплотнительного элемента является предпосылкой для надежного уплотнения на граничных поверхностях между уплотнительным элементом и корпусом, а также между уплотнительным элементом и соединительным проводом.
Краткое описание чертежей
Другие возможные частные аспекты и отличительные особенности изобретения вытекают из последующего описания предпочтительных вариантов осуществления изобретения, схематично проиллюстрированных на чертежах, на которых показано:
на фиг. 1 - вид сбоку датчика в зоне отверстия его корпуса,
на фиг. 2 - рентгеновский снимок датчика в зоне отверстия его корпуса,
на фиг. 3 - вид в разрезе предлагаемого в изобретении датчика,
на фиг. 4 - увеличенный вид фрагмента уплотнительного элемента в зоне прохода соединительного провода,
на фиг. 5 - модификация предлагаемого в изобретении уплотнительного элемента и
на фиг. 6 - еще одна модификация предлагаемого в изобретении уплотнительного элемента.
Описание вариантов осуществления изобретения
На фиг. 1 в виде сбоку показан датчик 10. Точнее говоря, на фиг. 1 показана часть этого датчика 10. Такой датчик 10 выполнен, например, в виде лямбда-зонда (кислородного датчика). Назначение лямбда-зонда состоит в измерении концентрации кислорода в отработавших газах для возможности регулирования состава подаваемой в ДВС горючей (топливовоздушной) смеси с целью установления соотношения в ней между воздухом и топливом на стехиометрическое или на максимально близкое к стехиометрическому, благодаря чему достигается оптимальное, соответственно максимально приближенное к оптимальному сгорание горючей смеси и тем самым минимизируются выбросы вредных веществ. Поэтому под пространством, заполненным анализируемым газом, согласно настоящему изобретению может подразумеваться выпускной тракт ДВС. Для этого датчик 10 может выступать в выпускной тракт. В последующем описании лямбда-зонд рассматривается в качестве возможного примера выполнения датчика для определения по меньшей мере одного физического и/или химического свойства анализируемого газа, прежде всего температуры или концентрации некоторого газового компонента, главным образом в отработавших газах ДВС. Ниже описаны прежде всего отличия от известных датчиков без детального рассмотрения принципа их работы, поскольку он достаточно хорошо известен, например, из описанного выше уровня техники, а принцип работы предлагаемого в изобретении датчика не отличается от известного.
Датчик 10 имеет корпус 12 с отверстием 14. Отверстие 14 корпуса ограничено его стенкой 16. Через отверстие 14 наружу выведен по меньшей мере один электрический соединительный провод 18. На фиг. 1 видны, например, два из в общей сложности четырех соединительных проводов 18. В отверстии 14 по меньшей мере частично расположен уплотнительный элемент 20, такой, например, как проходная втулка. Уплотнительный элемент 20 предназначен для образования газонепроницаемого и/или водонепроницаемого уплотнения отверстия 14, что исключает возможность проникновения газов и/или воды внутрь корпуса 12. Уплотнительный элемент 20 может соприкасаться со стенкой 16 корпуса, образуя также вдоль нее газонепроницаемое и/или водонепроницаемое уплотнение. Через уплотнительный элемент 20 проходят соединительные провода 18. В зоне уплотнительного элемента 20 корпус 12 выполнен цилиндрической или гильзообразной формы. В зоне уплотнительного элемента 20 корпус 12 прежде всего может быть выполнен из металла или сплава. Уплотнительный элемент 20 зафиксирован в отверстии 14 корпуса 12 путем его зачеканивания, соответственно деформации.
При изготовлении уплотнительного элемента 20 из эластомерного материала, такого, например, как фторкаучук или перфторкаучук, с гомогенным распределением в нем пластификаторов слишком высокое их содержание могло бы по мере старения уплотнительного элемента 20 привести к образованию в нем неплотностей. По этой причине следовало бы опасаться проникновения газа или воды внутрь корпуса 12. На фиг. 2 показан рентгеновский снимок корпуса 12 в зоне такого состарившегося уплотнительного элемента 20, у которого в обозначенном буквой L месте отчетливо видна подобная образовавшаяся неплотность.
