RU2628164C2 - Система отображения трехмерной виртуальной и дополненной реальности - Google Patents
Система отображения трехмерной виртуальной и дополненной реальности Download PDFInfo
- Publication number
- RU2628164C2 RU2628164C2 RU2014125226A RU2014125226A RU2628164C2 RU 2628164 C2 RU2628164 C2 RU 2628164C2 RU 2014125226 A RU2014125226 A RU 2014125226A RU 2014125226 A RU2014125226 A RU 2014125226A RU 2628164 C2 RU2628164 C2 RU 2628164C2
- Authority
- RU
- Russia
- Prior art keywords
- eye
- observer
- projection device
- diffraction pattern
- image
- Prior art date
Links
- 230000000903 blocking effect Effects 0.000 claims abstract description 5
- 230000000007 visual effect Effects 0.000 claims description 12
- 210000001747 pupil Anatomy 0.000 claims description 5
- 239000004973 liquid crystal related substance Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 230000003111 delayed effect Effects 0.000 claims description 3
- 238000012800 visualization Methods 0.000 claims description 3
- 239000004606 Fillers/Extenders Substances 0.000 claims 1
- 230000004308 accommodation Effects 0.000 abstract description 12
- 238000003384 imaging method Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 230000003190 augmentative effect Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 7
- 230000008447 perception Effects 0.000 description 7
- 210000004556 brain Anatomy 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 241000501300 Bombyliidae Species 0.000 description 1
- 206010019233 Headaches Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000003464 asthenopia Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 description 1
- 125000001475 halogen functional group Chemical group 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/388—Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
- H04N13/39—Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume the picture elements emitting light at places where a pair of light beams intersect in a transparent material
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/22—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
- G02B30/24—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/34—Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/50—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
- G02B30/52—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1876—Diffractive Fresnel lenses; Zone plates; Kinoforms
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/08—Stereoscopic photography by simultaneous recording
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B35/00—Stereoscopic photography
- G03B35/18—Stereoscopic photography by simultaneous viewing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T19/00—Manipulating 3D models or images for computer graphics
- G06T19/006—Mixed reality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/322—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using varifocal lenses or mirrors
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/388—Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume
- H04N13/395—Volumetric displays, i.e. systems where the image is built up from picture elements distributed through a volume with depth sampling, i.e. the volume being constructed from a stack or sequence of 2D image planes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0132—Head-up displays characterised by optical features comprising binocular systems
- G02B2027/0134—Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1828—Diffraction gratings having means for producing variable diffraction
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Graphics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Processing Or Creating Images (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Изобретение относится к области формирования изображений и визуализации виртуальной реальности. Техническим результатом является обеспечение точной аккомодации, которая учитывает аспекты аккомодации комплекса обработки изображений человеческим глазом. Система содержит: избирательно прозрачное проекционное устройство для проецирования изображения в направлении к глазу наблюдателя из положения проекционного устройства в пространстве относительно глаза наблюдателя; устройство маски преграждения, соединенное с проекционным устройством и сконфигурированное избирательно блокировать свет, идущий в направлении к глазу из одного или более положений напротив проекционного устройства от глаза наблюдателя, в преграждающем шаблоне; и устройство формирования дифракционного шаблона зонной пластинки, помещенное между глазом наблюдателя и проекционным устройством и сконфигурированное обеспечивать, чтобы свет от проекционного устройства проходил через дифракционный шаблон, имеющий выбираемую геометрию, по мере того, как он перемещается к глазу, и входил в глаз с моделированным фокусным расстоянием от глаза, на основе выбираемой геометрии дифракционного шаблона. 19 з.п. ф-лы, 26 ил.
Description
ДАННЫЕ ПО РОДСТВЕННОЙ ЗАЯВКЕ
Настоящая заявка испрашивает приоритет согласно 35 U.S.С.§ 119 по предварительной заявке США, порядковый номер 61/563403, поданной 23 ноября, 2011. Вышеупомянутая заявка этим включается по ссылке в настоящую заявку в ее полноте.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к системам формирования изображений и визуализации виртуальной реальности и дополненной реальности.
