RU2634362C2 - Шина, выполненная с возможностью качения в спущенном состоянии, содержащая гибридный каркасный пласт - Google Patents

Шина, выполненная с возможностью качения в спущенном состоянии, содержащая гибридный каркасный пласт Download PDF

Info

Publication number
RU2634362C2
RU2634362C2 RU2015117434A RU2015117434A RU2634362C2 RU 2634362 C2 RU2634362 C2 RU 2634362C2 RU 2015117434 A RU2015117434 A RU 2015117434A RU 2015117434 A RU2015117434 A RU 2015117434A RU 2634362 C2 RU2634362 C2 RU 2634362C2
Authority
RU
Russia
Prior art keywords
tire
multifilament yarn
reinforcing element
tex
aramid
Prior art date
Application number
RU2015117434A
Other languages
English (en)
Other versions
RU2015117434A (ru
Inventor
Соленн ВАЛЛЕ
Серж ЛЕФЕВР
Жан-Ив ДЕНУЭ
Жереми ГИЙОМЕН
Original Assignee
Компани Женераль Дэз Этаблиссман Мишлен
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Компани Женераль Дэз Этаблиссман Мишлен filed Critical Компани Женераль Дэз Этаблиссман Мишлен
Publication of RU2015117434A publication Critical patent/RU2015117434A/ru
Application granted granted Critical
Publication of RU2634362C2 publication Critical patent/RU2634362C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/005Reinforcements made of different materials, e.g. hybrid or composite cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C2009/0416Physical properties or dimensions of the carcass cords
    • B60C2009/0425Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C2009/0416Physical properties or dimensions of the carcass cords
    • B60C2009/0433Modulus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C2009/0416Physical properties or dimensions of the carcass cords
    • B60C2009/0458Elongation of the reinforcements at break point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C2009/0416Physical properties or dimensions of the carcass cords
    • B60C2009/0466Twist structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C2009/0475Particular materials of the carcass cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C2017/0081Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising special reinforcing means in the crown area
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Tires In General (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Ropes Or Cables (AREA)

Abstract

Изобретение относится к автомобильной промышленности. Шина (10), выполненная с возможностью качения в спущенном состоянии и содержащая самонесущие боковины, имеет каркасную арматуру (32), содержащую по меньшей мере один усилительный элемент (36), содержащий не менее одной мультифиламентной нити (54) из арамида и не менее одной мультифиламентной нити (56) из сложного полиэфира, скрученных вместе. Технический результат – улучшение характеристик шин, способных двигаться в спущенном состоянии. 9 з.п. ф-лы, 4 ил., 2 табл.