Настоящее изобретение позволяет избежать подобных недостатков. На фиг. 3 в качестве примера проиллюстрирован один из возможных вариантов осуществления изобретения. Более конкретно, на фиг. 3 в разрезе показан предлагаемый в изобретении уплотнительный элемент 20. Через такой уплотнительный элемент 20 проходят два или более соединительных проводов 18, из которых на данном чертеже видны только два. Количество проходящих через уплотнительный элемент соединительных проводов может варьироваться. Так, например, у датчиков температуры или необогреваемых лямбда-зондов обычно используется два провода, у обогреваемых триггерных и широкополосных лямбда-зондов используется три, четыре или пять проводов, а у специальных датчиков, таких, например, как датчики оксидов азота, используется шесть или более проводов. Соединительные провода 18 проходят через проходные отверстия 22 в уплотнительном элементе 20, проходящие параллельно продольной оси 24 корпуса 12. Уплотнительный элемент 20 по меньшей мере частично охватывает соединительные провода 18, при этом в показанном на чертеже варианте уплотнительный элемент 20 полностью охватывает соединительные провода в окружном направлении, т.е. в направлении вокруг продольной оси. В показанном на фиг. 3 в качестве примера варианте осуществления настоящего изобретения уплотнительный элемент 20 имеет в основном цилиндрическую форму и на том своем осевом конце 26, на котором из него выходят соединительные провода 18 и который может быть обращен от внутренней части корпуса, имеет при этом сужающееся поперечное сечение. Уплотнительный элемент 20 имеет, например, в осевом направлении, т.е. в направлении параллельно продольной оси 24, размер 9 мм, а в радиальном направлении, т.е. в направлении перпендикулярно продольной оси 24, размер 12 мм. Технологический допуск на эти размеры может составлять 2 мм. Очевидно, что конкретные размеры уплотнительного элемента 20 могут варьироваться в зависимости от размеров корпуса 12, в соответствии с чем, например, при большем диаметре отверстия 14 корпуса уплотнительный элемент 20 может иметь соответственно больший размер в радиальном направлении.
Уплотнительный элемент 20 прежде всего имеет первый участок 28 и два вторых участка 30. Первый участок 28 обладает повышенной по сравнению со вторыми участками 30 деформируемостью, например обладает повышенной эластичностью, соответственно упругостью, прежде всего сжимаемостью. Как показано на фиг. 3, в секущей плоскости (плоскости разреза) перпендикулярно продольной оси 24 два вторых участка 30 с меньшей деформируемостью расположены коаксиально этой продольной оси 24 корпуса 12 и разделены при этом первым участком 28 с большей деформируемостью. Один из двух вторых участков 30 расположен при этом в центре или середине уплотнительного элемента 20, и поэтому продольная ось 24 проходит через этот второй участок 30 с меньшей эластичностью. Второй участок 30 с меньшей эластичностью находится внутри первого участка 28 с большей эластичностью, соответственно внедрен или заделан в него, и поэтому поверхность второго участка 30 с меньшей эластичностью полностью покрыта первым участком 28 с большей эластичностью. Соответственно первый участок 28 ограничивает или завершает собой уплотнительный элемент 20 снаружи в радиальном и осевом направлениях. Выходящие из корпуса соединительные провода 18 проходят прежде всего через этот первый участок 28 с большей эластичностью. Большая эластичность достигается при этом благодаря тому, что в материале первого участка 28 содержание пластификаторов выше, чем в материале второго участка 30. В качестве пластификатора в материал уплотнительного элемента 20 можно прежде всего вводить диоктилфталат в количестве от 0,5 до 15 мас. %, предпочтительно от 0,25 до 12,5 мас. %, более предпочтительно от 0,5 до 10 мас. %, например в количестве 5 мас. %. В другом варианте в качестве пластификаторов можно использовать эфиры адипиновой кислоты или эфиры себациновой кислоты. Равным образом в материал уплотнительного элемента 20 можно вводить фторсодержащие пластификаторы, такие, например, как фторсодержащие ароматические соединения, фторалканы или фторсодержащие простые полиэфиры, в количестве до 10 мас. %. В качестве материала для изготовления уплотнительного элемента 20 при этом можно использовать полимер, такой, например, как по меньшей мере один эластомер, прежде всего фторкаучук или перфторкаучук с содержанием фтора по меньшей мере 50 мас. %, предпочтительно по меньшей мере 55 мас. %, более предпочтительно по меньшей мере 60 мас. %, например с содержанием фтора 65 мас. %. Подобные фторкаучуки, например, содержат фтор в количестве от 64 до 74 мас. %, сажу (технический углерод) в количестве от 21 до 27 мас. % и иные, не указываемые компоненты в количестве 7 мас. %. К таким фторкаучукам относятся, например, продукт Viton® фирмы DuPont Dow Elastomers, продукт Tecnoflon® фирмы Solvay Plastics, продукт Fluorel® фирмы Dyneon LLC, продукт Daiel® фирмы Daikin America, Inc., которые можно приобрести через компанию