УРОВЕНЬ ТЕХНИКИ
Чтобы для 3D дисплея производить истинное ощущение глубины и более конкретно - смоделированное ощущение глубины поверхности, является желательным для каждой точки в поле зрения дисплея генерировать реакцию аккомодации, соответствующую ее виртуальной глубине. Если реакция аккомодации для точки дисплея не соответствует виртуальной глубине этой точки, как определяется посредством бинокулярных признаков глубины конвергенции и стереоскопичности, человеческий глаз может испытывать конфликт аккомодации, что дает результатом неустойчивое формирование изображения, вредное напряжение для глаз, головные боли, и при отсутствии информации аккомодации почти полное отсутствие глубины поверхности. Как показано на фиг. 1, сценарий (8) дополненной реальности изображается с видами для пользователя фактических объектов внутри реальности пользователя, как, например, элементов ландшафта, включающих в себя реальный объект (1120) помоста в окружении парка, а также видами виртуальных объектов, добавленных в вид, чтобы производить вид "дополненной" реальности; здесь статуя (1110) робота показана виртуально стоящей на объекте (1120) помоста, и персонаж (2) пчелы показан летящим в воздушном пространстве рядом с головой пользователя. Предпочтительно система дополненной реальности обеспечена возможностью 3-D, в этом случае она обеспечивает пользователя восприятием, что статуя (1110) стоит на помосте (1120), и что персонаж (2) пчелы летит близко к голове пользователя. Это восприятие может быть в значительной степени усилено посредством использования визуальных признаков аккомодации для глаза и мозга пользователя в том, что виртуальные объекты (2, 1110) имеют разные глубины фокуса, и что глубина фокуса или фокусные радиусы для статуи (1110) робота является приблизительно такой же, как глубина фокуса для помоста (1120). Стандартные стереоскопические системы отображения 3-D моделирования, как, например, изображено на фиг. 2, обычно имеют два дисплея (74, 76), один для каждого глаза, на фиксированном радиальном фокусном расстоянии (10). Как указывалось выше, в этой стандартной технологии отсутствует много ценных признаков, используемых человеческим глазом и мозгом, чтобы обнаруживать и интерпретировать глубину в трех измерениях, включая сюда признак аккомодации, который связан с повторным позиционированием глазом хрусталика внутри комплекса глаза, чтобы достигать разной глубины фокуса с помощью глаза. Имеется необходимость в системе отображения, обеспечивающей точную аккомодацию, которая учитывает аспекты аккомодации комплекса обработки изображений человеческим глазом/мозгом.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Один вариант осуществления направлен на систему визуализации трехмерного изображения, содержащую избирательно прозрачное проекционное устройство для проецирования изображения в направлении к глазу наблюдателя из положения проекционного устройства в пространстве относительно глаза наблюдателя, при этом проекционное устройство выполнено с возможностью обеспечения, по существу, прозрачного состояния, когда никакое изображение не проецируется; устройство маски преграждения, соединенное с проекционным устройством и сконфигурированное с возможностью избирательно блокировать свет, идущий в направлении к глазу из одного или более положений напротив проекционного устройства от глаза наблюдателя, в преграждающем шаблоне, соотнесенном с изображением, проецируемым посредством проекционного устройства; и устройство формирования дифракционного шаблона зонной пластинки, помещенное между глазом наблюдателя и проекционным устройством и сконфигурированное с возможностью обеспечивать, чтобы свет от проекционного устройства проходил через дифракционный шаблон, имеющий выбираемую геометрию, по мере того, как он перемещается к глазу, и входил в глаз с моделированным фокусным расстоянием от глаза, по меньшей мере, частично на основе выбираемой геометрии дифракционного шаблона. Система дополнительно может содержать контроллер, работоспособным образом соединенный с проекционным устройством, устройством маски преграждения и устройством формирования дифракционного шаблона зонной пластинки и сконфигурированный с возможностью координировать проецирование изображения и связанного преграждающего шаблона, также как помещение дифракционного шаблона в выбираемой геометрии. Контроллер может содержать микропроцессор. Проекционное устройство может содержать, по существу, плоский прозрачный цифровой дисплей, по существу, занимающий плоскость дисплея. Плоскость дисплея может быть ориентирована, по