Description

Изобретение относится к шине, выполненной с возможностью качения в спущенном состоянии.
Последние годы производители шин ищут возможность отказаться от необходимости перевозки запасного колеса на транспортном средстве, одновременно обеспечивая транспортному средству возможность продолжения движения, несмотря на значительное или полное падение давления в одной или нескольких шинах. Это позволяет, например, доехать до сервисного пункта, не останавливаясь, нередко в опасных обстоятельствах, для установки запасного колеса.
Одним из решений является использование шин, адаптированных для движения в спущенном состоянии и оснащенных самонесущими боковинами (иногда обозначаемых коммерческими названиями на английском языке “ZP” от “zero pressure” или “SST” от “self-supporting tire”).
Из уровня техники известна шина, выполненная с возможностью качения в спущенном состоянии, имеющая гребень, содержащий арматуру гребня, которая образована двумя пластами гребня из усилительных элементов и над которой находится протектор. Гребень продолжен радиально внутрь двумя боковинами. Эти боковины усилены при помощи резиновых вставок, позволяющих выдерживать нагрузки при низком давлении и даже без давления.
Кроме того, шина имеет два борта, каждый из которых содержит бортовое кольцо, а также каркасную арматуру, проходящую от бортов через боковины к гребню и содержащую два каркасных пласта усилительных элементов. Один из пластов закреплен на каждом из бортов посредством оборота вокруг бортового кольца, а другой пласт останавливается радиально снаружи бортового кольца. Оба каркасных пласта содержат текстильные усилительные элементы из вискозы.
Если давление накачки значительно снижается по сравнению с рабочим давлением и даже становится нулевым (в этом случае говорят о «движении в спущенном состоянии»), шина должна позволить пройти определенное расстояние на определенной скорости. Эта характеристика, называемая характеристикой “RME” (режим с увеличенным ресурсом качения), предписана законодательством или конструкторами автомобилей, чтобы производитель мог представить шину как адаптированную для движения в спущенном состоянии.
Если давление накачки близко к рабочему давлению (в этом случае говорят о «нормальном качении»), желательно, чтобы шина имела как можно более высокие характеристики, называемые “RMG” (режим качения в накачанном состоянии). Эти характеристики RMG включают в себя, кроме всех прочих, массу, сопротивление качению или комфорт.
Однако самонесущие боковины приводят к значительному снижению характеристик RMG, в частности, по сравнению со стандартной шиной, не имеющей самонесущих боковин. В частности, масса этих вставок приводит к увеличению общей массы шины. Кроме того, добавление этих вставок неизбежно приводит к увеличению гистерезиса и, следовательно, к увеличению сопротивления качению. Кроме того, эти вставки увеличивают жесткость боковин шины, что снижает комфорт шины.
Изобретение призвано предложить шину, адаптированную для качения в спущенном состоянии, обеспечивающую требуемую характеристику RME и имеющую характеристики RMG, максимально близкие к стандартной шине, не имеющей самонесущих шин.
В связи с этим объектом изобретения является шина, выполненная с возможностью качения в спущенном состоянии, имеющая каркасную арматуру, содержащую по меньшей мере один усилительный элемент, содержащий не менее одной (то есть одну или несколько) мультифиламентной нити из арамида и не менее одной (то есть одну или несколько) мультифиламентной нити из сложного полиэфира, скрученных вместе.
Гибридный усилительный элемент из арамида/сложного полиэфира позволяет использовать разные, но дополняющие друг друга свойства каждого материала. Действительно, усилительный элемент имеет относительно низкий модуль при слабых деформациях (в нормальном режиме качения), в данном случае модуль сложного полиэфира, который оказывается достаточным для обеспечения характеристик RMG. Усилительный элемент имеет относительно высокий модуль при сильных деформациях (в режиме качения в спущенном состоянии), в данном случае модуль арамида, который оказывается достаточным, чтобы самостоятельно обеспечивать характеристику RME.
Комбинированное использование арамида и сложного полиэфира позволяет уменьшить диаметр усилительного элемента благодаря более высокой прочности на разрыв, чем отдельно у вискозы, которая характеризуется эквивалентным усилием разрыва, но при более высоком титре, то есть с относительно большим диаметром. Это позволяет использовать меньшее количество резины для каландрирования гибридных усилительных элементов из арамида/сложного полиэфира по сравнению с усилительными элементами из вискозы. Уменьшение массы резины позволяет снизить стоимость, массу, а также гистерезис и, следовательно, сопротивление качению шины.
Кроме того, изобретение позволяет отказаться от использования вискозы, что дает преимущество в плане экологии и стоимости.
Действительно, предпочтительно диаметр усилительного элемента меньше или равен 1,1 мм и предпочтительно меньше или равен 0,7 мм.
Усилительный элемент называют также крученой прядью. Каждая мультифиламентная нить называется также крученой нитью и содержит множество элементарных филаментов или монофиламентов, в случае необходимости перемешанных друг с другом. Каждая нить содержит от 50 до 2000 монофиламентов.
Следует напомнить, что филаментом из арамида является филамент из линейных макромолекул, образованных ароматическими группами, связанными между собой амидными связями, из которых по меньшей мере 80% напрямую связаны с двумя ароматическими кольцами, и, в частности, из волокон поли(р-фенилена терефталамида) (или ПФД-Т), уже давно производимых из оптически анизотропных композиций пряжи.
Как известно, филаментом из сложного полиэфира называют филамент из линейных макромолекул, образованных группами, связанными между собой эфирными связями. Сложные полиэфиры производят посредством поликонденсации с этерификацией между двухосновной карбоновой кислотой и одним из ее производных в виде диола. Например, полиэтилентерефталат можно производить посредством поликонденсации терефталевой кислоты и этиленгликоля.
Предпочтительно шины могут быть предназначены для легковых автомобилей типа «кроссовера» 4×4, “SUV” (Sport Utility Vehicles).
Предпочтительно каркасная арматура содержит только один каркасный пласт.
Комбинированное использование арамида и сложного полиэфира позволяет получить каркасный пласт, имеющий эквивалентные и даже более высокие свойства механической прочности, в частности, усилия на разрыв, чем свойства двух каркасных пластов из вискозы. Кроме того, уменьшение числа каркасных пластов позволяет снизить стоимость, уменьшить массу, а также гистерезис и, следовательно, сопротивление качению шины.
Присутствие только одного каркасного пласта позволяет получить шину, каркасная арматура которой является более гибкой, чем шина, каркасная арматура которой содержит два каркасных пласта. За счет этого уменьшается вертикальная жесткость шины и улучшается ее комфорт, приближаясь к комфорту стандартной шины, не имеющей самонесущих боковин.
Факультативно шина имеет два борта, каждый из которых содержит по меньшей мере одну кольцевую усилительную структуру, при этом каркасная арматура закреплена в каждом из бортов посредством оборота вокруг кольцевой усилительной структуры.
Предпочтительно шина содержит вставку боковины, расположенную в осевом направлении внутри каркасной арматуры.
Согласно некоторым факультативным признакам шины:
- Титр мультифиламентной нити из арамида составляет от 100 до 400 текс, включая пределы, предпочтительно от 140 до 210 текс, включая пределы.
- Титр мультифиламентной нити из сложного полиэфира составляет от 100 до 500 текс, включая пределы, предпочтительно от 100 до 170 текс, включая пределы.
- Отношение титра мультифиламентной нити из арамида к титру мультифиламентной нити из сложного полиэфира составляет от 0,2 до 4, предпочтительно от 1 до 1,3.
Согласно другим факультативным признакам шины:
- Скручивание мультифиламентной нити из арамида составляет от 250 до 450 поворотов на метр, включая пределы, предпочтительно от 340 до 420 поворотов на метр, включая пределы.
