RU2630710C2 - Измеритель разницы давления, оснащенный датчиком - Google Patents

Измеритель разницы давления, оснащенный датчиком Download PDF

Info

Publication number
RU2630710C2
RU2630710C2 RU2014149287A RU2014149287A RU2630710C2 RU 2630710 C2 RU2630710 C2 RU 2630710C2 RU 2014149287 A RU2014149287 A RU 2014149287A RU 2014149287 A RU2014149287 A RU 2014149287A RU 2630710 C2 RU2630710 C2 RU 2630710C2
Authority
RU
Russia
Prior art keywords
primary
pressure
pressure sensor
meter
output signal
Prior art date
Application number
RU2014149287A
Other languages
English (en)
Other versions
RU2014149287A (ru
Inventor
Роберт С. Хедтке
Original Assignee
Росемоунт Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Росемоунт Инк. filed Critical Росемоунт Инк.
Publication of RU2014149287A publication Critical patent/RU2014149287A/ru
Application granted granted Critical
Publication of RU2630710C2 publication Critical patent/RU2630710C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • G01L13/025Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements using diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Группа изобретений относится к средствам измерения давлений технических жидкостей во время производственных процессов. Измеритель переменных процесса для измерения давления технической жидкости включает в себя: первичный вход, который выполнен с возможностью подачи первичного давления процесса, и вторичный вход, выполненный с возможностью подачи вторичного давления процесса; датчик дифференциального давления, который соединяется с первичным и вторичным входом и передает выходной сигнал, связанный с разницей между первичным и вторичным давлением; датчик первичного давления, который соединяется с первичным входом и передает выходной сигнал, связанный с первичным давлением, причем датчик первичного давления напрямую контактирует с технической жидкостью; фланец, включающий в себя по меньшей мере несколько первичных и вторичных входов, а также канал прямого соединения, который объединяет датчик первичного давления с первичным входом, и схему измерителя, выполненную с возможностью передачи измерителем выходного сигнала, основанного на выходящем сигнале датчика дифференциального давления, и дальнейшего предоставления расширенных функциональных возможностей в зависимости от сигнала, поступающего от датчика первичного давления. Также реализован и второй вариант измерителя переменных технологического процесса, а также способ измерения давления технологической жидкости при помощи таких измерителей. Изобретения позволяют функционировать измерителям давления жидкости в том случае, если изоляционная диафрагма окажется в нерабочем состоянии. 3 н. и 15 з.п. ф-лы, 6 ил.