существу, перпендикулярно от визуальной оси глаза наблюдателя. По существу, плоский прозрачный цифровой дисплей может содержать жидкокристаллический дисплей. По существу, плоский прозрачный цифровой дисплей может содержать дисплей на органических светоизлучающих диодах. Проекционное устройство может быть сконфигурировано с возможностью проецировать изображение в направлении к глазу в коллимированной форме, так что глубина фокуса для глаза наблюдателя является бесконечной глубиной фокуса. Проекционное устройство может содержать высокоскоростной минипроектор, соединенный с устройством расширителя выходного зрачка с направляемой подложкой задержкой, сконфигурированным с возможностью расширять размер изображения до доставки в глаз наблюдателя. Минипроектор может быть смонтирован, по существу, перпендикулярно визуальной оси глаза наблюдателя, и при этом устройство расширителя выходного зрачка с направляемой подложкой задержкой сконфигурировано с возможностью принимать изображение от минипроектора и доставлять его в устройство формирования дифракционного шаблона зонной пластинки и в глаз наблюдателя в расширенном размере с ориентацией, по существу, выровненной с визуальной осью глаза. Устройство формирования дифракционного шаблона зонной пластинки и проекционное устройство могут содержать, по меньшей мере, одну общую структуру. Устройство формирования дифракционного шаблона зонной пластинки может быть интегрировано в волновод, так что проекционное устройство содержит высокоскоростной минипроектор, соединенный с волноводом, и сконфигурировано с возможностью пропускать изображение через дифракционный шаблон до того, как изображение выйдет из волновода по пути к глазу наблюдателя. Минипроектор может быть смонтирован, по существу, перпендикулярно визуальной оси глаза наблюдателя, и волновод может быть сконфигурирован с возможностью принимать изображение от минипроектора и доставлять его в глаз наблюдателя в расширенном размере с ориентацией, по существу, выровненной с визуальной осью глаза. Устройство маски преграждения может содержать дисплей, сконфигурированный с возможностью либо преграждать, либо пропускать свет на каждой из множества частей дисплея, в зависимости от соответствующей команды, чтобы преграждать или пропускать свет на каждой части. Устройство маски преграждения может содержать один или более жидкокристаллических дисплеев. Устройство формирования дифракционного шаблона зонной пластинки может содержать высокочастотный двоичный дисплей, сконфигурированный с возможностью либо преграждать, либо пропускать свет на каждой из множества частей дисплея, в зависимости от соответствующей команды, чтобы преграждать или пропускать свет на каждой части. Устройство формирования дифракционного шаблона зонной пластинки может иметь частоту обновления между приблизительно 500 Гц и приблизительно 2,000 Гц. Устройство формирования дифракционного шаблона зонной пластинки может иметь частоту обновления приблизительно 720 Гц. Контроллер может быть сконфигурирован с возможностью управлять проекционным устройством и устройством маски преграждения при между приблизительно 30 и приблизительно 60 кадрами в секунду, и управлять устройством формирования дифракционного шаблона зонной пластинки, чтобы цифровым образом отображать вплоть до приблизительно 12 разных дифракционных шаблонов для каждого кадра проекционного устройства и устройства маски преграждения. Проекционное устройство, устройство маски преграждения и устройство формирования дифракционного шаблона зонной пластинки совместно могут содержать модуль формирования изображений для одного глаза наблюдателя, и система дополнительно может содержать второй модуль формирования изображений для другого глаза наблюдателя.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 изображает иллюстрацию сценария дополненной реальности с некоторыми объектами виртуальной реальности и некоторыми объектами реально существующей реальности, видимыми для человека.
Фиг. 2 иллюстрирует стандартную стереоскопическую систему для моделирования формирования трехмерных изображений для пользователя.
Фиг. 3A и 3B иллюстрируют аспекты конфигурации дисплея, обеспечивающего точную аккомодацию.
Фиг. 4A-4C иллюстрируют отношения между радиусом кривизны и фокусным радиусом.
Фиг. 5-6C иллюстрируют аспекты дифракционных решеток, как применяются к конкретным конфигурациям.
Фиг. 7A-7C иллюстрируют три разные фокусные механизмы.
Фиг. 7D иллюстрирует зонную пластинку Френеля.
Фиг. 8A-8C иллюстрируют различные аспекты результатом фокусирования дифракционной системы.