- Скручивание мультифиламентной нити из сложного полиэфира составляет от 250 до 450 поворотов на метр, включая пределы, предпочтительно от 340 до 420 поворотов на метр, включая пределы.
Скручивание каждой нити является достаточно большим, чтобы усилительный элемент был достаточно прочным. Скручивание является также достаточно низким, чтобы получить высокий модуль и, следовательно, улучшить характеристику RME шины.
Под скручиванием мультифиламентной нити следует понимать скручивание, которому подвергают каждую мультифиламентную нить во время этапа конечного соединения по меньшей мере двух мультифиламентных нитей для получения крученой пряди, образующей усилительный элемент.
- Элементарные филаменты, входящие в состав мультифиламентной нити из арамида, скручивают с коэффициентом крутки, составляющим от 65 до 240, включая пределы, предпочтительно от 105 до 160, включая пределы.
- Элементарные филаменты, входящие в состав мультифиламентной нити из сложного полиэфира, скручивают с коэффициентом крутки, составляющим от 65 до 240, включая пределы, предпочтительно от 105 до 160, включая пределы.
Следует напомнить, что в усилительном элементе коэффициент крутки мультифиламентной нити (точнее, элементарных филаментов, входящих в состав упомянутой нити) выражается следующим отношением:
К (Скручивание в поворотах на метр)×[Титр нити (в текс)/(1000⋅ρ)]1/2,
в котором скручивание мультифиламентной нити выражено в поворотах на метр усилительного элемента, титр нити выражен в текс (вес в граммах на 1000 метров нити), и, наконец, ρ является плотностью или объемной массой (в г/см3) материала нити (примерно 1,44 для арамида, 1,25-1,40 для сложных полиэфиров и 1,38 для ПЭТ).
Согласно другим факультативным признакам шины:
- Первоначальный модуль при растяжении усилительного элемента, измеренный при 20°С, превышает или равен 5,5 сН/текс, предпочтительно составляет от 6,5 до 7,9 сН/текс, включая пределы. Такой первоначальный модуль позволяет в режиме нормального качения, при котором деформации являются наиболее слабыми, получить усилительный элемент с повышенной механической прочностью, в данном случае с прочностью сложного полиэфира. Кроме того, улучшается поведение шины, в частности управляемость шины. Такой модуль позволяет также ограничить деформацию шины в сыром состоянии во время укладки в форму перед вулканизацией.
- Конечный модуль при растяжении усилительного элемента, измеренный при 20°С, превышает или равен 10 сН/текс, предпочтительно составляет от 13,5 до 16,5 сН/текс, включая пределы. Такой конечный модуль позволяет в режиме качения в спущенном состоянии, при котором деформации являются наиболее сильными, получить усилительный элемент с повышенной механической прочностью, в данном случае с прочностью арамида. Этот конечный модуль позволяет также компенсировать снижение механической прочности, связанное с деградацией сложного полиэфира при этих деформациях, которые, как правило, происходят при высоких температурах.
- Отношение конечного модуля при растяжении усилительного элемента к первоначальному модулю при растяжении усилительного элемента, измеренных при 20°С, меньше или равно 3, предпочтительно составляет от 1,7 до 2,5, включая пределы.
- Первоначальный модуль при растяжении усилительного элемента, измеренный при 180°С, превышает или равен 1,5 сН/текс, предпочтительно составляет от 1,9 до 2,3 сН/текс, включая пределы.
- Усилие разрыва усилительного элемента превышает или равно 20 даН, предпочтительно превышает или равно 25 даН и еще предпочтительнее превышает или равно 30 даН. Чем больше усилие разрыва, тем лучше сопротивляемость к агрессивным явлениям типа “road hazard”, включающим в себя, в частности, выбоины на дороге или удары по тротуарному бордюру. Такое усилие разрыва позволяет получить шину с повышенной стойкостью к агрессивным воздействиям типа “road hazard”.
- Термическая усадка усилительного элемента после 2 минут при 185°С под предварительным натяжением в 0,5 сН/текс меньше или равна 1,2%. Такая термическая усадка позволяет получить относительно большое значение удлинения при разрыве для усилительного элемента из арамида/сложного полиэфира. Шина менее чувствительна к агрессивным воздействиям типа “road hazard”.
- В варианте термическая усадка усилительного элемента после 2 минут при 185°С под предварительным натяжением в 0,5 сН/текс превышает 1,2%. Такая термическая усадка позволяет получить более высокий первоначальный модуль и, следовательно, более высокую механическую прочность по отношению к слабым воздействиям.
Все вышеупомянутые механические свойства хорошо известны специалисту и в своем большинстве могут быть определены при помощи кривых усилие-удлинение.
Предпочтительно усилительный элемент содержит только одну мультифиламентную нить из арамида и только одну мультифиламентную нить из сложного полиэфира. Такой усилительный элемент позволяет придать шине отличные характеристики RME и RMG. Действительно, благодаря этим двум мультифиламентным нитям ограничивают размер усилительного элемента и, следовательно, вес и сопротивление качению шины.
Предпочтительно каждую нить наматывают в виде спирали вокруг другой нити.
Предпочтительно сложный полиэфир выбирают из группы, в которую входят полиэтилентерефталат (ПЭТ), полиэтиленнафталат (ПЭН), полибутилентерефталат (ПБТ), полибутиленнафталат (ПБН), полипропилентерефталат (ППТ) или полупропиленнафталат (ППН), предпочтительно сложный полиэфир является полиэтилентерефталатом (ПЭТ).
Изобретение будет более очевидно из нижеследующего описания, представленного исключительно в качестве неограничительного примера, со ссылками на прилагаемые чертежи, на которых:
Фиг. 1 изображает вид в радиальном разрезе шины, выполненной с возможностью качения в спущенном состоянии, согласно первому варианту осуществления изобретения.
Фиг. 2 - детальный вид усилительного элемента шины, показанной на Фиг. 1.
Фиг. 3 - вид, аналогичный Фиг. 1, шины согласно второму варианту осуществления.
Фиг. 4 - кривые усилие-удлинение различных усилительных элементов.
При применении термина «радиальный» следует различать несколько разных использований слов специалистом. Во-первых, выражение относится к радиусу шины. Именно в этом смысле о точке А говорят, что она является «радиально внутренней» относительно точки В (или находится «радиально внутри» от точки В), если она находится ближе к оси вращения шины, чем точка В. Вместе с тем, точку С называют «радиально наружной» относительно точки D (или находящейся «радиально снаружи» от точки D), если она находится дальше от оси вращения шины, чем точка D. Говорят о перемещении «радиально внутрь (или наружу)» при перемещении в направлении меньших (или больших) радиусов. Этот смысл термина применяют также, если речь идет о радиальных расстояниях.
С другой стороны, усилительный элемент или арматуру называют «радиальными», если усилительный(ые) элемент(ы) или арматура образуют с окружным направлением угол, превышающий или равный 65° и меньший или равный 90°.
Наконец, под «радиальным разрезом» или «радиальным сечением» следует понимать разрез или сечение в плоскости, которая содержит ось вращения шины.
«Осевое» направление является направлением, параллельным оси вращения шины. Точку Е называют «аксиально внутренней» относительно точки F (или находящейся «аксиально внутри» относительно точки F), если она находится ближе к центральной плоскости шины, чем точка F. Точку G называют «аксиальной наружной» относительно точки Н (или находящейся «аксиально снаружи» относительно точки Н), если она находится дальше от центральной плоскости шины, чем точка Н.
«Центральная плоскость» шины является плоскостью, которая является нормалью к оси вращения шины и которая находится на равном удалении от кольцевых усилительных структур каждого борта.
«Окружное» направление является направлением, одновременно перпендикулярным радиусу шины и осевому направлению.
ПРИМЕРЫ ШИНЫ В СООТВЕТСТВИИ С ИЗОБРЕТЕНИЕМ
На Фиг. 1 в радиальном разрезе схематично показана шина согласно первому варианту выполнения изобретения, обозначенная общей позицией 10. Шина 10 является шиной, выполненной с возможностью качения в спущенном состоянии. Шина предназначена для легкового автомобиля.