Figure 00000001
Cables GmbH, расположенную по адресу: Ауф-дер-Роос 4-12, 65795 Хаттерсхайм, Германия (Auf der Roos 4-12, 65795 Hattersheim, Germany). К подобным пер фторкаучукам относятся, например, продукт Kalrez® фирмы DuPont Dow Elastomers, продукт Isolast фирмы Trelleborg Sealing Solutions, продукт Paroflour® фирмы Parker Hannifin GmbH, продукт HPF фирмы Quarzwerke GmbH, которые можно приобрести через компанию
Figure 00000001
Cables GmbH, расположенную в Хаттерсхайме, Германия, компанию CTR (Chung Та Rubber Co., Ltd.), расположенную в Тайване, или через компанию Doosung Со, Ltd., расположенную в Корее.
На фиг. 4 показан увеличенный фрагмент уплотнительного элемента в зоне проходного отверстия 22, через которое выведен соединительный провод 18. Соединительный провод 18 имеет жилу 32 в качестве собственно электрического проводника, которая может быть выполнена, например, из меди и/или никеля, и оболочку 34 из электроизоляционного материала, такого, например, как политетрафторэтилен. Часть между первым участком 28 с повышенной эластичностью и оболочкой 34 соединительного провода 18 может быть заполнена слоем вязкой пасты, которая содержит фторсодержащий пластификатор в количестве от 1 до 10 мас. %. Иными словами, подобная паста, например в виде клея, может быть введена в то пространство проходного отверстия 22, которое остается свободным между его внутренней стенкой и оболочкой 34. В другом варианте в проходное отверстие 22 можно поместить или вставить однослойную или многослойную гибкую трубку из фторсодержащего полимера, обладающую сравнимыми механическими, физическими и химическими свойствами. Благодаря предлагаемой в изобретении особой структуре уплотнительного элемента 20 достигается наличие у него исключительно высоких герметизирующих свойств, прежде всего в зоне соединительного провода 18, тогда как благодаря второму участку 30 с меньшей деформируемостью, прежде всего с меньшей эластичностью, достигается также свойство долговременной стабильности, поскольку даже при термическом старении унос материала из уплотнительного элемента 20 вследствие улетучивания пластификаторов происходит не в слишком большом количестве и он претерпевает лишь незначительную усадку и/или лишь незначительно охрупчивается.
В качестве основного материала для изготовления уплотнительного элемента 20 в принципе используют фторэластомеры, такие, например, как указанные выше фторкаучуки или перфторкаучуки. Такие материалы благодаря их особым температуроустойчивости и стойкости к воздействию агрессивных сред эффективно используются и на протяжении длительного периода эксплуатации, поскольку они способны соответствовать высоким, предъявляемым к ним требованиям касательно температуростойкости в месте выхода соединительного провода 18 из отверстия 14 корпуса анализаторов отработавших газов. Так, например, подобные материалы способны выдерживать термическую нагрузку при 300°C в течение более 40 часов или при 250°C в течение более 400 часов при надежном обеспечении газо- и водонепроницаемости. Изготовление уплотнительного элемента 20 из такого фторэластомера происходит в несколько стадий. Обычно подобный фторкаучук используют в виде гранулята, смешанного гранулята или компаунда и перерабатывают совместно с известными добавками с образованием вязкотекучего материала. В принципе в основной материал можно вводить и другие твердые наполнители, такие, например, как пламенная сажа для окрашивания или основные оксиды. Для улучшения перерабатываемости основного материала возможно также введение в него летучих пластификаторов и иных добавок, таких, например, как диоктилфталат. Образовавшемуся вязкотекучему материалу после заполнения им формы придают путем формования, так называемого прямого прессования, требуемую геометрическую форму. Для переработки такими способами особо пригодны полимеры со средней длиной цепи или длинноцепные полимеры. В зависимости от требуемого количества выводимых соединительных проводов 18 можно предусматривать в соответствующем количестве проходные отверстия 22 путем помещения тонких стержней в пресс-форму. После прессования их вновь извлекают из сформованного изделия, в котором в результате остаются проходные отверстия 22 для выводимых через них соединительных проводов 18.