Фиг. 9 иллюстрирует один вариант осуществления волновода со встроенной дифракционной решеткой.
Фиг. 10 иллюстрирует один вариант осуществления волновода со встроенной дифракционной решеткой, предназначенной, чтобы обеспечивать один режим для выхода и другие режимы для обеспечения улавливания в волноводе.
Фиг. 11A-11B иллюстрируют аспекты варианта осуществления модуля формирования дифракционных изображений.
Фиг. 12A-12B иллюстрируют аспекты варианта осуществления модуля формирования дифракционных изображений.
Фиг. 13A-13B иллюстрируют аспекты варианта осуществления модуля формирования дифракционных изображений.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Как показано на фиг. 3A и 3B, изображены различные аспекты системы AAD. Как показано на фиг. 3A, простая иллюстрация показывает, что вместо двух стандартных дисплеев, как в стереоскопии (фиг. 2), могут использоваться два сложных изображения, одно для каждого глаза, с разными радиальными фокусными глубинами (12) для разных аспектов (14) каждого изображения, чтобы обеспечивать каждый глаз восприятием слоев трехмерной глубины внутри воспринимаемого изображения.
Как показано на фиг. 3B, мы определили, что обычный человеческий глаз способен интерпретировать приблизительно 12 слоев (слои L1-L12 на фиг. 3B - элемент 16 чертежа) глубины на основе радиального расстояния. Предел (78) ближней зоны приблизительно 0,25 метра является приблизительно самой близкой глубиной фокуса; предел (80) дальней зоны приблизительно 3 метра означает, что любой элемент дальше, чем приблизительно 3 метра от человеческого глаза получает бесконечный фокус. Слои фокуса становятся более и более тонкими по мере того, как они становятся ближе к глазу; другими словами, глаз способен воспринимать различия в фокусном расстоянии, которые являются достаточно маленькими относительно близко к глазу, и этот эффект исчезает по мере того, как объекты становятся более удаленными от глаза, как показано на фиг. 3B. Элемент 82 иллюстрирует, что в бесконечном местоположении объекта глубина фокуса/значение диоптрического промежутка равняется приблизительно 1/3 диоптрии. Один другой способ описания значения фиг. 3B: имеется приблизительно двенадцать фокальных плоскостей между глазом пользователя и бесконечностью. Эти фокальные плоскости и данные внутри изображенных отношений могут использоваться, чтобы размещать виртуальные элементы внутри сценария дополненной реальности для просмотра пользователем, так как человеческий глаз постоянно поворачивается вокруг, чтобы использовать фокальные плоскости, чтобы воспринимать глубину.
Как показано на фиг. 4A-4C, если K(R) является динамическим параметром для кривизны, равным 1/R, где R является фокусным радиусом элемента по отношению к поверхности, то с увеличением радиуса (R3, к R2, вплоть до R1) мы имеем уменьшение K(R). Световое поле, производимое точкой, имеет сферическую кривизну, которая является функцией того, как далеко точка находится от глаза пользователя. Это отношение также может использоваться для систем AAD.
Как показано на фиг. 3, показана стандартная дифракционная решетка (22) со светом, проходящим через промежутки (18) решетки под углом (тета - 20), который связан с порядком дифракции (n), пространственной частотой и коэффициентом K, который равняется 1/d, посредством следующего уравнения:
d*sin(тета)=n* "длина волны" (или альтернативно после подстановки коэффициента K, sin (тета)=n* "длина волны" *K. Фиг. 6A-6C иллюстрируют, что с уменьшением промежутков (18, 28, 30) в дифракционном шаблоне (22, 24, 26) угол (20, 32, 34) становится больше.
Как показано на фиг. 5, изображены три разных механизма фокусирования - рефракция через линзу (36), отражение со сферическим зеркалом (38), и дифракция с зонной пластинкой (40) Френеля также показана на фиг. 7D (40).