Эта шина 10 имеет гребень 12, содержащий арматуру 14 гребня, образованную двумя пластами 16, 18 усилительных элементов гребня и брекером 19. Над арматурой 14 гребня находится протектор 20. В данном случае брекер 19 расположен радиально снаружи пластов 16, 18 между пластами 16, 18 и протектором 20. Две самонесущие боковины 22 продолжают гребень 12 радиально внутрь.
Кроме того, шина 10 имеет два борта 24, радиально внутренних относительно боковин 22 и содержащих, каждый, кольцевую усилительную структуру 26, в данном случае бортовое кольцо 28, над которым находится резиновая масса 30 наполнителя на бортовом кольце, а также радиальную каркасную арматуру 32.
Предпочтительно каркасная арматура 32 содержит только один каркасный пласт 34 усилительных элементов 36, при этом пласт 34 закреплен на каждом из бортов 24 посредством оборота вокруг бортового кольца 28 таким образом, чтобы в каждом борту 24 получить нисходящую ветвь 38, проходящую от бортов через боковины к гребню, и восходящую ветвь 40, при этом радиально наружный конец 42 восходящей ветви 40 находится по существу на половине высоты шины. Каркасная арматура 32 проходит от бортов 24 через боковины 22 к гребню 12.
Резиновые композиции, используемые для пластов гребня 16, 18 и каркаса 34, являются известными композициями для каландрирования усилительных элементов, как правило, на основе натурального каучука, сажи, системы вулканизации и обычных добавок. Если усилительные элементы являются текстильными, как в данном случае в каркасной арматуре, сцепление между текстильным усилительным элементом и обволакивающей его резиновой композицией обеспечивают при помощи обычного клея типа RFL.
Шина 10 содержит также две вставки 44 боковин, аксиально внутренние относительно каркасной арматуры 32. Эти вставки 44 с их характерным радиальным сечением в виде полумесяца предназначены для усиления боковины. Они включают в себя по меньшей мере одну полимерную композицию, предпочтительно резиновую смесь. В документе WO 02/096677 приведены несколько примеров резиновых смесей, которые можно использовать для получения такой вставки. Каждая вставка 44 боковины может участвовать в обеспечении выдерживания нагрузки, соответствующей части веса транспортного средства при ситуации качения в спущенном состоянии.
Шина содержит также внутренний уплотнительный слой 46, предпочтительно из бутила, расположенный аксиально внутри относительно боковин 22 и радиально внутри относительно арматуры 14 гребня и проходящий между двумя бортами 24. Таким образом, вставки 44 боковин расположены в осевом направлении между каркасной арматурой 32 и внутренним слоем 46.
Каркасный пласт 34 содержит текстильные усилительные элементы 36, из которых один показан на Фиг. 2. Усилительные элементы 36 расположены параллельно друг другу. Каждый усилительный элемент 36 является радиальным. Иначе говоря, каждый усилительный элемент 36 расположен в плоскости, по существу параллельной осевому направлению шины 10.
Каждый усилительный элемент 36 содержит мультифиламентную нить 54 из арамида, в данном случае только одну нить, и мультифиламентную нить 54 из сложного полиэфира, в данном случае только одну нить, которые скручены индивидуально на 380 поворотов/метр, затем скручены вместе на 380 поворотов/метр. Обе нити намотаны в виде спирали одна вокруг другой.
Сложный полиэфир выбирают из группы, в которую входят полиэтилентерефталат, полиэтиленнафталат, полибутилентерефталат, полибутиленнафталат, полипропилентерефталат или полипропиленнафталат. В данном случае сложный полиэфир является полиэтилентерефталатом (ПЭТ).
Титр мультифиламентной нити 54 из арамида составляет от 100 до 400 текс, включая пределы, предпочтительно от 140 до 210 текс, включая пределы. В данном случае титр мультифиламентной нити 54 из арамида равен 167 текс.
Титр мультифиламентной нити 56 из сложного полиэфира составляет от 100 до 500 текс, включая пределы, предпочтительно от 100 до 170 текс, включая пределы. В данном случае титр мультифиламентной нити 56 из сложного полиэфира равен 144 текс.
Отношение титра мультифиламентной нити 54 из арамида к титру мультифиламентной нити 56 из сложного полиэфира составляет от 0,2 до 4, предпочтительно от 1 до 1,3, и в данном случае равно 1,16.
Скручивание мультифиламентной нити 54 из арамида составляет от 250 до 450 поворотов на метр, включая пределы, предпочтительно от 340 до 420 поворотов на метр, включая пределы. В данном случае скручивание мультифиламентной нити 54 из арамида равно 380 поворотов на метр.
Скручивание мультифиламентной нити 56 из сложного полиэфира составляет от 250 до 450 поворотов на метр, включая пределы, предпочтительно от 340 до 420 поворотов на метр, включая пределы. В данном случае скручивание мультифиламентной нити 56 из сложного полиэфира равно 380 поворотов на метр.
Таким образом, усилительный элемент содержит нити, имеющие по существу одинаковое скручивание. Речь идет о равномерном скручивании нити.
Элементарные филаменты, входящие в состав мультифиламентной нити 54 из арамида, скручивают с коэффициентом крутки К1, составляющим от 65 до 240, включая пределы, предпочтительно от 105 до 160, включая пределы. В данном случае К1=129.
Элементарные филаменты, входящие в состав мультифиламентной нити 56 из сложного полиэфира, скручивают с коэффициентом крутки К2, составляющим от 65 до 240, включая пределы, предпочтительно от 105 до 160, включая пределы. В данном случае К2=123.
Соотношение К1/К2 между коэффициентами крутки предпочтительно составляет от 0,9 до 1,10, включая пределы.
Первоначальный модуль Mi20 при растяжении усилительного элемента 36, измеренный при 20°С, превышает или равен 5,5 сН/текс, предпочтительно составляет от 6,5 до 7,9 сН/текс, включая пределы. В данном случае Mi20=7,2 сН/текс.
Конечный модуль Mf20 при растяжении усилительного элемента 36, измеренный при 20°С, превышает или равен 10 сН/текс, предпочтительно составляет от 13,5 до 16,5 сН/текс, включая пределы. В данном случае Mf20=15 сН/текс.
Отношение конечного модуля Mf20 к первоначальному модулю Mi20, измеренных при 20°С, меньше или равно 3, предпочтительно составляет от 1,7 до 2,5, включая пределы. В данном случае Mf20/ Mi20=2,1.
Первоначальный модуль Mi180 при растяжении усилительного элемента, измеренный при 180°С, превышает или равен 1,5 сН/текс, предпочтительно составляет от 1,9 до 2,3 сН/текс, включая пределы. В данном случае Mi180=2,1 сН/текс.
Усилие разрыва усилительного элемента 36 превышает или равно 20 даН, предпочтительно превышает или равно 25 даН и еще предпочтительнее превышает или равно 30 даН. В данном случае Fr = 34даН.
Термическая усадка СТ усилительного элемента 36 после 2 минут при 185°С под предварительным натяжением в 0,5 сН/текс меньше или равна 1,2%. В данном случае СТ = 0,8%.
Вышеуказанные значения измерены на непосредственно изготовленных усилительных элементах или на усилительных элементах, извлеченных из усилительного пласта. В варианте вышеуказанные значения измеряют на усилительных элементах, извлеченных из шины.
Для изготовления усилительных элементов 36 скручиванием, как известно, каждую нить конечного усилительного элемента сначала скручивают индивидуально в заданном направлении (например, скручивание по Z посредством 380 поворотов на метр нити) на первом этапе для получения крученой нити, затем скрученные таким образом нити скручивают вместе в обратном направлении (например, скручивание по S посредством 380 поворотов на метр усилительного элемента) для получения крученой пряди, в данном случае конечного усилительного элемента 36.
На Фиг. 3 показана шина согласно второму варианту выполнения изобретения. Элементы, идентичные элементам первого варианта выполнения, имеют такие же обозначения.
В отличие от шины 10 из первого варианта выполнения шина 10 согласно второму варианту выполнения является шиной с укороченной восходящей ветвью. Радиально наружный конец 42 восходящей ветви 40 находится радиально внутри от радиально наиболее наружного края 48 борта 24 в части 50 борта 24, которая должна опираться на край обода.
ИЗМЕРЕНИЯ И СРАВНИТЕЛЬНЫЕ ТЕСТЫ
В таблице 1 для сравнения приведены характеристики усилительного элемента 36 шины в соответствии с изобретением и усилительных элементов других шин.
Шина 10 в соответствии с изобретением описана выше.