Description

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
[0001] Настоящее изобретение относится к измерению давлений технических жидкостей во время производственных процессов. В частности, настоящее изобретение относится к измерению линейного давления в измерителе разницы давления.
[0002] Производственные процессы используются при изготовлении и транспортировке многих типов материалов. В таких системах зачастую требуется измерение различных типов давления в рамках такого процесса. Один из типов давления, которое чаще всего измеряется во время процесса, это дифференциальное давление. Это разница давления между двумя этапами процесса. Например, значение дифференциального давления вдоль измерительной диафрагмы в трубопроводе с потоком технической жидкости связано со скоростью потока жидкости. Дифференциальные давления могут также использоваться, к примеру, для измерения высоты подъема технической жидкости в баке или контейнере.
[0003] В производственных процессах датчики давления обычно содержатся в или соединены с измерителем давления, который расположен в удаленном месте и передает информацию о давлении в централизованный пункт, например, в диспетчерский пункт. Измерения обычно осуществляются через контур управления процессом. Так, например, обычно используются двухпроводные контуры управления, два провода которых передают информацию и питание для измерителя. Также могут использоваться беспроводные контуры управления процессом.
[0004] Благодаря развитию технологии измерения давления увеличилось количество информации, которая может передаваться от измерителя. В частности, измерители могут быть оснащены многоканальными датчиками для измерения многократных вводов переменной процесса или более широкого диапазона одной переменной процесса. К примеру, измерители могут иметь многоканальные датчики давления, как описано в патенте США №5495769, выданном Бродену и соавторам, в патенте США №6047244, выданном Руду мл., и патенте США №7467555, выданном Шульте и соавторам, которые закреплены за компанией Rosemount Inc., Шанхассен, Миннесота.
[0005] Во многих технологических установках кроме измерения разницы давления, желательно также осуществлять измерение абсолютного или манометрического (также называемого «линейное давление») рабочего давления. Эта информация может быть использована, например, для обеспечения более точных измерений потока путем включения данных об изменении плотности технической жидкости при вычислении потока. Давление может также измеряться с помощью отдельного датчика давления.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0006] Измеритель переменных процесса для измерения давления технической жидкости включает в себя первичный вход, который выполнен с возможностью подачи первичного рабочего давления и вторичный вход, выполненный с возможностью подачи вторичного рабочего давления. Датчик дифференциального давления соединяется с первичным и вторичным входами и передает выходной сигнал, связанный с разницей между первичным и вторичным давлением. Датчик первичного давления соединен с первичным входом и передает выходной сигнал, связанный с первичным давлением. Схема измерителя обеспечивает передачу выходного сигнала измерителя на основании выходного сигнала датчика дифференциального давления, и в дальнейшем обеспечивает расширенные функциональные возможности на основании сигнала, поступающего от датчика первичного давления.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0007] На рис. 1 продемонстрирована система измерения процесса с рабочим измерителем, сконструированным в соответствии с предлагаемым изобретением.
[0008] На рис. 2 представлена упрощенная блок-схема рабочего измерителя с рис. 1.
[0009] На рис. 3A показан схематический вид сбоку рабочего измерителя с рис. 1, а на рис. 3B представлен вид в поперечном разрезе сбоку модуля датчика, повернутого на 90 градусов.
[0010] На рис. 4 изображен датчик линейного давления в поперечном разрезе.
[0011] На рис. 5 представлен вид снизу модуля датчика давления с рис. 3.
[0012] На рис. 6 представлен вид сверху фланца выполненного с возможностью подсоединения к модулю датчика давления с рис. 5.
ПОДРОБНОЕ ОПИСАНИЕ ПОЯСНИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0013] В одном из вариантов осуществления изобретения, настоящее изобретения предоставляет аппарат и способ для расширения функциональных возможностей измерителя разницы давления с использованием по меньшей мере одного датчика линейного давления. В частности, в каком-то аспекте настоящее изобретение включает в себя датчик линейного давления, который напрямую связан с рабочим давлением и используется для проведения диагностики и обеспечения другого рода функциональности. Датчик давления напрямую контактирует с технической жидкостью через канал прямого соединения, который ведет к технической жидкости. Этот канал может располагаться во фланце, который используется для соединения измерителя давления и технической жидкости или, как вариант, этот канал может быть сформирован внутри самого измерителя давления.
[0014] На рис. 1 показаны основные условия размещения системы измерения процесса 32. На рис. 1 показана сеть трубопроводов 30, в которых содержится жидкость под давлением. Система измерения процесса 32 включает в себя импульсную обвязку 34, которая соединяет сеть трубопроводов 30 с измерителем рабочего давления 36. Первичный элемент 33, такой как, например, измерительная диафрагма, мерное сопло, расходометр и т.д., контактирует с технической жидкостью в определенном месте в сети трубопроводов 30 между трубами импульсной обвязки 34. Первичный элемент 33 вызывает изменение давления жидкости, когда она протекает вдоль этого первичного элемента 33, которое измеряется измерителем 36 и связано со скоростью потока.
[0015] Контур управления процессом 38 может обеспечивать подачу питания к измерителю 36 от диспетчерского пункта 40 и двунаправленный обмен информацией, а также производить операции в соответствии с протоколом обмена данными по процессу. На продемонстрированном примере контур управления процессом 38 является двухпроводным. Двухпроводной контур используется для подачи питания к измерителю 36 и передачи данных от него и к нему во время нормальной работы с помощью передачи сигнала в 4-20 мА. Диспетчерский пункт 40 включает в себя источник питания 46 и последовательное сопротивление 44. В другом варианте конфигурации, контур 38 являет собой беспроводное соединение, в котором данные могут передаваться и/или приниматься по беспроводной связи по конфигурации «точка-точка», сетчатую схему или другую конфигурацию с измерителем 36, имеющим свой собственный источник питания.
[0016] На рис. 2 показана упрощенная блок-схема, демонстрирующая измеритель давления 36. Измеритель давления 36 включает в себя модуль датчика 52 и электронную плату 72, которые соединены через шину передачи данных 66. Электроника модуля датчика 60 включает в себя датчик дифференциального давления 56, который принимает информацию о значениях давления Д1 и Д2 технической жидкости и передает выходной сигнал 58, который связан с дифференциальным давлением по аналогии с цифровым преобразователем 62. Кроме памяти модуля датчика 64 также продемонстрирован опциональный датчик температуры 63. Электронная плата 72 включает в себя систему с мини-ЭВМ или микропроцессор 74, память модуля электроники 76, цифро-аналоговый преобразователь сигнала 78 и блок передачи цифровой информации 80.
[0017] На рис. 2 также продемонстрированы капиллярные или «наполнительные» трубы 93 и 94, которые используются для соединения датчика дифференциального давления 56 с технической жидкостью 54. Изоляционные диафрагмы 90 получают значения давления Д1 и Д2 технической жидкости, которые соответствующим образом применяются для заполняющей жидкости, которая протекает в капиллярных трубах 93 и 94. По этой заполняющей жидкости значения давления технической жидкости распространяются на датчик дифференциального давления 56.
[0018] В соответствии с продемонстрированными вариантами осуществления изобретения, датчики линейного давления 304A и 304B напрямую соединены со значениями давления Д1 и Д2 соответственно и передают выходной сигнал, который связан со значениями давления по аналогии со схемой цифрового преобразования 62. Микропроцессорная система 74 может контролировать значения линейного давления Д1 и Д2. Датчики давления 304А и 304B могут функционировать в соответствии с известными способами, включая способы измерения давления, при которых происходит изменение электрической емкости датчиков 304A и 304B, изменение электрического сопротивления, изменение резонансной частоты и прочие изменения. Ниже более детально описывается одна из специальных конфигураций.
[0019] На рис. 3A схематически продемонстрирован один из вариантов осуществления измерителя давления 36 с модулем датчика 52 и блоком электроники измерителя 136. Модуль датчика 52 включает в себя корпус 54, в котором расположена электроника 60, датчик дифференциального давления 56, изоляционные или наполнительные трубы 93 и 94, а также изоляционные диафрагмы 90. Модуль датчика 52 также включает в себя датчики линейного давления 304A и 304B, которые не показаны на рис. 3А. Блок электроники измерителя 136 имеет корпус 164, выходной интерфейс 170 и электронную плату 72.
[0020] В соответствии с продемонстрированными вариантами осуществления изобретения, датчик 56 являет собой емкостный датчик измерения дифференциального давления с измерительной диафрагмой, расположенной между двумя пластинчатыми электродами. Датчик 56 соединен с давлением Д1 и Д2 через основание 54 с изоляционными трубами 93 и 94, в которых находится гидравлическая заполняющая жидкость. Изоляционные диафрагмы 90 отделяют заполняющую жидкость в изоляционных трубах 93 и 94 от технической жидкости, распределяя давления Д1 и Д2 между ними. Изменение значений давления Д1 и Д2 технической жидкости измеряются как дифференциальное давление ΔД датчиком 56. Настоящее изобретение не ограничивается этой конфигурацией измерения дифференциального давления.
[0021] В соответствии с продемонстрированным вариантом осуществления изобретения, модуль датчика 52 включает в себя датчик линейного давления 304A, который находится в корпусе модуля 52. В дополнении к этому на рис. 3B представлен вид в поперечном разрезе модуля датчика 52, повернутого на 90° по отношению к рис. 3A. На рис. 3B показаны оба датчика 304A и 304B. На рис. 3A датчик 304A находится в полости модуля 52, который изолирован вторичным герметичным уплотнением 300. Кроме этого, также показана проходная муфта под давлением 302. Проходная муфта под давлением 302 поддерживает датчик 304A в полости. В конфигурации, которая изображена на рис. 3A и 3B, датчики давления 304A и 304B выполнены с возможностью прямого контакта с технической жидкостью через прямое соединение или отверстие 296, 298. В некоторых конфигурациях датчик вторичного давления 304B обеспечивает соединение с вторичным давлением. Датчики давления 304A, B соединены с электронной схемой 60 измерителя.
[0022] На рис. 3A также показан фланец 380, который используется для соединения измерителя 36 с технической жидкостью. Ниже фланец 380 описан более детально в соответствии с рис. 6 и включает в себя впускные напорные отверстия 386, которые расположены таким образом, чтобы подавать рабочее давление Д1 и Д2 для диафрагм 90 через выпускные напорные отверстия под первичным (или дифференциальным) давлением 387. Кроме того, фланец 380 включает в себя выпускные напорные отверстия под вторичным давлением 396 и 398 (см. рис. 6) для создания прямого контакта между давлением Д1 и Д2 и датчиками 304A и 304B через каналы прямого соединения 400 и 402 соответственно.