Придание участкам 28 и 30 различающейся между собой эластичности, т.е. в данном примере при применении пластификаторов создание градиента их содержания или концентрации в принципе возможно путем последующей обработки, направленной на улучшение свойств изделия, соответственно на придание ему требуемых свойств (англ. "curing"). При этом термически предварительно состаренный уплотнительный элемент 20 подвергают воздействию пластификаторсодержащего раствора или пластификаторсодержащей газовой фазы. Термическое предварительное остаривание, т.е. выдержка окончательно сформованного изделия при температурах вблизи максимальной рабочей температуры, является решающим процессом для обеспечения постоянства свойств уплотнительного элемента на протяжении срока его службы. При этом может оказаться предпочтительным циклическое остаривание, т.е. многократный нагрев до температуры чуть ниже максимальной рабочей температуры изделия. В результате воздействия пластификаторсодержащего раствора или пластификаторсодержащей газовой фазы на уплотнительный элемент 20 растворитель, соответственно пластификаторы проникает/проникают, соответственно внедряется/внедряются в наружные слои уплотнительного элемента 20, в результате чего в нем создается требуемый градиент концентрации пластификаторов. В данном примере наружными слоями являются радиально и аксиально наружные поверхности, а также внутренние стенки в зоне проходных отверстий 22 для выводимых через них соединительных проводов 18. В другом варианте дополнительно увеличить градиент концентрации пластификаторов можно, нанеся на уплотнительный элемент 20 пластификаторсодержащий клей. Возможен также вариант с выполнением первого участка 28 и второго участка 30 из одного и того же полимерного материала, но с различающимся содержанием в нем эластомера. Пластификаторсодержащий клей можно нанести тонким слоем прежде всего на уплотняющие поверхности уплотнительного элемента 20, т.е. на те его поверхности, которые представляют собой поверхности его соприкосновения с другой деталью, которую необходимо герметизировать. Так, например, возможно лишь частичное покрытие клеем поверхностей, как, например, покрытие только внутренних стенок проходных отверстий 22 для выводимых через них соединительных проводов 18, поскольку именно эти внутренние стенки должны брать на себя решение особо критичных задач по обеспечению герметичности. В другом варианте возможно также выполнение уплотнительного элемента 20 составным из нескольких частей с указанными выше свойствами. Ниже более подробно рассмотрены некоторые примеры осуществления способов изготовления уплотнительного элемента и вариантов его выполнения, обеспечивающих достижение вышеуказанных эффектов, соответственно реализующих вышеуказанные конструктивные решения.
Первый вариант осуществления способа изготовления уплотнительного элемента 20 для достижения указанных выше эластичных свойств на соответствующих его участках предусматривает, например, на первой стадии термическое остаривание цельного уплотнительного элемента 20 из гомогенного фторкаучука или перфторкаучука. Предпочтителен при этой циклический нагрев, при котором, однако, максимальная температура, продолжительность выдержки при ней и количество циклов зависят от выбранного фторкаучука или перфторкаучука. Так, например, предпочтительно проведение десяти циклов с нагревом до температуры 250°C и выдержкой при ней в течение одного часа в каждом цикле или с нагревом до температуры 250°C и выдержкой при ней в течение нескольких часов. Термическое остаривание можно проводить прежде всего в вакуумируемой печи, выполняя, например, одну часть циклов при нормальном давлении в нормальной атмосфере, а другую часть циклов - при пониженном давлении. На второй стадии поверхность состаренного уплотнительного элемента 20 увлажняют в погружной ванне с растворителями и пластификаторами. Растворители, пластификатор, продолжительность выдержки в погружной ванне и температуру выбирают при этом такими, что происходит набухание наружных слоев, т.е. наружных поверхностей и внутренних стенок в зоне проходных отверстий 22, а сердцевина уплотнительного элемента 20, однако, остается неизмененной, поскольку пластификаторы не проникают в глубже расположенные слои уплотнительного элемента 20. В зависимости от используемого фторкаучука или перфторкаучука в качестве растворителя можно использовать, например, смесь спиртов из этанола и изопропанола, а в качестве пластификатора - диоктилфталат при продолжительности выдержки в погружной ванне 24 ч. Данную стадию можно проводить в автоклаве при повышенном давлении. В другом варианте возможна обработка поверхности в газовой атмосфере под давлением. На третьей стадии подготовленный таким путем уплотнительный элемент 20 крепят в отверстии 14 корпуса, например зачеканиванием.