Как показано на фиг. 8A, показана упрощенная версия дифракции, чтобы проиллюстрировать, что режим N=-1 может соответствовать виртуальному изображению; режим N=+1 может соответствовать реальному изображению, и режим N=0 может соответствовать сфокусированному на бесконечности изображению. Эти изображения могут быть запутывающими для человеческого глаза и мозга, и особенно проблематичными, если все сфокусированы на оси, как показано на фиг. 8B. Как показано на фиг. 8C, конфигурация фокуса вне оси может использоваться, чтобы обеспечивать возможность для блокировки режимов/изображений, которые являются нежелательными. Например, коллимированное (r = бесконечности) изображение может формироваться посредством режима N=0; расходящееся виртуальное изображение может формироваться посредством режима N=-1; и сходящееся изображение может формироваться посредством режима N=+1. Различие в пространственном местоположении этих режимов/изображений и их траекторий обеспечивает возможность для отфильтровывания или разделения, чтобы предотвращать вышеупомянутые проблемы, связанные с формированием дифракционных изображений, как, например, накладывание, появление ореола и эффекты восприятия "многократного экспонирования".
Как показано на фиг. 8, показан волновод, имеющий встроенную дифракционную решетку; такие волноводы являются доступными, например, от поставщиков, таких как BAE Systems PLC из Лондона, U.K., и могут использоваться, чтобы вводить изображение с левой стороны на фиг. 9, как показано, пропускать изображение через встроенную дифракционную решетку (44), и пропускать результирующее изображение наружу под некоторым углом (на фиг. 9, например, через сторону волновода). Таким образом, с таким элементом может достигаться двойное использование перенаправления и дифракции. В самом деле, технологии фокуса вне оси, такие как технологии, описанные со ссылкой на фиг. 8C, могут комбинироваться с элементами дифракционного волновода, как, например, с элементами, показанными на фиг. 9, чтобы давать в результате конфигурацию, такую как конфигурация, показанная на фиг. 10, при этом осуществляются не только перенаправление и дифракция, но также фильтрация, так как в изображенном варианте осуществления геометрия дифрагирующего волновода является такой, что режим N=-1 (скажем, виртуальное изображение) пропускается наружу из волновода и в глаз пользователя, и другие два режима (N=0 и N=+1) улавливаются внутри волновода посредством отражения.
Как показано на фиг. 11A - 13C, вышеупомянутые концепции приводятся в действие с различными конфигурациями дисплея дополненной реальности.
Как показано на фиг. 11A, система AAD содержит модуль (46, 48) формирования изображений перед каждым глазом (4, 6), через которые пользователь видит мир. Фиг. 11B иллюстрирует более большой вид модуля (46) с его ассоциированным (соединенным посредством изображенных проводников электронного управления; проводники также могут быть беспроводными) контроллером (66), который может быть микропроцессором, микроконтроллером, программируемой пользователем вентильной матрицей (FPGA), специализированной интегральной схемой (ASIC) или подобным. Контроллер предпочтительно соединен с источником питания, а также устройством обмена информацией, таким как беспроводной адаптер сети Интернет или Bluetooth, чтобы обеспечивать возможность для обмена информацией между внешним миром и контроллером (66). Система может быть сконфигурирована с возможностью работать на частоте обновления изображений, такой как частота между 30 и 60 кадров в секунду. Контроллер может быть сконфигурирован с возможностью управлять цифровым дисплеем (52) высокого разрешения с высокой частотой обновления, таким как дисплей на основе ферроэлектрических жидких кристаллов, голубой фазы или изогнутого ядра, чтобы отображать различные геометрии зонной пластинки быстро в последовательности, соответствующие каждому из 12 или около этого слоям глубины. Например, в одном варианте осуществления, где требуется полная производительность 60 кадров в секунду, управление дисплеем (52) зонной пластинки может осуществляться в 12 раз быстрее этого, или 720 Гц, чтобы иметь возможность обеспечивать смоделированную аккомодацию для каждого из 12 слоев глубины, как показано на фиг. 3B. Дисплей (54) преграждающей маски сконфигурирован с возможностью отображать затемненное изображение, геометрически соответствующее изображению, отображаемому перед ним на прозрачном слое (56) проектора, затемненным, чтобы не допускать, чтобы свет с другой стороны дисплея преграждающей маски проходил через или интерферировал с дисплеем требуемого виртуального или дополненного изображения в слое (56) проектора. Таким образом, в конфигурации дополненной реальности, как показано, свет от реального заднего плана проходит через незакрытые маской части маски преграждения (54), через прозрачные (т.е. не обеспечивающие часть изображения) части прозрачного слоя (56) проектора, и в слой (52) зонной пластинки для обработки аккомодации; изображения, проецируемые на проецирующем слое (56), получают блокировку маской от света заднего плана на слое (54) преграждения и проецируются вперед в слой (52) зонной пластинки для обработки аккомодации. Их комбинация, или ассоциированное восприятие дополненной реальности для пользователя, является очень близкой к "истинному 3-D".