[0023] В соответствии с описанным вариантом осуществления изобретения, датчики линейного давления 304A и 304B являют собой емкостные датчики абсолютного давления. В одной из конфигураций датчики 304A и 304B функционируют в соответствии с описанием, предложенном в патенте США №6484585, выданном Ситтлеру и соавторам и в сериях соответствующих патентов, которые закреплены за компанией Rosemount Inc., Шанхассен, Миннесота. Такие датчики работают по способу, в котором используются хрупкие сенсорные материалы с высокой прочностью на сжатие. Одним из подходящих хрупких материалов является сапфир. Чтобы обеспечить для измерителя расширенные функциональные возможности, значения давления Д1 и Д2, измеренные датчиками давления 304A и 304B, можно сравнить друг с другом и произвести сигнал, отражающий дифференциальное давление ΔД, которое может использоваться в сравнении с дифференциальным давлением ΔД, измеренным датчиком 56 или вместо него. Эта разница между выходными сигналами датчиков 304A и 304B может использоваться для того, чтобы определить значительную разницу давления, провести диагностику и калибровку для датчика 56 или предоставить другие функциональные возможности. Таким образом, датчики 56, 304A и 304B могут использоваться в различных сценариях для измерения линейного давления и предоставления расширенных функциональных возможностей для измерителя.
[0024] На рис. 4 изображен датчик линейного давления 304 в поперечном разрезе сбоку. В примере, представленном на рис. 4, датчик линейного давления 304 состоит из двух сапфировых подложек 220 и 222, склеенных вместе и формирующих между собой вакуумную полость 224. Вакуумная полость 224 включает в себя две обкладки конденсатора (не изображены), которые соединены с электрическими соединительными выводами 226. Электрические соединительные выводы 226 соединены со схемой платы датчика 156. Также имеется припаянная полоса металла 230, которая используется для соединения датчика 304 и корпуса.
[0025] Возвращаясь опять к рис. 2, необходимо отметить, что сигналы, поступающие от датчиков давления 56, 304A и 304B, принимаются схемой измерителя 36. Этой схемой может быть, например, схема в модуле датчика 52 или на электронной плате 72. К примеру, схема микропроцессора 74 может обрабатывать сигналы линейного давления, чтобы предоставить расширенные функциональные возможности для измерителя 36. К таким расширенным функциональным возможностям относится диагностика, расширенный диапазон измерения, избыточные измерения датчика, калибровка, расчет дополнительных переменных процесса, таких как массовая скорость потока и т.д.
[0026] Могут использоваться дополнительные датчики давления 304A и 304B, чтобы расширить диапазон, в рамках которого устройство может измерять давление. Например, датчики линейного давления 304A и 304B могут использоваться для того, чтобы определить дифференциальное давление технической жидкости в случаях, когда дифференциальное давление превышает верхний предел диапазона измерений датчика давления 56. Хотя такая конфигурация и может привести к снижению точности измерений разницы давления, в некоторых случаях такой выбор оптимального соотношения является приемлемым для того, чтобы расширить диапазон измерения.
[0027] Датчики 304A и 304B могут использоваться для того, чтобы позволить осуществлять измерения излишнего дифференциального давления с целью дальнейшего применения этих данных для проведения диагностики датчика. Можно провести сравнение значения разницы давления, измеряемого линейными датчиками 304A и 304B и значения, измеренного с помощью датчиков дифференциального давления 56. Микропроцессор 74 использует разницы между этими двумя измерениями, чтобы определить неисправный датчик.
[0028] В одном из вариантов конфигурации датчики давления 304A и 304B используются, чтобы обеспечить измерение разницы давления, если датчик дифференциального давления 56 неисправен или осуществляет неточное измерение. Эта конфигурация позволяет измерителю 36 функционировать в ограниченном режиме (режиме нестабильной работы) с пониженной точностью до тех пор, пока оборудование, вышедшее из строя, не будет отремонтировано или заменено. Если микропроцессорная система 74 определяет, что датчик 56 вышел из строя, микропроцессор 74 может рассчитать разницу давления по выходным сигналам, поступающим от датчиков 304A и 304B. Поскольку датчики 304A и 304B находятся в прямом контакте с рабочей жидкостью, они могут продолжать функционировать, даже если одна из изоляционных диафрагм 90 или труб 93 и 94 вышла из строя. Диагностическая информация, как, например, данные о том, что переменная процесса, является неточной, поскольку измеритель работает в режиме нестабильной работы. Эта конфигурация позволяет продолжить осуществление производственного процесса, вероятнее всего при пониженной производительности, до проведения ремонта.
[0029] В другом варианте конфигурации диагностика проводится микропроцессорной системой 74 на датчиках давления 304A и 304B на основании данных о разнице давления, измеренной датчиком дифференциального давления 56. Во время нормальной работы давление, измеряемое одним из датчиков дифференциального давления 304A или 304B должно по существу равняться сумме или разнице между давлением, измеренным другим датчиком линейного давления 304A или 304B, и разницей давления, измеренной датчиком дифференциального давления 56. Аналогичным образом, датчики 304A и 304B могут использоваться для определения закупорки импульсной обвязки или вышедшего из строя первичного элемента.
[0030] В описанных вариантах осуществления изобретения также могут использоваться сенсоры двух разных типов, чтобы обеспечить для датчиков разные частотные характеристики. К примеру, металлическая диафрагма, которая используется в датчике дифференциального давления 56, выступает в качестве фильтра нижних частот, фильтруя повышенный рабочий частотный шум в давлениях, которые подаются на датчик 56. С другой стороны, сапфировые датчики линейного давления 304A и 304B имеют высокочастотную характеристику и способны обеспечивать более быстрый процесс измерения. Эта высокочастотная характеристика может использоваться для измерения сигналов шума с каждой стороны датчика дифференциального давления 56. Она может использоваться для создания расширенной статистики процесса и проведения диагностики, например, для определения забитой импульсной линии или другой отказавшей детали в ходе процесса. Кроме того, эти сигналы линейного давления могут использоваться для калибровки датчика дифференциального давления 56, а также для компенсации измерения разницы давления для любых изменений из-за высокого линейного давления. К примеру, конфигурация датчиков давления 304A и 304B, описанная выше, обеспечивает относительно стабильные измерения в течение большого периода времени. Так как датчики 304A и 304B работают достаточно стабильно, их измерения могут использоваться для калибровки расхождений в измерениях, осуществляемых датчиком давления 56. Таким образом, калибровка может проводиться микропроцессором 74. В другом случае, дополнительные измерения давления, которые проводятся датчиками линейного давления 304A и 304B, могут использоваться для корректировки линейного давления микропроцессором 74 на измерения давления датчиком дифференциального давления 56. В одном из вариантов конфигурации могут использоваться два измерения с датчиков абсолютного или линейного давления для более точной корректировки параметров измерений разницы давления. Алгоритм корректировки может быть реализован в микропроцессоре 74 на основании калибровочной информации, которая занесена в память устройства 76, показанном на рис. 2.
[0031] В одном из вариантов конфигурации для датчиков линейного давления 304A и 304B установлен верхний предел диапазона измерений в 5000 фунт/кв. дюйм. Поскольку описанные здесь датчики линейного давления 304A и 304B работают в соответствии с изменениями емкости, различные операции и компоненты в системе измерений могут также использоваться и для датчика дифференциального давления 56, например, датчик температуры 63, показанный на рис. 2, который также может функционировать в зависимости от изменений емкости. В одном из вариантов осуществления изобретения датчик температуры (не указан) оснащен двумя датчиками 304A и/или 304B. Такой датчик может использоваться для компенсации изменений температуры в измерениях давления. Также к датчику 304A и/или 304B может быть подсоединен эталонный конденсатор (не указан) для дальнейшего повышения точности измерений абсолютного давления.
[0032] На рис. 5 представлен вид снизу модуля датчика 52 и показаны прямые соединения или отверстия под давлением 296 и 298. Прямые соединительные отверстия 296, 298 соединяют полости модуля 52, в которых располагаются датчики 304A, B и имеют уплотнительное кольцо или другого рода уплотнение. Нижняя поверхность модуля давления 52 имеет болтовые отверстия 320, выполненные с возможностью присоединения к фланцу 380 (показан на рис. 6). Также показаны резьбовые отверстия 322 для соединения с фланцем. Соединения 296 и 298 используются для соединения давлений Д1 и Д2.
[0033] Согласно одному из вариантов осуществления изобретения, на рис. 6 представлен вид сверху фланца, выполненного с возможностью подсоединения к нижней поверхности модуля датчика 52, который показан на рис. 5. Фланец 380 включает в себя болтовые отверстия 382, выполненные с возможностью подсоединения к болтовым отверстиям 320, которые представлены на рис. 5. Аналогичным образом, отверстия 384 расположены таким образом, чтобы к ним можно было присоединять резьбовые отверстия 322, показанные на рис. 5. Впускные напорные отверстия 386 расположены таким образом, чтобы иметь возможность подавать рабочее давление для диафрагм 90, продемонстрированных на рис. 5. Кроме того, фланец 380 включает в себя вторичные выпускные напорные отверстия 396 и 398, выполненные с возможностью подсоединения к прямым рабочим соединениям 296 и 298, которые показаны на рис. 5. Внутренние каналы прямого соединения 400 и 402 соединяют отверстия 396 и 398 с напорными отверстиями 296 и 298 соответственно.
[0034] В настоящем изобретении датчики абсолютного давления расположены таким образом, чтобы измерять рабочее давление напрямую без промежуточной диафрагмы или заполняющей жидкости. Таким образом, если диафрагма находится в состоянии неисправности, датчики абсолютного давления продолжают функционировать. В вышеприведенных примерах каналы прямого соединения образованы во фланце. Однако согласно другому варианту конфигурации каналы прямого соединения формируются внутри модуля датчика 52 и исходят из места расположения вблизи диафрагм 90 к полостям, в которых располагаются датчики 304A и 304B.
[0035] Хотя настоящее изобретение описано с учетом предпочтительных вариантов осуществления изобретения, специалисты в данной отрасли признают, что в форму и содержание можно вносить изменения без отступления от существа и объема настоящего изобретения. Датчики линейного давления могут быть соединены с Д1 и Д2 любым надлежащим образом и не ограничиваются продемонстрированными здесь конфигурациями. Различные функции, описанные выше, могут быть реализованы с помощью любой подходящей схемы, а реализация таких функций может делиться между компонентами, внедренными с помощью той же самой или отдельной схемы. В данном контексте понятие «схема измерителя» относится к любой схеме измерителя 36. В данном контексте под понятием «расширенные функциональные возможности» подразумевается: диагностика системы, диагностика компонента, диагностика процесса, диагностика измерителя, диагностика датчика, расширенный рабочий диапазон, калибровка компонентов, статистические измерения процесса и ограниченная работа устройства в случае отказа компонента. В настоящем изобретении, как минимум один датчик абсолютного давления соединен с рабочим давлением в измерителе давления. Дополнительный датчик давления напрямую соединен с рабочим давлением через отверстие, которое используется для соединения датчика дифференциального давления и технической жидкости. В одной из конфигураций предусматривается наличие диафрагмы, которая отделяет техническую жидкость от датчика дифференциального давления путем закрепления изоляционной жидкости на одной стороне диафрагмы, которая направляет давление технической жидкости к датчику дифференциального давления. В подобном варианте конфигурации, дополнительный датчик давления может быть напрямую соединен с технической жидкостью со стороны изоляционной диафрагмы, подверженной воздействию технической жидкости. В таком случае дополнительный датчик соединяется с технической жидкостью на стороне диафрагмы, содержащей техническую жидкость. В этом варианте конфигурации дополнительный датчик непосредственно подвергается воздействию технической жидкости.