Альтернативно такому рассмотренному выше способу изготовления уплотнительного элемента можно, как и в первом вышеописанном варианте, сначала подвергать цельный уплотнительный элемент 20 из гомогенного фторкаучука или перфторкаучука термическому старению. На следующей стадии наружные слои уплотнительного элемента 20 смачивают вязкотекучей пастой, такой, например, как клеевая композиция, со фторсодержащим пластификатором, содержащим фтор в количестве, например, от 1 до 10 мас. %. Так, например, клеевую композицию наносят дозатором лишь частично на внутренние стенки в зоне проходных отверстий 22 для выводимых через них соединительных проводов 18, поскольку именно эти внутренние стенки являются наиболее критичными герметизирующими участками. Альтернативно этому в проходные отверстия 22 можно вставлять однослойную или многослойную гибкую трубку из фторсодержащих полимеров со сравнимыми механическими, физическими и химическими свойствами. На третьей стадии подготовленный таким путем уплотнительный элемент 20 крепят в отверстии 14 корпуса описанным выше способом.
В качестве еще одного варианта возможно выполнение уплотнительного элемента 20 в виде составной детали. При этом градиент деформируемости, прежде всего эластичности, создают уже при формообразовании уплотнительного элемента 20. При этом первый участок 28 с большей деформируемостью, прежде всего эластичностью, в качестве сердцевины, так называемого "остова", уплотнительного элемента 20 с проходными отверстиями 22 для выводимых через них соединительных проводов 18, к каковому участку предъявляются наивысшие требования в отношении эластичности, соответственно уплотняющего действия, формуют из фторкаучука или перфторкаучука с высоким содержанием пластификатора или пластификаторов, добавляя его/их уже при переработке каучуков, т.е. еще до заполнения формы для прямого прессования каучуковой массой. В ходе второго процесса формообразования сердцевину, т.е. первый участок 28, заключают в оболочку из второго участка 30 с меньшей деформируемостью, прежде всего эластичностью, в виде кольца из более твердого, т.е. менее эластичного, фторкаучука или перфторкаучука. Подобное исполнение представлено, например, на фиг. 5, где предусмотрено два или более соединительных проводов 18, пропущенных через первый участок 28 с высокой эластичностью, тогда как второй участок 30 с низкой эластичностью расположен коаксиально первому участку 28 с большей эластичностью. После этого уплотнительный элемент 20 подвергают термическому старению аналогично первому описанному выше варианту и затем крепят в отверстии 14 корпуса.
Альтернативно этому возможно также выполнение уплотнительного элемента 20 из трех частей. На фиг. 6 представлено подобное исполнение уплотнительного элемента с коаксиальным расположением участков 28 и 30, при этом первые участки 28 с большей эластичностью отделены друг от друга вторым участком 30 с меньшей эластичностью. Однако изготовление подобного составного уплотнительного элемента 20 может быть сопряжено с увеличением затрат на формообразование, обусловленных дополнительным усложнением процесса прессования.
В заключение необходимо особо подчеркнуть, что все раскрытые в описании и в формуле изобретения отличительные признаки должны вне зависимости от их конкретных комбинаций, в которых они упоминаются в описании вариантов осуществления изобретения и/или в формуле изобретения, рассматриваться по отдельности и независимо друг от друга в целях первоначального раскрытия заявляемого изобретения, равно как и в целях ограничения его объема. Необходимо далее особо отметить, что все указанные интервалы значений или указанные группы элементов должны в целях первоначального раскрытия заявляемого изобретения, равно как и в целях ограничения его объема рассматриваться как включающие каждое возможное промежуточное значение, соответственно каждую возможную подгруппу, прежде всего и в качестве предела интервала значений.