Шина I является стандартной шиной, не имеющей самонесущих боковин, и содержит каркасную арматуру, включающую в себя только один каркасный пласт. Каркасный пласт содержит текстильные усилительные элементы. Каждый усилительный элемент содержит две скрученные вместе мультифиламентные нити из ПЭТ.
Шина II выполнена с возможностью качения в спущенном состоянии и содержит каркасную арматуру, включающую в себя два каркасных пласта. Каждый каркасный пласт содержит текстильные усилительные элементы. Каждый усилительный элемент содержит две скрученные вместе мультифиламентные нити из вискозы.
Все приведенные механические свойства измерены на обмазанных клеем текстильных усилительных элементах (то есть готовых к применению или извлеченных из шины), прошедших специальную подготовку; под «специальной подготовкой» следует понимать выдерживание кордов (после сушки) в течение не менее 24 часов до измерения в стандартной атмосфере в соответствии с европейской нормой DIN EN 20139 (температура 20 ± 2°С; влажность 65 ± 2%).
Титр (или линейную плотность) элементарных нитей или усилительных элементов определяют по меньшей мере на двух образцах, каждый из которых соответствует длине не менее 5 м, посредством взвешивания этой длины; титр приводится в текс (вес в граммах на 1000 м изделия - примечание: 0,111 текс = 1 денье).
Как известно, механические свойства измеряют при помощи машины растяжения “INSTRON”, оснащенной зажимами “4D”. Тестируемые образцы подвергают растяжению при первоначальной длине 400 м с номинальной скоростью 200 мм/мин при стандартном предварительном натяжении в 0,5 сН/текс. Все приведенные результаты представляют собой среднее значение из 5 измерений.
Измерения усилия разрыва и удлинения при разрыве (общее удлинение в %) осуществляют при растяжении в соответствии с нормой ISO 6892 от 1984 года, позволяющей также получить кривые усилие-удлинение.
Первоначальный модуль определяют как крутизну в начале кривой усилие-удлинение, которая наступает сразу после стандартного предварительного натяжения в 0,5 сН/текс. Конечный модуль определяют как крутизну в точке, соответствующей 80% усилия разрыва на кривой усилие-удлинение.
На Фиг. 4 показаны кривые усилие-удлинение CI, CII и С10 различных известных шин I, II и шины 10 в соответствии с изобретением.
Таблица 1
Шина I II 10
Кривая усилие-удлинение CI CII C10
Тип нитей ПЭТ/ПЭТ Вискоза/Вискоза Арамид/ПЭТ
Титры нитей (текс) 334/334 184/184 167/144
Скручивание нитей (повороты/м) 270/270) 480/480 380/380
Диаметр (мм) 0,96 0,68 0,65
Коэффициент крутки К1 133 170 129
Коэффициент крутки К2 133 170 123
Усилие разрыва (даН) 40 17 34
Термическая усадка при 185°С (%) 0,8 0 0,8
Первоначальный модуль при 20° (сН/текс) 5,1 7,2 7,2
Конечный модуль при 20° (сН/текс) НЕТ НЕТ 15
Температура стеклообразования (°С) 110 НЕТ НЕТ/110
Температура плавления (°С) 260 НЕТ НЕТ/260
Температура деградации (°С) ~350 ~350 ~450/~350
Упоминание НЕТ указывает, что значения не существует или оно является не существенным.
ПЭТ производится компанией Performance Fiber под названием 1Х50. Вискозу выпускает компания Cordenka под названием Super 3 - T700. Наконец, арамид выпускает компания Teijin под названием Twaron 1000.
ПЭТ имеет относительно низкую температуру плавления, что обуславливает его плохую термическую стабильность в отличие от вискозы или арамида, которые не имеют или почти не имеют термической чувствительности. Таким образом, при качении в спущенном состоянии, то есть при повышенной температуре (по причине нагрева, связанного с падением давления), ПЭТ очень быстро деградирует и больше не обеспечивает своей функции усиления. Что же касается арамида, то он, наоборот, за счет своей высокой термической стабильности обеспечивает свою функцию усиления даже при высокой температуре.
На Фиг. 4 видно, что усилительный элемент 36 (кривая С10) характеризуется более значительными усилием разрыва и жесткостью при сильных деформациях, чем усилительный элемент из вискозы (кривая CII). Кроме того, усилительный элемент 36 (кривая С10) имеет более высокую жесткость при сильных деформациях, чем усилительный элемент из ПЭТ (кривая CI). Таким образом, при качении в спущенном состоянии усилительный элемент 36 придает более высокую структурную жесткость, чем усиления из ПЭТ и из вискозы, в частности, в зоне, соединяющей гребень и боковины шины и называемой плечевой зоной, и в зоне боковины вблизи борта, называемой нижней зоной. Таким образом, усилительный элемент из вискозы придает шине 10 лучшую характеристику RME по сравнению с шиной II.
В таблице 2 сравнили характеристики RMG и характеристику RME шин I, II и 10.
Масса шины
Значение массы указано в относительных единицах (база 100) по отношению к известной шине I. Значение тем меньше значения 100, чем больше масса превышает массу известной шины I.
Сопротивление качению
Сопротивление качению измеряют после этапа термической стабилизации на основании измерения замедления качения колеса, оснащенного тестируемой шиной, прижимаемой к испытательному барабану. Прикладываемая нагрузка равна 8% нагрузки ETRTO (“European Tyre and Rim Technical Organization”).
Значение сопротивления качению указано в относительных единицах (база 100) по отношению к сопротивлению качению известной шины I. Значение тем меньше значения 100, чем больше сопротивление качению по сравнению с известной шиной I.
Комфорт
Комфорт определяют при помощи измерения вертикальной жесткости. Измерение вертикальной жесткости осуществляют на колесе, содержащем динамометрическую ступицу, на которую устанавливают тестируемую шину. Колесо прижимают к испытательному барабану при нагрузке, равной 80% нагрузки ETRTO. Барабан содержит планку, образующую препятствие. Вертикальную жесткость шины определяют на основании усилия, измеряемого динамометрической ступицей. Чем выше усилие, тем больше вертикальная жесткость и тем меньше ощущение комфорта.
Значение вертикальной жесткости указано в относительных единицах (база 100) по отношению к вертикальной жесткости известной шины I. Чем ближе значение к 100, тем меньше вертикальная жесткость по сравнению с известной шиной I и, следовательно, тем лучше комфорт.
Тест качения в спущенном состоянии
Тест качения в спущенном состоянии осуществляют в соответствии с регламентом 30 UNECE. Значение 0 показывает, что тестируемая шина не прошла тест качения в спущенном состоянии. Значение 1 показывает, что тестируемая шина успешно прошла тест качения в спущенном состоянии.
Таблица 2
Шина I II 10
Масса шины 100 73 80
Сопротивление качению 100 94 98
Амортизация 100 92 95
Тест качения в спущенном состоянии 0 1 1
Результаты в таблице 2 показывают, что шина 10 в соответствии с изобретением обеспечивает требуемую характеристику RME (значение 1 при тесте качения в спущенном состоянии) и, среди шин, адаптированных для качения в спущенном состоянии (шины II и 10), имеет характеристики RMG, наиболее близкие к стандартной шине I. Хотя шина 10 в соответствии с изобретением имеет более низкие характеристики RMG, чем стандартная шина I, она все же имеет более высокие характеристики RMG по сравнению с шиной II.
Изобретение не ограничивается описанными выше вариантами выполнения.
Действительно, каркасная арматура 32 шины может содержать два каркасных пласта 34.
Можно также предусмотреть вариант выполнения, в котором восходящая ветвь 40 поднимается между пластом 18 гребня и нисходящей ветвью 38.
Можно также предусмотреть вариант выполнения, в котором каркасная арматура содержит вспомогательный усилительный элемент, проходящий между бортом 24 и гребнем 12 шины. Этот вспомогательный усилительный элемент вставлен между нисходящей 38 и восходящей 40 ветвями и проходит вверх между пластом 18 гребня и нисходящей ветвью 38.
Эти два предыдущих варианта выполнения представляют особый интерес в случае, когда шина имеет только один каркасный пласт, при этом восходящая ветвь 40 или вспомогательный усилительный элемент обеспечивают дополнительное усиление в плечевой зоне шины.
Кроме того, каждая мультифиламентная нить может иметь скручивание, отличное от скручивания другой или других мультифиламентных нитей, чтобы получить усилительный элемент с неравномерным скручиванием.
Можно также комбинировать признаки различных описанных или предполагаемых вариантов выполнения при условии их совместимости между собой.