Claims (35)

1. Измеритель переменных процесса для измерения давления технической жидкости, который включает в себя:
первичный вход, который выполнен с возможностью подачи первичного давления процесса, и вторичный вход, выполненный с возможностью подачи вторичного давления процесса;
датчик дифференциального давления, который соединяется с первичным и вторичным входом и передает выходной сигнал, связанный с разницей между первичным и вторичным давлением;
датчик первичного давления, который соединяется с первичным входом и передает выходной сигнал, связанный с первичным давлением, причем датчик первичного давления напрямую контактирует с технической жидкостью;
фланец, включающий в себя по меньшей мере несколько первичных и вторичных входов, а также канал прямого соединения, который объединяет датчик первичного давления с первичным входом,
и схему измерителя, выполненную с возможностью передачи измерителем выходного сигнала, основанного на выходящем сигнале датчика дифференциального давления, и дальнейшего предоставления расширенных функциональных возможностей в зависимости от сигнала, поступающего от датчика первичного давления.
2. Измеритель переменных процесса по п. 1, отличающийся тем, что датчик первичного давления состоит из хрупкого материала со сформированной в нем полостью, и тем, что выходной сигнал из датчика первичного давления связан с деформацией полости.
3. Измеритель переменных процесса по п. 1, отличающийся тем, что измеритель выполнен с возможностью расчета разницы давления на основании сигнала, поступающего от датчика первичного давления.
4. Измеритель переменных процесса по п. 1, отличающийся тем, что датчик первичного давления имеет частотную характеристику, превышающую частотную характеристику датчика дифференциального давления.
5. Измеритель переменных процесса по п. 1, отличающийся тем, что его расширенные функциональные возможности включают в себя определение забитой импульсной линии.
6. Измеритель переменных процесса по п. 1 с датчиком вторичного давления соединен с вторичным входом и имеет выходной сигнал, связанный с вторичным давлением.
7. Измеритель переменных процесса по п. 6, отличающийся тем, что его расширенные функциональные возможности включают в себя калибровку датчика дифференциального давления на основе выходных сигналов датчиков первичного и вторичного давления.
8. Измеритель переменных процесса по п. 6, отличающийся тем, что его расширенные функциональные возможности включают в себя диагностику датчика дифференциального давления, которая осуществляется на основе выходных сигналов датчиков первичного и вторичного давления.
9. Измеритель переменных процесса по п. 1 с первичной/вторичной изоляционными диафрагмами, которые отделяют техническую жидкость в первичном и вторичном входах от датчика дифференциального давления, причем техническая жидкость находится на первой стороне диафрагм, а заполняющая жидкость располагается на второй стороне диафрагм, и эта заполняющая жидкость переносит первичное и вторичное давление к датчикам дифференциального давления.
10. Измеритель переменных процесса по п. 1 с каналом прямого соединения между первичным входом и датчиком первичного давления в корпусе измерителя переменных процесса.
11. Метод измерения давления технологической жидкости в измерителе переменных процесса, который включает в себя:
соединение первичного канала с первичным рабочим давлением;
соединение вторичного канала с вторичным рабочим давлением;
измерение разницы давления между первичным рабочим давлением и вторичным рабочим давлением с помощью датчика дифференциального давления в измерителе переменных процесса, который напрямую соединен с первичным и вторичным каналами;
измерение первичного рабочего давления с помощью датчика первичного давления, напрямую контактирующего с технической жидкостью в первичном канале;
передачу выходного сигнала измерителя, связанного с разницей давления, измеренной датчиком дифференциального давления; и
обеспечение расширенных функциональных возможностей для измерителя переменных процесса на основании выходного сигнала датчика первичного давления,
при этом первичный и вторичный каналы образованы во фланце, который напрямую соединяет датчик первичного давления с первичным входом измерителя переменных процесса.
12. Метод по п. 11, отличающийся тем, что датчик первичного давления состоит из хрупкого материала со сформированной в нем полостью, и тем, что выходной сигнал из датчика первичного давления связан с деформацией полости.
13. Метод по п. 11 с измерением вторичного давления с помощью датчика вторичного давления и расчетом разницы давления на основании выходных сигналов из датчиков первичного и вторичного давления.
14. Метод по п. 11 с закупоркой измеряемого трубопровода, основанной на измеренном первичном рабочем давлении.
15. Метод по п. 11 с диагностикой работы датчика дифференциального давления, которая осуществляется на основе измеренного первичного рабочего давления.
16. Метод по п. 11 с калибровкой датчика дифференциального давления на основе измеренного первичного рабочего давления.
17. Измеритель переменных процесса для измерения давления технической жидкости, который включает в себя:
первичную изоляционную диафрагму с возможностью соединения с первичным рабочим давлением и вторичную изоляционную диафрагму с возможностью соединения с вторичным рабочим давлением;
датчик дифференциального давления, который с помощью технической жидкости связан с первичной и вторичной диафрагмой с выходным сигналом, связанным с разницей между первичным и вторичным давлением;
датчик первичного давления, который напрямую контактирует с технической жидкостью и передает выходной сигнал, связанный с первичным давлением;
схему измерителя, выполненную с возможностью передачи измерителем выходного сигнала, основанного на выходящем сигнале датчика дифференциального давления, поступающего от датчика первичного давления; и
фланец с первичным входом, который соединяет первичное рабочее давление с первичной диафрагмой, и вторичный вход, который соединяет вторичное рабочее давление с вторичной диафрагмой, причем фланец включает первичный внутренний канал, который соединяет первичный вход с датчиком первичного давления.
18. Измеритель переменных процесса по п. 17, отличающийся тем, что фланец включает в себя вторичный внутренний канал, который соединяет вторичный вход с датчиком вторичного давления в измерителе переменных процесса.
RU2014149287A 2012-06-19 2013-04-08 Измеритель разницы давления, оснащенный датчиком RU2630710C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/527,075 US8752433B2 (en) 2012-06-19 2012-06-19 Differential pressure transmitter with pressure sensor
US13/527,075 2012-06-19
PCT/US2013/035605 WO2013191792A1 (en) 2012-06-19 2013-04-08 Differential pressure transmitter with pressure sensor