Claims (12)

1. Датчик (10), имеющий корпус (12) с отверстием (14), через которое из корпуса (12) выведен по меньшей мере один соединительный провод (18), и по меньшей мере один уплотнительный элемент (20), прежде всего проходную втулку, который по меньшей мере частично окружает соединительный провод (18) и имеет по меньшей мере один первый участок (28) и по меньшей мере один второй участок (30), из которых первый участок (28) обладает большей деформируемостью, чем второй участок (30), отличающийся тем, что уплотнительный элемент (20) выполнен из по меньшей мере одного полимерного материала, содержащего по меньшей мере один пластификатор, при этом первый участок (28) и второй участок (30) содержат пластификатор в полимерном материале в разном количестве.
2. Датчик (10) по п. 1, отличающийся тем, что уплотнительный элемент (20) по меньшей мере частично расположен в отверстии (14) корпуса.
3. Датчик (10) по п. 1, отличающийся тем, что содержание пластификатора на первом участке (28) выше, чем на втором участке (30).
4. Датчик (10) по п. 3, отличающийся тем, что содержание по меньшей мере одного пластификатора в полимерном материале составляет от 0,1 до 15 мас. %, предпочтительно от 0,25 до 12,5 мас. %, более предпочтительно от 0,5 до 10 мас. %, например 5 мас. %.
5. Датчик (10) по п. 3, отличающийся тем, что по меньшей мере один пластификатор содержит фтор.
6. Датчик (10) по п. 3, отличающийся тем, что полимерный материал содержит по меньшей мере один эластомер.
7. Датчик (10) по п. 6, отличающийся тем, что эластомер выбран из группы, включающей фторкаучук, прежде всего фторкаучук с содержанием фтора по меньшей мере 50 мас. %, предпочтительно по меньшей мере 55 мас. %, более предпочтительно по меньшей мере 60 мас. %, например 65 мас. %, и перфторкаучук, прежде всего перфторкаучук с содержанием фтора по меньшей мере 50 мас. %, предпочтительно по меньшей мере 55 мас. %, более предпочтительно по меньшей мере 60 мас. %, например 65 мас. %.
8. Датчик (10) по п. 1, отличающийся тем, что первый участок (28) окружает по меньшей мере один соединительный провод (18).
9. Датчик (10) по п. 1, отличающийся тем, что второй участок (30) расположен коаксиально первому участку (28).
10. Датчик (10) по п. 1, отличающийся тем, что второй участок расположен внутри первого участка.
11. Датчик (10) по п. 1, отличающийся тем, что его корпус (12) имеет стенку, которая ограничивает его отверстие (14) и с которой соприкасается первый участок (28).
12. Датчик (10) по одному из предыдущих пунктов, отличающийся тем, что его корпус (12) определяет продольную ось (24), коаксиально которой в перпендикулярной ей секущей плоскости расположены два вторых участка (30), которые разделены первым участком (28) и через один из которых при этом проходит продольная ось (24).