Фиг. 12A - 12B изображают другой вариант осуществления, в котором модуль (58) формирования изображений содержит минипроектор высокого разрешения, ориентированный под углом, приблизительно перпендикулярным визуальной оси глаза; волновод, содержащий устройство (70) расширителя выходного зрачка с направляемой подложкой задержкой, увеличивает и перенаправляет изображение от маленького минипроектора и в слой (52) зонной пластинки; преграждающий слой (54) обеспечивает аналогичные функции наложения маски, чтобы защищать восприятие проецируемых изображений от света заднего плана.
Фиг. 13A - 13B изображают другой вариант осуществления, элементы 52 и 70 скомбинированы так, что зонная пластинка и проецирующий слой, по существу, содержатся внутри одного и того же интегрированного модуля (72), который вводит маленькое изображение из минипроектора (68), перенаправляет и увеличивает его, а также дифрагирует его для прохода к глазу; преграждающий слой (54) обеспечивает аналогичные функции наложения маски, чтобы защищать восприятие проецируемых изображений от света заднего плана.
Здесь описаны различные иллюстративные варианты осуществления изобретения. Ссылка делается на эти примеры в неограничивающем смысле. Они обеспечиваются, чтобы проиллюстрировать более широко применимые аспекты изобретения. Различные изменения могут делаться в описанном изобретении и эквиваленты, могут подставляться без отхода от истинной сущности и объема изобретения. В дополнение, многие модификации могут делаться, чтобы адаптировать конкретную ситуацию, материал, состав вещества, процесс, действие (действия) или этап (этапы) процесса для цели (целей), сущности или объема настоящего изобретения. Дополнительно, как должно быть принято во внимание специалистами в данной области техники, каждое из индивидуальных изменений, здесь описанных и проиллюстрированных, имеет обособленные компоненты и признаки, которые могут легко отделяться от или комбинироваться с признаками любых других нескольких вариантов осуществления без отхода от объема или сущности настоящих изобретений. Предполагается, что все такие модификации находятся в пределах объема формулы изобретения, связанной с этим раскрытием.
Изобретение включает в себя способы, которые могут выполняться с использованием конкретных устройств. Способы могут содержать действие обеспечения такого подходящего устройства. Такое обеспечение может выполняться конечным пользователем. Другими словами, действие "обеспечения" просто требует от конечного пользователя получать, осуществлять доступ, приближаться к, располагать, устанавливать, активировать, включать или иным образом действовать, чтобы обеспечивать требуемое устройство в конкретном способе. Способы, здесь изложенные, могут выполняться в любом порядке изложенных событий, который является логически возможным, также как в изложенном порядке событий.
Иллюстративные аспекты изобретения вместе с деталями относительно выбора материалов и производства были изложены выше. Что касается других деталей настоящего изобретения, они могут приниматься во внимание в соединении с вышеуказанными патентами и публикациями, также как, в общем, известными или принимаемыми во внимание специалистами в данной области техники. То же может быть истинным по отношению к основывающимся на способе аспектам изобретения в терминах дополнительных действий, как широко или логически применяется.
В дополнение, хотя изобретение было описано со ссылкой на несколько примеров, необязательно включающих в себя различные признаки, изобретение не должно ограничиваться тем, что описано или показано как рассматриваемое по отношению к каждому изменению изобретения. Различные изменения могут делаться в описанном изобретении и эквиваленты (изложенные ли здесь или не включенные сюда ради некоторой краткости) могут подставляться без отхода от истинной сущности и объема изобретения. В дополнение, там, где обеспечивается диапазон значений, следует понимать, что каждое промежуточное значение между верхним и нижним пределом этого диапазона и любое другое сформулированное или промежуточное значение в этом сформулированном диапазоне входит в объем изобретения.