Publications (2)

Publication Number Publication Date
RU2014149287A RU2014149287A (ru) 2016-08-10
RU2630710C2 true RU2630710C2 (ru) 2017-09-12

Family

ID=48036443

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014149287A RU2630710C2 (ru) 2012-06-19 2013-04-08 Измеритель разницы давления, оснащенный датчиком

Country Status (10)

Country Link
US (1) US8752433B2 (ru)
EP (1) EP2861950B1 (ru)
JP (1) JP6088050B2 (ru)
CN (2) CN202869733U (ru)
AU (1) AU2013277694B2 (ru)
BR (1) BR112014031769A2 (ru)
CA (1) CA2876385C (ru)
IN (1) IN2014MN02486A (ru)
RU (1) RU2630710C2 (ru)
WO (1) WO2013191792A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU188122U1 (ru) * 2018-12-26 2019-03-29 Общество с ограниченной ответственностью Научно-производственная компания "Геоэлектроника сервис" Датчик избыточного давления в напорном трубопроводе

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535540A (ja) 2005-03-01 2008-09-04 マシモ・ラボラトリーズ・インコーポレーテッド 非侵襲的マルチパラメータ患者モニタ
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US8813572B2 (en) * 2011-12-06 2014-08-26 Rosemount Inc. Ferrofluid modified fill fluid for pressure transmitters
US8701497B2 (en) * 2012-03-22 2014-04-22 Frederick H. Grenning Fluid flow testing system
US8752433B2 (en) * 2012-06-19 2014-06-17 Rosemount Inc. Differential pressure transmitter with pressure sensor
US9804050B2 (en) * 2013-03-14 2017-10-31 Kulite Semiconductor Products, Inc. Systems and methods for sensor drift compensation
US9442031B2 (en) * 2013-06-28 2016-09-13 Rosemount Inc. High integrity process fluid pressure probe
DE102014102719A1 (de) * 2014-02-28 2015-09-03 Endress + Hauser Gmbh + Co. Kg Differenzdruckmessaufnehmer
EP3123256B1 (en) * 2014-03-28 2021-09-08 Rosemount Inc. Process variable transmitter with loop-powered wireless transceiver
DE102015117222A1 (de) * 2014-10-10 2016-04-14 Steering Solutions Ip Holding Corporation Zweikanaliger Drucksensor mit einer einzigen Verbindungsöffnung
CN104316258B (zh) * 2014-10-29 2016-05-18 成都众山科技有限公司 方便固定的无线压力变送装置
DE102014119240A1 (de) * 2014-12-19 2016-06-23 Endress + Hauser Gmbh + Co. Kg Durchflussmessanordnung nach dem Differenzdruckmessprinzip zur Messung eines Durchflusses eines Mediums
CN104574796B (zh) * 2015-02-03 2016-11-23 浙江三锋实业股份有限公司 一种链锯的供油监测报警系统
FR3037142B1 (fr) * 2015-06-03 2018-11-02 Safran Electronics & Defense Dispositif de mesure de pression a fiabilite amelioree et procede de calibrage associe
DE102015109450A1 (de) 2015-06-12 2016-12-15 Abb Schweiz Ag Vorrichtung zur Messung des Drucks eines durch eine Rohrleitung strömendes Fluid
CN105547381A (zh) * 2015-12-25 2016-05-04 潍柴动力股份有限公司 一种发动机进气流量的测量装置
US11226242B2 (en) 2016-01-25 2022-01-18 Rosemount Inc. Process transmitter isolation compensation
DE102016218667A1 (de) * 2016-09-28 2018-03-29 Robert Bosch Gmbh Drucksensorvorrichtung sowie Drucksensor
US11226255B2 (en) * 2016-09-29 2022-01-18 Rosemount Inc. Process transmitter isolation unit compensation
RU2645799C1 (ru) * 2016-11-10 2018-02-28 Акционерное общество "Научно-исследовательский институт теплоэнергетического приборостроения" АО "НИИТеплоприбор" Способ поверки дифференциально-индуктивного датчика избыточного давления
US10429870B2 (en) 2016-11-30 2019-10-01 Honeywell International Inc. Startup control for multi-drop transmitters powered by current limited power supplies
US10627302B2 (en) * 2017-06-16 2020-04-21 Rosemount Inc. Pressure sensor module for high working pressure applications
CN107270981A (zh) * 2017-07-05 2017-10-20 中国石油天然气股份有限公司 孔板流量计
DE102017131066A1 (de) * 2017-12-22 2019-06-27 Endress+Hauser SE+Co. KG Verfahren zum Bereitstellen von kalibrierten Druckmessumformern
US11041773B2 (en) 2019-03-28 2021-06-22 Rosemount Inc. Sensor body cell of a pressure sensor
CN110501110A (zh) * 2019-08-12 2019-11-26 联合汽车电子有限公司 压力传感器
US11371867B2 (en) 2020-11-16 2022-06-28 Rosemount Inc. Fluid flow obstruction device for a process fluid flow measurement device
US11940307B2 (en) 2021-06-08 2024-03-26 Mks Instruments, Inc. Methods and apparatus for pressure based mass flow ratio control
US11204292B1 (en) 2021-06-17 2021-12-21 King Abdulaziz University Deformable pressure sensor and methods of use thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945605A (en) * 1997-11-19 1999-08-31 Sensym, Inc. Sensor assembly with sensor boss mounted on substrate
US6484585B1 (en) * 1995-02-28 2002-11-26 Rosemount Inc. Pressure sensor for a pressure transmitter
US20100010755A1 (en) * 2006-07-20 2010-01-14 Christoph Paulitsch Method for diagnosing an impulse line blockage in a pressure trasducer, and pressure transducer
US20120006119A1 (en) * 2010-07-12 2012-01-12 Broden David A Differential pressure transmitter with complimentary dual absolute pressure sensors