Claims (10)

1. Шина (10), выполненная с возможностью качения в спущенном состоянии и содержащая самонесущие боковины, имеющая каркасную арматуру (32), содержащую по меньшей мере один усилительный элемент (36), содержащий по меньшей мере одну мультифиламентную нить (54) из арамида и по меньшей мере одну мультифиламентную нить (56) из сложного полиэфира, скрученных вместе.
2. Шина (10) по п. 1, в которой каркасная арматура (32) содержит только один каркасный пласт (34).
3. Шина (10) по любому из пп. 1 или 2, имеющая два борта (24), каждый из которых содержит по меньшей мере одну кольцевую усилительную структуру (26), при этом каркасная арматура (32) закреплена в каждом из бортов (24) посредством оборота вокруг кольцевой усилительной структуры (26).
4. Шина (10) по п. 1, содержащая вставку (44) боковины, расположенную в осевом направлении внутри каркасной арматуры (32).
5. Шина (10) по п. 1, в которой титр мультифиламентной нити (54) из арамида составляет от 100 до 400 текс, включая пределы, предпочтительно от 140 до 210 текс, включая пределы.
6. Шина (10) по п. 1, в которой титр мультифиламентной нити (56) из сложного полиэфира составляет от 100 до 500 текс, включая пределы, предпочтительно от 100 до 170 текс, включая пределы.
7. Шина (10) по п. 1, в которой отношение титра мультифиламентной нити (54) из арамида к титру мультифиламентной нити (56) из сложного полиэфира составляет от 0,2 до 4, предпочтительно от 1 до 1,3.
8. Шина (10) по п. 1, в которой скручивание мультифиламентной нити (54) из арамида составляет от 250 до 450 поворотов на метр, включая пределы, предпочтительно от 34 0 до 420 поворотов на метр, включая пределы.
9. Шина (10) по п. 1, в которой скручивание мультифиламентной нити (56) из сложного полиэфира составляет от 250 до 450 поворотов на метр, включая пределы, предпочтительно от 340 до 420 поворотов на метр, включая пределы.
10. Шина (10) по п. 1, в которой усилительный элемент (36) содержит одну мультифиламентную нить (54) из арамида и одну мультифиламентную нить (56) из сложного полиэфира.
RU2015117434A 2012-10-12 2013-10-11 Шина, выполненная с возможностью качения в спущенном состоянии, содержащая гибридный каркасный пласт RU2634362C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1259756 2012-10-12
FR1259756A FR2996807B1 (fr) 2012-10-12 2012-10-12 Pneumatique adapte pour un roulage a plat comprenant nappe de carcasse hybride.
PCT/EP2013/071260 WO2014057082A1 (fr) 2012-10-12 2013-10-11 Pneumatique adapté pour un roulage à plat comprenant nappe de carcasse hybride