Также, предполагается, что любой необязательный признак описанных новых вариантов может излагаться и заявляться независимо или в комбинации с любым одним или более из признаков, здесь описанных. Ссылка на одиночный элемент включает в себя возможность, что имеется множество таких же присутствующих элементов. Более конкретно, как используется здесь и в формуле изобретения, связанной с этим, формы единственного числа, в том числе "упомянутый" и "один", включают в себя формы множественного числа, если конкретно не указывается иное. Другими словами, использование форм единственного числа обеспечивает "по меньшей мере, один" из конкретного элемента в описании выше, также как в формуле изобретения, связанной с этим раскрытием. Дополнительно следует отметить, что такие пункты формулы изобретения могут быть составлены, чтобы исключать любой необязательный элемент. Как таковое, предполагается, что это утверждение служит в качестве априорной основы для использования такой исключающей терминологии, как "единственно", "только" и подобной в соединении с перечислением элементов формулы изобретения, или использованием "отрицательного" ограничения.
Без использования такой исключающей терминологии признак "содержащий" в формуле изобретения, связанной с этим раскрытием, должен обеспечивать возможность для включения любого дополнительного элемента - независимо от того, перечисляется ли заданное количество элементов в формуле изобретения, или добавление признака может рассматриваться как преобразование свойства элемента, изложенного в формуле изобретения. За исключением того, что конкретно определено здесь, всем техническим и научным терминам, используемым здесь, должно даваться настолько широкое, обычно понимаемое значение, насколько возможно при поддержании действенности формулы изобретения.
Широта настоящего изобретения не должна ограничиваться представленными примерами и/или приведенным описанием, но, скорее, только объемом языка формулы изобретения, связанного с этим раскрытием.
Claims (23)
1. Система визуализации трехмерного изображения, содержащая:
a. избирательно прозрачное проекционное устройство для проецирования изображения в направлении к глазу наблюдателя из положения проекционного устройства в пространстве относительно глаза наблюдателя, при этом проекционное устройство выполнено с возможностью обеспечения, по существу, прозрачного состояния, когда никакое изображение не проецируется;
b. устройство маски преграждения, соединенное с проекционным устройством и сконфигурированное с возможностью избирательно блокировать свет, идущий в направлении к глазу из одного или более положений напротив проекционного устройства от глаза наблюдателя, в преграждающем шаблоне, геометрически соответствующим изображению, проецируемому посредством проекционного устройства; и
c. устройство формирования дифракционного шаблона зонной пластинки, помещенное между глазом наблюдателя и проекционным устройством и сконфигурированное с возможностью обеспечивать, чтобы свет от проекционного устройства проходил через дифракционный шаблон, имеющий выбираемую геометрию, по мере того, как он перемещается к глазу, и входил в глаз с моделированным фокусным расстоянием от глаза, по меньшей мере, частично на основе выбираемой геометрии дифракционного шаблона.
2. Система по п. 1, дополнительно содержащая контроллер, работоспособным образом соединенный с проекционным устройством, устройством маски преграждения и устройством формирования дифракционного шаблона зонной пластинки и сконфигурированный с возможностью координировать проецирование изображения и связанного преграждающего шаблона, также как помещение дифракционного шаблона в выбираемой геометрии.
3. Система по п. 2, в которой контроллер содержит микропроцессор.
4. Система по п. 1, в которой проекционное устройство содержит, по существу, плоский прозрачный цифровой дисплей, по существу, занимающий плоскость дисплея.
5. Система по п. 4, в которой плоскость дисплея ориентирована, по существу, перпендикулярно от визуальной оси глаза наблюдателя.
6. Система по п. 4, в которой, по существу, плоский прозрачный цифровой дисплей содержит жидкокристаллический дисплей.
7. Система по п. 4, в которой, по существу, плоский прозрачный цифровой дисплей содержит дисплей на органических светоизлучающих диодах.
8. Система по п. 1, в которой проекционное устройство сконфигурировано с возможностью проецировать изображение в направлении к глазу в коллимированной форме, так что глубина фокуса для глаза наблюдателя является бесконечной глубиной фокуса.
9. Система по п. 1, в которой проекционное устройство содержит высокоскоростной минипроектор, соединенный с устройством расширителя выходного зрачка с направляемой подложкой задержкой, сконфигурированным с возможностью расширять размер изображения до доставки в глаз наблюдателя.