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2533339A (en) 1946-06-22 1950-12-12 Jabez Burns & Sons Inc Flammable vapor protection
FR941804A (fr) 1947-02-15 1949-01-21 Piezo Electricite Soc D Expl D Dispositif piézométrique
US3012432A (en) 1957-09-23 1961-12-12 Richard H Moore Leak tester
US3169402A (en) 1961-08-16 1965-02-16 Sheffield Corp Pressure differential gage
GB1023042A (en) 1962-05-07 1966-03-16 Wayne Kerr Lab Ltd Improvements in or relating to pressure responsive apparatus
US3232712A (en) 1962-08-16 1966-02-01 Continental Lab Inc Gas detector and analyzer
US3374112A (en) 1964-03-05 1968-03-19 Yeda Res & Dev Method and apparatus for controlled deposition of a thin conductive layer
US3249833A (en) 1964-11-16 1966-05-03 Robert E Vosteen Capacitor transducer
FR1438366A (fr) 1965-03-22 1966-05-13 B A R A Appareil de mesure de force ou pression
DE1932899U (de) 1965-12-10 1966-02-17 Seitz Automaten G M B H Selbstverkaeufer fuer flaschen oder in dergleichen behaelter abgepackte waren oder fluessigkeiten.
US3557621A (en) 1969-07-07 1971-01-26 C G S Scient Corp Inc Variable capacitance detecting devices
US3561832A (en) 1969-12-05 1971-02-09 Hewlett Packard Co Quartz resonator pressure transducer
GB1354025A (en) 1970-05-25 1974-06-05 Medicor Muevek Capacitive pressure transducer
US3924219A (en) 1971-12-22 1975-12-02 Minnesota Mining & Mfg Gas detection device
US3808480A (en) 1973-04-16 1974-04-30 Bunker Ramo Capacitive pressure transducer
DE2605756A1 (de) 1975-03-13 1976-09-23 Exxon Nuclear Co Inc Druckmesseinrichtung
US4008619A (en) 1975-11-17 1977-02-22 Mks Instruments, Inc. Vacuum monitoring
US4177496A (en) 1976-03-12 1979-12-04 Kavlico Corporation Capacitive pressure transducer
US4158217A (en) 1976-12-02 1979-06-12 Kaylico Corporation Capacitive pressure transducer with improved electrode
US4120206A (en) 1977-01-17 1978-10-17 Rosemount Inc. Differential pressure sensor capsule with low acceleration sensitivity
US4168518A (en) 1977-05-10 1979-09-18 Lee Shih Y Capacitor transducer
US4161123A (en) 1978-08-25 1979-07-17 Dresser Industries, Inc. Pressure gauge construction
US4227419A (en) 1979-09-04 1980-10-14 Kavlico Corporation Capacitive pressure transducer
US4244226A (en) 1979-10-04 1981-01-13 Honeywell Inc. Distance measuring apparatus and a differential pressure transmitter utilizing the same
US4434451A (en) 1979-10-29 1984-02-28 Delatorre Leroy C Pressure sensors
US4287553A (en) 1980-06-06 1981-09-01 The Bendix Corporation Capacitive pressure transducer
US4336567A (en) 1980-06-30 1982-06-22 The Bendix Corporation Differential pressure transducer
US4332775A (en) 1980-07-03 1982-06-01 Battelle Memorial Institute Hydrogen generator utilizing solar energy to dissociate water
US4370890A (en) 1980-10-06 1983-02-01 Rosemount Inc. Capacitive pressure transducer with isolated sensing diaphragm
US4358814A (en) 1980-10-27 1982-11-09 Setra Systems, Inc. Capacitive pressure sensor
US4422335A (en) 1981-03-25 1983-12-27 The Bendix Corporation Pressure transducer
US4458537A (en) 1981-05-11 1984-07-10 Combustion Engineering, Inc. High accuracy differential pressure capacitive transducer
US4389895A (en) 1981-07-27 1983-06-28 Rosemount Inc. Capacitance pressure sensor
US4466290A (en) 1981-11-27 1984-08-21 Rosemount Inc. Apparatus for conveying fluid pressures to a differential pressure transducer
US4455874A (en) 1981-12-28 1984-06-26 Paroscientific, Inc. Digital pressure transducer
US4422125A (en) 1982-05-21 1983-12-20 The Bendix Corporation Pressure transducer with an invariable reference capacitor
DE3238430A1 (de) 1982-10-16 1984-04-19 Philips Patentverwaltung Gmbh, 2000 Hamburg Differenzdrucksensor
CH658726A5 (de) 1983-01-31 1986-11-28 Standard St Sensortechnik Ag Hydraulischer druckaufnehmer.
US4558184A (en) 1983-02-24 1985-12-10 At&T Bell Laboratories Integrated capacitive transducer
US4644796A (en) 1983-06-21 1987-02-24 Quartztronics, Inc. Pressure measurement apparatus and method
DE3340834A1 (de) 1983-11-11 1985-05-23 Philips Patentverwaltung Gmbh, 2000 Hamburg Schaltungsanordnung zur konstanthaltung der temperaturabhaengigen empfindlichkeit eines differenzdruckmessgeraetes
US4739666A (en) 1983-12-12 1988-04-26 Pfister Gmbh Flat-spread force measuring device
US4490773A (en) 1983-12-19 1984-12-25 United Technologies Corporation Capacitive pressure transducer
JPS60133320A (ja) 1983-12-22 1985-07-16 Ishida Scales Mfg Co Ltd 荷重検出器
US4538466A (en) 1984-02-06 1985-09-03 Kerber George L Capacitance pressure transducer and method of fabrication therefor
US4542436A (en) 1984-04-10 1985-09-17 Johnson Service Company Linearized capacitive pressure transducer
US4678904A (en) 1984-07-06 1987-07-07 Technology Dynamics, Inc. Optical measuring device using a spectral modulation sensor having an optically resonant structure
US4562742A (en) 1984-08-07 1986-01-07 Bell Microcomponents, Inc. Capacitive pressure transducer
US4578735A (en) 1984-10-12 1986-03-25 Knecht Thomas A Pressure sensing cell using brittle diaphragm
US4586108A (en) 1984-10-12 1986-04-29 Rosemount Inc. Circuit for capacitive sensor made of brittle material
US4670733A (en) 1985-07-01 1987-06-02 Bell Microsensors, Inc. Differential pressure transducer
GB2178536B (en) 1985-07-22 1989-08-31 Quartztronics Inc At-cut crystal resonator pressure transducer
JPS62184325A (ja) 1986-02-07 1987-08-12 Seiko Instr & Electronics Ltd 水晶式気体圧力計
US4860232A (en) 1987-04-22 1989-08-22 Massachusetts Institute Of Technology Digital technique for precise measurement of variable capacitance
FR2614986B1 (fr) 1987-05-07 1989-08-18 Otic Fischer & Porter Structure de cellule capacitive pour la mesure des pressions differentielles
US4785669A (en) 1987-05-18 1988-11-22 Mks Instruments, Inc. Absolute capacitance manometers
US4864874A (en) 1987-08-05 1989-09-12 Pfister Gmbh Force measuring device
US4875369A (en) 1987-09-08 1989-10-24 Panex Corporation Pressure sensor system
JPH01141328A (ja) 1987-11-27 1989-06-02 Hitachi Ltd 差圧伝送器
US4878385A (en) 1988-02-02 1989-11-07 Fisher Controls International, Inc. Differential pressure sensing apparatus
US4878012A (en) 1988-06-10 1989-10-31 Rosemount Inc. Charge balanced feedback transmitter
US4977480A (en) 1988-09-14 1990-12-11 Fuji Koki Mfg. Co., Ltd. Variable-capacitance type sensor and variable-capacitance type sensor system using the same
US4926674A (en) 1988-11-03 1990-05-22 Innovex Inc. Self-zeroing pressure signal generator
US4951174A (en) 1988-12-30 1990-08-21 United Technologies Corporation Capacitive pressure sensor with third encircling plate
CH687277A5 (de) 1989-01-23 1996-10-31 Balzers Hochvakuum Stimmgabelquarz-Manometer.
US4949581A (en) * 1989-06-15 1990-08-21 Rosemount Inc. Extended measurement capability transmitter having shared overpressure protection means
US5144841A (en) 1990-02-23 1992-09-08 Texas Instruments Incorporated Device for measuring pressures and forces
US5194819A (en) 1990-08-10 1993-03-16 Setra Systems, Inc. Linearized capacitance sensor system
US5094109A (en) 1990-12-06 1992-03-10 Rosemount Inc. Pressure transmitter with stress isolation depression
EP0496956B1 (de) 1991-01-31 1997-01-15 Pfister Messtechnik GmbH Übertragungselement für Kraft- oder Momentmessvorrichtungen
US5136885A (en) 1991-04-05 1992-08-11 Tif Instruments, Inc. Quartz crystal pressure sensor
US5168419A (en) 1991-07-16 1992-12-01 Panex Corporation Capacitor and pressure transducer
DE4124662A1 (de) 1991-07-25 1993-01-28 Fibronix Sensoren Gmbh Relativdrucksensor
US5230250A (en) 1991-09-03 1993-07-27 Delatorre Leroy C Capacitor and pressure transducer
JP3182807B2 (ja) 1991-09-20 2001-07-03 株式会社日立製作所 多機能流体計測伝送装置及びそれを用いた流体量計測制御システム
JPH05296867A (ja) 1992-04-23 1993-11-12 Hitachi Ltd 差圧伝送器
US5233875A (en) 1992-05-04 1993-08-10 Kavlico Corporation Stable capacitive pressure transducer system
US5329818A (en) 1992-05-28 1994-07-19 Rosemount Inc. Correction of a pressure indication in a pressure transducer due to variations of an environmental condition
US5492016A (en) 1992-06-15 1996-02-20 Industrial Sensors, Inc. Capacitive melt pressure measurement with center-mounted electrode post
US5446279A (en) 1993-08-27 1995-08-29 Hughes Aircraft Company Fiber optic sensor sensing curvature of a diaphragm
US5471882A (en) 1993-08-31 1995-12-05 Quartzdyne, Inc. Quartz thickness-shear mode resonator temperature-compensated pressure transducer with matching thermal time constants of pressure and temperature sensors
SG44494A1 (en) 1993-09-07 1997-12-19 R0Semount Inc Multivariable transmitter
CA2169824A1 (en) * 1993-09-24 1995-03-30 Roger L. Frick Pressure transmitter isolation diaphragm
DE4333753A1 (de) 1993-10-04 1994-05-11 Bosch Gmbh Robert Kapazitiver Differenzdrucksensor
US5542300A (en) 1994-01-24 1996-08-06 Setra Systems, Inc. Low cost, center-mounted capacitive pressure sensor
US5642301A (en) 1994-01-25 1997-06-24 Rosemount Inc. Transmitter with improved compensation