Publications (2)

Publication Number Publication Date
RU2015117434A RU2015117434A (ru) 2016-12-10
RU2634362C2 true RU2634362C2 (ru) 2017-10-26

Family

ID=47598893

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015117434A RU2634362C2 (ru) 2012-10-12 2013-10-11 Шина, выполненная с возможностью качения в спущенном состоянии, содержащая гибридный каркасный пласт

Country Status (10)

Country Link
US (1) US20150239301A1 (ru)
EP (1) EP2906434B1 (ru)
JP (1) JP6202581B2 (ru)
KR (1) KR102121832B1 (ru)
CN (2) CN104703816B (ru)
BR (1) BR112015007873A2 (ru)
FR (1) FR2996807B1 (ru)
IN (1) IN2015DN02308A (ru)
RU (1) RU2634362C2 (ru)
WO (1) WO2014057082A1 (ru)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140360648A1 (en) 2013-06-07 2014-12-11 E. I. Dupont De Nemours And Company Hybrid cord for a pneumatic tire
FR3029540B1 (fr) 2014-12-09 2017-08-25 Michelin & Cie Cable textile cellulosique a au moins triple torsion
FR3029542B1 (fr) 2014-12-09 2017-07-28 Michelin & Cie Cable textile haut module a au moins triple torsion
FR3029541B1 (fr) 2014-12-09 2017-07-28 Michelin & Cie Cable textile aramide a au moins triple torsion
FR3034435B1 (fr) 2015-03-31 2018-03-02 Compagnie Generale Des Etablissements Michelin Element de renfort hybride a torsions differenciees
US10723177B2 (en) 2015-08-31 2020-07-28 The Goodyear Tire & Rubber Company Reduced weight aircraft tire
US11827064B2 (en) * 2015-08-31 2023-11-28 The Goodyear Tire & Rubber Company Reduced weight aircraft tire
JP6743511B2 (ja) * 2016-06-22 2020-08-19 横浜ゴム株式会社 空気入りタイヤ
FR3056215A1 (fr) * 2016-09-19 2018-03-23 Compagnie Generale Des Etablissements Michelin Composite d’elastomere et pneumatique comprenant ce composite
FR3056149A1 (fr) * 2016-09-19 2018-03-23 Compagnie Generale Des Etablissements Michelin Element de renfort, composite d'elastomere et pneumatique comprenant cet element de renfort
PL3521058T3 (pl) * 2016-09-29 2023-05-29 Kolon Industries, Inc. Hybrydowy kord oponowy
KR102376147B1 (ko) * 2016-12-30 2022-03-17 코오롱인더스트리 주식회사 카카스용 하이브리드 타이어 코드 및 그 제조방법
KR102415569B1 (ko) * 2016-09-29 2022-06-30 코오롱인더스트리 주식회사 하이브리드 타이어 코드 및 그 제조방법
FR3059604A1 (fr) 2016-12-05 2018-06-08 Compagnie Generale Des Etablissements Michelin Enveloppe pneumatique equipee d'un organe electronique
FR3059592A1 (fr) 2016-12-05 2018-06-08 Compagnie Generale Des Etablissements Michelin Procede de fabrication d'un patch equipe d'un transpondeur radiofrequence et pneumatique comportant un tel patch
FR3059603A1 (fr) * 2016-12-07 2018-06-08 Compagnie Generale Des Etablissements Michelin Pneumatique adapte pour roulage a plat equipe d’un organe electronique
JP6319409B1 (ja) * 2016-12-09 2018-05-09 横浜ゴム株式会社 空気入りタイヤ
FR3065908A1 (fr) 2017-05-05 2018-11-09 Compagnie Generale Des Etablissements Michelin Pneumatique a couches de travail comprenant des monofilaments
FR3065911A1 (fr) 2017-05-05 2018-11-09 Compagnie Generale Des Etablissements Michelin Pneumatique a couches de travail comprenant des monofilaments
FR3065910A1 (fr) 2017-05-05 2018-11-09 Compagnie Generale Des Etablissements Michelin Pneumatique a couches de travail comprenant des monofilaments
FR3065909A1 (fr) 2017-05-05 2018-11-09 Compagnie Generale Des Etablissements Michelin Pneumatique a couches de travail comprenant des monofilaments
JP6831300B2 (ja) * 2017-06-19 2021-02-17 株式会社ブリヂストン ランフラットタイヤ
FR3067976B1 (fr) * 2017-06-22 2019-07-26 Compagnie Generale Des Etablissements Michelin Pneumatique adapte pour roulage a plat equipe d'un organe electronique
CN107791747A (zh) * 2017-10-30 2018-03-13 卢丽 半钢子午线轮胎
JP7081126B2 (ja) * 2017-12-04 2022-06-07 横浜ゴム株式会社 空気入りタイヤ
JP6910284B2 (ja) * 2017-12-18 2021-07-28 株式会社ブリヂストン 空気入りタイヤ
EP3501847B1 (en) 2017-12-22 2020-11-11 Hankook Tire Co., Ltd. Cord reinforced rubberlayer for a tire, method for manufacturing the same, and tire comprising the same
US20210025084A1 (en) 2018-03-20 2021-01-28 Compagnie Generale Des Etablissements Michelin Improved aramid textile cord with an at least triple twist
EP3768526B1 (fr) * 2018-03-20 2024-05-22 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une unique nappe de carcasse avec une profondeur de déformation dans le flanc améliorée après rodage
CN112204180A (zh) * 2018-03-20 2021-01-08 米其林集团总公司 包括改善的具有至少三重捻的芳纶织物帘线的充气轮胎
JPWO2020080439A1 (ja) 2018-10-17 2021-10-07 株式会社ブリヂストン タイヤ
CN112867611A (zh) * 2018-10-17 2021-05-28 株式会社普利司通 轮胎
KR20210135095A (ko) * 2020-05-04 2021-11-12 한국타이어앤테크놀로지 주식회사 카카스층에 아라미드 코드를 포함하는 타이어
IT202000014512A1 (it) * 2020-06-17 2021-12-17 Pirelli Pneumatico per ruote di veicoli
FR3134344A1 (fr) 2022-04-08 2023-10-13 Compagnie Generale Des Etablissements Michelin Pneumatique adapté pour un roulage à plat et comprenant une couche de sommet ondulée