RU2014113159A 2011-09-07 2012-07-23 Датчик с уплотнением его корпуса, выполненным из синтетических каучуков с разной эластичностью RU2637375C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011082260.7 2011-09-07
DE102011082260A DE102011082260A1 (de) 2011-09-07 2011-09-07 Messfühler zur Bestimmung mindestens einer Eigenschaft eines Messgases in einem Messgasraum
PCT/EP2012/064395 WO2013034353A1 (de) 2011-09-07 2012-07-23 Messfühler mit gehäusedichtung aus synthesekautschuken mit unterschiedlicher elastizität

Publications (2)

Publication Number Publication Date
RU2014113159A RU2014113159A (ru) 2017-01-23
RU2637375C2 true RU2637375C2 (ru) 2017-12-04

Family

ID=46640652

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014113159A RU2637375C2 (ru) 2011-09-07 2012-07-23 Датчик с уплотнением его корпуса, выполненным из синтетических каучуков с разной эластичностью

Country Status (8)

Country Link
US (1) US9618492B2 (ru)
EP (1) EP2754209B1 (ru)
CN (1) CN103814483B (ru)
BR (1) BR112014005047B1 (ru)
DE (1) DE102011082260A1 (ru)
ES (1) ES2607212T3 (ru)
RU (1) RU2637375C2 (ru)
WO (1) WO2013034353A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013114142A1 (de) * 2013-12-16 2015-06-18 Endress + Hauser Wetzer Gmbh + Co. Kg Sensorvorrichtung und Sensoranordnung mit einer Sensorvorrichtung
DE102014101968A1 (de) * 2014-02-17 2015-08-20 Endress + Hauser Wetzer Gmbh + Co. Kg Messgerät und Messeinsatz für ein solches Messgerät
GB2547463A (en) * 2016-02-19 2017-08-23 Keraflo Ltd Improvements in sensor assemblies
JP2019008879A (ja) * 2017-06-20 2019-01-17 アイシン精機株式会社 異物検知センサ
US20190309432A1 (en) * 2018-04-05 2019-10-10 Jcu International, Inc. Tool for plating resin molded body and method for plating resin molded body using the same
CN109889581B (zh) * 2019-01-29 2020-06-02 北京讯腾智慧科技股份有限公司 一种基于北斗短报文的燃气智能监控系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141813A (en) * 1976-02-19 1979-02-27 Nissan Motor Company, Limited Oxygen sensor particularly useful in exhaust system of automotive engine
DE4034072A1 (de) * 1990-10-26 1992-04-30 Bosch Gmbh Robert Gasmessfuehler, insbesondere zur bestimmung des sauerstoffgehaltes in abgasen von brennkraftmaschinen
US5949023A (en) * 1995-11-15 1999-09-07 Robert Bosch Gmbh Temperature-resistant cable bushing and method for the manufacture of the same
US6150607A (en) * 1997-07-03 2000-11-21 Robert Bosch Gmbh Cable bushing for connecting at least one cable of a gas sensor
DE10121890A1 (de) * 2001-05-05 2002-11-21 Bosch Gmbh Robert Drahtdurchführung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518923A (en) * 1978-07-26 1980-02-09 Fuji Electric Co Ltd Oxygen sensor
US5070597A (en) * 1985-07-19 1991-12-10 Raychem Corporation Tubular article
ZA865383B (en) * 1985-07-19 1988-03-30 Raychem Corp Tubular article
WO1992008127A1 (de) * 1990-10-26 1992-05-14 Robert Bosch Gmbh Gasmessfühler, insbesondere zur bestimmung des sauerstoffgehaltes in abgasen von brennkraftmaschinen
TW345768B (en) * 1994-05-04 1998-11-21 Gen Signal Corp Electrical cable penetration seal with compliant module an electrical cable penetration seal apparatus which includes a compliant module having an inner and outer regions of different durometer characteristics.
US5525073A (en) * 1994-06-01 1996-06-11 Raychem Corporation Environmental protection device with manually operated latch mechanism
EP0781410A1 (de) * 1995-07-18 1997-07-02 Heraeus Electro-Nite International N.V. Sensor zur messung von gaskonzentrationen
DE19705402B4 (de) * 1996-07-17 2007-04-26 Robert Bosch Gmbh Gassensor
JP2002117930A (ja) * 2000-10-06 2002-04-19 Tyco Electronics Amp Kk 防水グロメット
US7564760B2 (en) 2003-07-09 2009-07-21 Lg Electronics, Inc. Recording medium, method of configuring disc control information thereof, recording and reproducing method using the same, and apparatus thereof