US5415048A (en) 1994-06-27 1995-05-16 Texaco Inc. Acoustic gas-liquid flow meter
WO1996017235A1 (en) 1994-11-30 1996-06-06 Rosemount Inc. Pressure transmitter with fill fluid loss detection
US5637802A (en) * 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
US5705978A (en) 1995-09-29 1998-01-06 Rosemount Inc. Process control transmitter
US5992240A (en) 1995-11-21 1999-11-30 Fuji Electric Co., Ltd. Pressure detecting apparatus for measuring pressure based on detected capacitance
US5757608A (en) 1996-01-25 1998-05-26 Alliedsignal Inc. Compensated pressure transducer
US6654697B1 (en) 1996-03-28 2003-11-25 Rosemount Inc. Flow measurement with diagnostics
US5668322A (en) 1996-06-13 1997-09-16 Rosemount Inc. Apparatus for coupling a transmitter to process fluid having a sensor extension selectively positionable at a plurality of angles
US5680109A (en) 1996-06-21 1997-10-21 The Foxboro Company Impulse line blockage detector systems and methods
DE19633630A1 (de) 1996-08-21 1998-02-26 Endress Hauser Gmbh Co Auswerteeinheit eines Differenzdrucksensors
US20040015069A1 (en) 1996-12-27 2004-01-22 Brown David Lloyd System for locating inflamed plaque in a vessel
JPH10197316A (ja) * 1997-01-16 1998-07-31 Hitachi Ltd 密度補正形液面検出装置
US6250164B1 (en) 1997-02-12 2001-06-26 Medtronic, Inc. Measurement of fluid pressure within a tube
US5911162A (en) 1997-06-20 1999-06-08 Mks Instruments, Inc. Capacitive pressure transducer with improved electrode support
US6047244A (en) 1997-12-05 2000-04-04 Rosemount Inc. Multiple range transition method and apparatus for process control sensors
US6003219A (en) 1998-04-24 1999-12-21 Rosemount Inc. Method of making a pressure transmitter having pressure sensor having cohered surfaces
US5922965A (en) * 1998-04-28 1999-07-13 Rosemount Inc. Pressure sensor and transmitter having a weld ring with a rolling hinge point
US6236096B1 (en) 1998-10-06 2001-05-22 National Science Council Of Republic Of China Structure of a three-electrode capacitive pressure sensor
JP3567089B2 (ja) 1998-10-12 2004-09-15 株式会社日立製作所 静電容量式圧力センサ
DE19853789C1 (de) 1998-11-21 2000-02-03 Mtu Muenchen Gmbh Differenzdruckgeber
US6363792B1 (en) * 1999-01-29 2002-04-02 Kulite Semiconductor Products, Inc. Ultra high temperature transducer structure
US6301973B1 (en) 1999-04-30 2001-10-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-intrusive pressure/multipurpose sensor and method
US6171253B1 (en) 1999-05-04 2001-01-09 Apex Medical, Inc. Flat tube pressure sensor
US6295875B1 (en) 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
US6508131B2 (en) 1999-05-14 2003-01-21 Rosemount Inc. Process sensor module having a single ungrounded input/output conductor
US6473711B1 (en) * 1999-08-13 2002-10-29 Rosemount Inc. Interchangeable differential, absolute and gage type of pressure transmitter
DE69936794T2 (de) 1999-08-20 2008-04-30 Hitachi, Ltd. Halbleiterdrucksensor und vorrichtung zur erfassung von drucken
US6701274B1 (en) 1999-08-27 2004-03-02 Rosemount Inc. Prediction of error magnitude in a pressure transmitter
JP2001074578A (ja) * 1999-09-02 2001-03-23 Fuji Electric Co Ltd 差圧測定装置の温度特性調整方法
US6520020B1 (en) 2000-01-06 2003-02-18 Rosemount Inc. Method and apparatus for a direct bonded isolated pressure sensor
US6543291B1 (en) 2000-01-06 2003-04-08 Kulite Semiconductor Products, Inc. Wet-to-wet pressure sensing assembly
US6662662B1 (en) 2000-05-04 2003-12-16 Rosemount, Inc. Pressure transmitter with improved isolator system
DE60122554T2 (de) 2000-10-24 2007-05-10 Rosemount Inc., Eden Prairie Inline-druckgeber
US7330271B2 (en) 2000-11-28 2008-02-12 Rosemount, Inc. Electromagnetic resonant sensor with dielectric body and variable gap cavity
GB2391617B (en) 2000-11-28 2005-05-18 Rosemount Inc Optical sensor for measuring physical and material properties
US6497152B2 (en) 2001-02-23 2002-12-24 Paroscientific, Inc. Method for eliminating output discontinuities in digital pressure transducers and digital pressure transducer employing same
US6516672B2 (en) 2001-05-21 2003-02-11 Rosemount Inc. Sigma-delta analog to digital converter for capacitive pressure sensor and process transmitter
US6828801B1 (en) 2001-10-26 2004-12-07 Welch Allyn, Inc. Capacitive sensor
US6675655B2 (en) 2002-03-21 2004-01-13 Rosemount Inc. Pressure transmitter with process coupling
US6647794B1 (en) 2002-05-06 2003-11-18 Rosemount Inc. Absolute pressure sensor
DE50205041D1 (de) * 2002-09-26 2005-12-29 Grundfos As Verfahren zur Erfassung eines Differenzdruckes
AU2003287645A1 (en) 2002-11-12 2004-06-03 Cidra Corporation An apparatus having an array of piezoelectric film sensors for measuring parameters of a process flow within a pipe
US20040093951A1 (en) 2002-11-20 2004-05-20 Viola Jeffrey L. Magnetoelastic pressure sensor
ITMI20030514A1 (it) 2003-03-18 2004-09-19 Uni Degli Studi Brescia Metodo e dispositivo per determinare la frequenza di
EP1631797A2 (en) 2003-06-05 2006-03-08 CiDra Corporation Apparatus for measuring velocity and flow rate of a fluid having a non-negligible axial mach number using an array of sensors
JP4624351B2 (ja) 2003-07-18 2011-02-02 ローズマウント インコーポレイテッド プロセス診断法
US7215529B2 (en) 2003-08-19 2007-05-08 Schlegel Corporation Capacitive sensor having flexible polymeric conductors
US6959607B2 (en) 2003-11-10 2005-11-01 Honeywell International Inc. Differential pressure sensor impulse line monitor
US7523667B2 (en) 2003-12-23 2009-04-28 Rosemount Inc. Diagnostics of impulse piping in an industrial process
US6945582B2 (en) 2003-12-31 2005-09-20 E-Lead Electronics Co., Ltd. Central armrest display device
JP4187251B2 (ja) 2004-03-30 2008-11-26 日信工業株式会社 車両用ブレーキ液圧制御装置及び常閉型の電磁弁
US7159468B2 (en) * 2004-06-15 2007-01-09 Halliburton Energy Services, Inc. Fiber optic differential pressure sensor
DE102004047959A1 (de) 2004-10-01 2006-04-06 Siemens Ag Verfahren und Vorrichtung zur Bestimmung des Drucks in Rohren
US7379629B1 (en) 2004-12-12 2008-05-27 Burns David W Optically coupled resonant pressure sensor
JP5312806B2 (ja) 2005-02-28 2013-10-09 ローズマウント インコーポレイテッド プロセスデバイス診断装置および診断方法
US7577543B2 (en) 2005-03-11 2009-08-18 Honeywell International Inc. Plugged impulse line detection
US7401522B2 (en) 2005-05-26 2008-07-22 Rosemount Inc. Pressure sensor using compressible sensor body
US7334484B2 (en) 2005-05-27 2008-02-26 Rosemount Inc. Line pressure measurement using differential pressure sensor
US7490519B2 (en) * 2005-09-30 2009-02-17 General Electric Company System and method for sensing differential pressure
US7412893B2 (en) 2006-03-23 2008-08-19 Rosemount Inc. Redundant mechanical and electronic remote seal system
US7467555B2 (en) 2006-07-10 2008-12-23 Rosemount Inc. Pressure transmitter with multiple reference pressure sensors
US7275444B1 (en) 2006-07-13 2007-10-02 Kulite Semiconductor Products, Inc. Pressure transducer apparatus adapted to measure engine pressure parameters
US7461562B2 (en) 2006-08-29 2008-12-09 Rosemount Inc. Process device with density measurement
US7692539B2 (en) * 2006-12-28 2010-04-06 Rosemount Inc. Automated mechanical integrity verification
US7454975B2 (en) * 2007-04-06 2008-11-25 Rosemount Inc. Expansion chamber for use with a pressure transmitter
US7624642B2 (en) 2007-09-20 2009-12-01 Rosemount Inc. Differential pressure sensor isolation in a process fluid pressure transmitter
US7526962B1 (en) * 2008-01-18 2009-05-05 Kulike Semiconductor Products, Inc. High pressure delta P sensor
KR20120102816A (ko) * 2008-05-01 2012-09-18 마이크로 모우션, 인코포레이티드 유량계 파라미터의 이상으로부터 진단을 하기 위한 방법
US7607362B1 (en) * 2008-05-21 2009-10-27 Ford Motor Company Flowmeter and a use thereof for measuring fluid flow independently of fluid's state property
US7954383B2 (en) * 2008-12-03 2011-06-07 Rosemount Inc. Method and apparatus for pressure measurement using fill tube
US7775117B2 (en) * 2008-12-11 2010-08-17 Kulite Semiconductor Products, Inc. Combined wet-wet differential and gage transducer employing a common housing
US8015882B2 (en) * 2009-06-04 2011-09-13 Rosemount Inc. Industrial process control pressure transmitter and flange coupling
US8752433B2 (en) * 2012-06-19 2014-06-17 Rosemount Inc. Differential pressure transmitter with pressure sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6484585B1 (en) * 1995-02-28 2002-11-26 Rosemount Inc. Pressure sensor for a pressure transmitter
US5945605A (en) * 1997-11-19 1999-08-31 Sensym, Inc. Sensor assembly with sensor boss mounted on substrate
US20100010755A1 (en) * 2006-07-20 2010-01-14 Christoph Paulitsch Method for diagnosing an impulse line blockage in a pressure trasducer, and pressure transducer
US20120006119A1 (en) * 2010-07-12 2012-01-12 Broden David A Differential pressure transmitter with complimentary dual absolute pressure sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU188122U1 (ru) * 2018-12-26 2019-03-29 Общество с ограниченной ответственностью Научно-производственная компания "Геоэлектроника сервис" Датчик избыточного давления в напорном трубопроводе