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2003525A (en) * 1977-08-29 1979-03-14 Goodyear Tire & Rubber Tire cord and pneumatic tire
EP2055817A1 (en) * 2007-10-31 2009-05-06 The Goodyear Tire & Rubber Company Tire comprising a high extensible cut-resistant barrier and fabric therefor
EP2233318A1 (en) * 2007-11-13 2010-09-29 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2233318A (en) * 1939-12-20 1941-02-25 George T Lewis Tractor
JPH0616005A (ja) * 1992-06-30 1994-01-25 Sumitomo Rubber Ind Ltd ラジアルタイヤ
WO2002096677A1 (en) 2001-05-29 2002-12-05 Societe De Technologie Michelin Runflat tire
FR2834724A1 (fr) * 2002-01-17 2003-07-18 Michelin Soc Tech Cables hybrides guipes, leur procede d'obtention et tissus composites pour pneumatiques les incorporant
JP4293507B2 (ja) * 2002-11-28 2009-07-08 東洋ゴム工業株式会社 ランフラットタイヤ
US7165586B2 (en) * 2003-12-22 2007-01-23 The Goodyear Tire & Rubber Company Pneumatic tire with blended composite fiber cords
US7886790B2 (en) * 2005-01-21 2011-02-15 Bridgestone Corporation Run-flat tire
US20090211685A1 (en) * 2005-06-23 2009-08-27 The Yokohama Rubber Co., Lyd Flat Heavy-Duty Pneumatic Radial Tire and Method of Manufacturing the Same
US7721780B2 (en) * 2005-07-21 2010-05-25 The Goodyear Tire & Rubber Company Monoply pneumatic run-flat tire with composite ply cord
EP2222480B1 (en) * 2007-10-24 2011-07-27 Pirelli Tyre S.P.A. Tire having a structural element reinforced with a hybrid yarn
FR2923182B1 (fr) * 2007-11-05 2009-11-20 Michelin Soc Tech Pneumatique avec sommet comportant un element de renfort bielastique
JP2012030737A (ja) * 2010-08-02 2012-02-16 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
US20120085475A1 (en) * 2010-10-07 2012-04-12 Annette Lechtenboehmer Pneumatic tire with a knitted flipper
JP5778930B2 (ja) * 2011-01-19 2015-09-16 株式会社ブリヂストン ランフラットタイヤ
DE102011001593A1 (de) * 2011-03-28 2012-10-04 Continental Reifen Deutschland Gmbh Fahrzeugluftreifen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2003525A (en) * 1977-08-29 1979-03-14 Goodyear Tire & Rubber Tire cord and pneumatic tire
EP2055817A1 (en) * 2007-10-31 2009-05-06 The Goodyear Tire & Rubber Company Tire comprising a high extensible cut-resistant barrier and fabric therefor
EP2233318A1 (en) * 2007-11-13 2010-09-29 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Also Published As

Publication number Publication date
KR20150071701A (ko) 2015-06-26
CN107901707B (zh) 2020-03-06
JP6202581B2 (ja) 2017-09-27
WO2014057082A1 (fr) 2014-04-17
EP2906434A1 (fr) 2015-08-19
KR102121832B1 (ko) 2020-06-11
US20150239301A1 (en) 2015-08-27
JP2015536269A (ja) 2015-12-21
FR2996807A1 (fr) 2014-04-18
IN2015DN02308A (ru) 2015-08-28
BR112015007873A2 (pt) 2017-07-04
CN107901707A (zh) 2018-04-13
EP2906434B1 (fr) 2018-12-19
CN104703816A (zh) 2015-06-10
CN104703816B (zh) 2018-06-05
RU2015117434A (ru) 2016-12-10
FR2996807B1 (fr) 2015-01-02

Similar Documents

Publication Publication Date Title
RU2634362C2 (ru) Шина, выполненная с возможностью качения в спущенном состоянии, содержащая гибридный каркасный пласт
US20140069563A1 (en) Aramid/polyketone composite textile cord
US10688828B2 (en) Hybrid reinforcing element with differential twist
KR101869147B1 (ko) 하이브리드 코드 및 이를 사용한 타이어
JP7154207B2 (ja) 補強要素、エラストマー複合体、及び該補強要素を含むタイヤ
US9944777B2 (en) Rubber composition with high processability for run-flat tire
US20020017351A1 (en) Pneumatic tire
US5309971A (en) Tire flipper structure
US20160082787A1 (en) Run-flat tire comprising a polyester carcass ply
CN110072708B (zh) 弹性体复合材料和包含所述复合材料的轮胎
RU2527878C1 (ru) Пневматическая шина транспортного средства
US20160288577A1 (en) Hybrid reinforcement
US20120298278A1 (en) Carcass ply structure for a pneumatic tire
KR20230082023A (ko) 공압 타이어를 포함하는 장착된 조립체
US20140150948A1 (en) Overlay ply for a pneumatic tire
US20130292022A1 (en) Tire with Thin Sidewalls and Improved Hooping Reinforcement
US20220169078A1 (en) Hybrid cord and tyre with such cord
JP2005343301A (ja) 空気入りラジアルタイヤ
JPH0261129A (ja) タイヤ
RU2806467C2 (ru) Гибридный корд и шина с подобным кордом
US20130118670A1 (en) Pneumatic tire with tackified wrapped reinforcement
US20150059954A1 (en) Pneumatic tire with coated reinforcement

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20190702

Effective date: 20190702