DE102004063083B4 (de) * 2004-12-28 2014-10-30 Robert Bosch Gmbh Vorrichtung zur Durchführung elektrischer Anschlusskabel
RU2403475C2 (ru) * 2005-03-28 2010-11-10 Колси Энджиниринг, Инк. Композитное, высокотемпературное динамическое уплотнение и способ его изготовления
GB2461891A (en) * 2008-07-16 2010-01-20 Walker & Co James Ltd An elastomeric seal having high resistance to rapid gas decompression
DE102008042991A1 (de) * 2008-10-21 2010-04-22 Robert Bosch Gmbh Einrichtung zum Abdichten eines Kabeldurchgangs
DE102008044159A1 (de) 2008-11-28 2010-06-02 Robert Bosch Gmbh Messfühler
CN201326835Y (zh) * 2008-12-18 2009-10-14 上海卓尤化工科技有限公司 电缆和管材密封弹性体模块
CN102272566B (zh) * 2009-11-24 2013-09-25 东海橡塑工业株式会社 弯曲传感器及变形形状测量方法
JP5668705B2 (ja) * 2011-06-15 2015-02-12 日立金属株式会社 架橋樹脂組成物、及び架橋樹脂組成物を被覆した電線・ケーブル及びモールド加工電線
US8653384B2 (en) * 2012-01-16 2014-02-18 Greatbatch Ltd. Co-fired hermetically sealed feedthrough with alumina substrate and platinum filled via for an active implantable medical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4141813A (en) * 1976-02-19 1979-02-27 Nissan Motor Company, Limited Oxygen sensor particularly useful in exhaust system of automotive engine
DE4034072A1 (de) * 1990-10-26 1992-04-30 Bosch Gmbh Robert Gasmessfuehler, insbesondere zur bestimmung des sauerstoffgehaltes in abgasen von brennkraftmaschinen
US5949023A (en) * 1995-11-15 1999-09-07 Robert Bosch Gmbh Temperature-resistant cable bushing and method for the manufacture of the same
US6150607A (en) * 1997-07-03 2000-11-21 Robert Bosch Gmbh Cable bushing for connecting at least one cable of a gas sensor
DE10121890A1 (de) * 2001-05-05 2002-11-21 Bosch Gmbh Robert Drahtdurchführung

Also Published As

Publication number Publication date
BR112014005047B1 (pt) 2021-10-13
BR112014005047A2 (pt) 2017-03-21
WO2013034353A1 (de) 2013-03-14
CN103814483A (zh) 2014-05-21
EP2754209B1 (de) 2016-09-14
RU2014113159A (ru) 2017-01-23
DE102011082260A1 (de) 2013-05-08
US9618492B2 (en) 2017-04-11
EP2754209A1 (de) 2014-07-16
US20140326069A1 (en) 2014-11-06
CN103814483B (zh) 2017-03-22
ES2607212T3 (es) 2017-03-29

Similar Documents

Publication Publication Date Title
RU2637375C2 (ru) Датчик с уплотнением его корпуса, выполненным из синтетических каучуков с разной эластичностью
US9927390B2 (en) Gas sensor element, its manufacturing method and gas sensor including the gas sensor element
JP6192689B2 (ja) ガスセンサ素子、及び、ガスセンサ
JP2009097861A (ja) 酸素センサの検査方法、酸素センサの製造方法及び酸素センサの検査装置
Hergert et al. Transfer of hydrophobicity of polymeric insulating materials for high voltage outdoor application
JP3539031B2 (ja) 空燃比センサ
US20060096862A1 (en) Process analytic sensors for demanding applications
US7484401B2 (en) Gas sensor
RU2008107893A (ru) Способ испытаний для оценки диффузии и токов утечки в изоляторах
US9513248B2 (en) Potentiometric sensor
US20150014163A1 (en) stop for sealing a housing of an exhaust gas sensor, exhaust gas sensor, and exhaust gas sensor production
US8042380B2 (en) Gas sensor
US20090312938A1 (en) Gas sensor, oxygen sensor and air-fuel ratio control system
JP7131365B2 (ja) ガスセンサ
JP2007163307A (ja) ガスセンサ
US20050109077A1 (en) Sensing element for determining a physical property of a gas mixture
RU2483299C1 (ru) Твердоэлектролитный датчик для амперометрического измерения концентрации водорода в газовых смесях
JP4542951B2 (ja) ガスセンサの評価方法及びガスセンサの評価装置
JP2021156665A (ja) センサ素子のクラック検出方法及びセンサ素子の評価方法
US20240241097A1 (en) Gas sensor
TWI557410B (zh) 用於調理感測器元件的方法
JP6917923B2 (ja) ガスセンサ素子およびガスセンサ
KR20170077827A (ko) 측정 가스 챔버 내의 측정 가스의 적어도 하나의 특성을 검출하기 위한 센서
JP5892036B2 (ja) ガスセンサ素子の製造方法
EP4062165B1 (fr) Procede de fabrication d'une membrane polymerique pour la detection potentiometrique d'un analyte present dans un fluide