Also Published As

Publication number Publication date
WO2013191792A1 (en) 2013-12-27
JP6088050B2 (ja) 2017-03-01
EP2861950A1 (en) 2015-04-22
US8752433B2 (en) 2014-06-17
CN103512630A (zh) 2014-01-15
CN202869733U (zh) 2013-04-10
JP2015520400A (ja) 2015-07-16
CA2876385A1 (en) 2013-12-27
BR112014031769A2 (pt) 2017-06-27
AU2013277694B2 (en) 2016-02-25
CN103512630B (zh) 2017-08-25
IN2014MN02486A (ru) 2015-07-17
EP2861950B1 (en) 2024-08-14
CA2876385C (en) 2016-11-29
US20130333440A1 (en) 2013-12-19
AU2013277694A1 (en) 2015-01-22
RU2014149287A (ru) 2016-08-10

Similar Documents

Publication Publication Date Title
RU2630710C2 (ru) Измеритель разницы давления, оснащенный датчиком
RU2531849C1 (ru) Передатчик дифференциального давления с комплементарными сдвоенными датчиками абсолютного давления
CN101490521B (zh) 具有多个参考压力传感器的压力传送器
JP5409965B2 (ja) ライン圧力測定を伴う差圧センサ
JP4960383B2 (ja) プロセス流体差圧トランスミッタを用いた湿性ガスのインディケーション
US20040177703A1 (en) Flow instrument with multisensors
JP2008542726A (ja) 差圧センサを用いるライン圧測定
JP2009530641A (ja) 冗長な機械式及び電子式遠隔シールシステム
US20070151349A1 (en) Pressure sensor with deflectable diaphragm
RU2662463C1 (ru) Диафрагма в форме лопасти со встроенными отверстиями для отбора давления
JP7106756B2 (ja) 遠隔シールダイヤフラムシステム

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200409