10. Система по п. 9, в которой минипроектор смонтирован, по существу, перпендикулярно визуальной оси глаза наблюдателя, и при этом устройство расширителя выходного зрачка с направляемой подложкой задержкой сконфигурировано с возможностью принимать изображение от минипроектора и доставлять его в устройство формирования дифракционного шаблона зонной пластинки и в глаз наблюдателя в расширенном размере с ориентацией, по существу, выровненной с визуальной осью глаза.
11. Система по п. 1, в которой устройство формирования дифракционного шаблона зонной пластинки и проекционное устройство содержат, по меньшей мере, одну общую структуру.
12. Система по п. 11, в которой устройство формирования дифракционного шаблона зонной пластинки интегрировано в волновод, так что проекционное устройство содержит высокоскоростной минипроектор, соединенный с волноводом, и сконфигурировано с возможностью пропускать изображение через дифракционный шаблон до того, как изображение выйдет из волновода по пути к глазу наблюдателя.
13. Система по п. 12, в которой минипроектор смонтирован, по существу, перпендикулярно визуальной оси глаза наблюдателя, и в которой волновод сконфигурирован с возможностью принимать изображение от минипроектора и доставлять его в глаз наблюдателя в расширенном размере с ориентацией, по существу, выровненной с визуальной осью глаза.
14. Система по п. 1, в.которой устройство маски преграждения содержит дисплей, сконфигурированный с возможностью либо преграждать, либо пропускать свет на каждой из множества частей дисплея, в зависимости от соответствующей команды, чтобы преграждать или пропускать свет на каждой части.
15. Система по п. 14, в которой устройство маски преграждения содержит один или более жидкокристаллических дисплеев.
16. Система по п. 1, в которой устройство формирования дифракционного шаблона зонной пластинки содержит высокочастотный двоичный дисплей, сконфигурированный с возможностью либо преграждать, либо пропускать свет на каждой из множества частей дисплея, в зависимости от соответствующей команды, чтобы преграждать или пропускать свет на каждой части.
17. Система по п. 2, в которой устройство формирования дифракционного шаблона зонной пластинки имеет частоту обновления между приблизительно 500 Гц и приблизительно 2,000 Гц.
18. Система по п. 17, в которой устройство формирования дифракционного шаблона зонной пластинки имеет частоту обновления приблизительно 720 Гц.
19. Система по п. 2, в которой контроллер сконфигурирован с возможностью управлять проекционным устройством и устройством маски преграждения при между приблизительно 30 и приблизительно 60 кадров в секунду и управлять устройством формирования дифракционного шаблона зонной пластинки, чтобы цифровым образом отображать вплоть до приблизительно 12 разных дифракционных шаблонов для каждого кадра проекционного устройства и устройства маски преграждения.
20. Система по п. 1, в которой проекционное устройство, устройство маски преграждения и устройство формирования дифракционного шаблона зонной пластинки совместно содержат модуль формирования изображений для одного глаза наблюдателя, при этом система дополнительно содержит второй модуль формирования изображений для другого глаза наблюдателя.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161563403P | 2011-11-23 | 2011-11-23 | |
US61/563,403 | 2011-11-23 | ||
PCT/US2012/000560 WO2013077895A1 (en) | 2011-11-23 | 2012-11-23 | Three dimensional virtual and augmented reality display system |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014125226A RU2014125226A (ru) | 2015-12-27 |
RU2628164C2 true RU2628164C2 (ru) | 2017-08-15 |
Family
ID=48426562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014125226A RU2628164C2 (ru) | 2011-11-23 | 2012-11-23 | Система отображения трехмерной виртуальной и дополненной реальности |
Country Status (11)
Country | Link |
---|---|
US (8) | US8950867B2 (ru) |
EP (3) | EP2783352B1 (ru) |
JP (5) | JP6250547B2 (ru) |
KR (6) | KR102116697B1 (ru) |
CN (2) | CN107664847B (ru) |
AU (5) | AU2012341069B2 (ru) |
BR (1) | BR112014012615A2 (ru) |
CA (2) | CA2858208C (ru) |
IL (2) | IL232746A (ru) |
RU (1) | RU2628164C2 (ru) |
WO (1) | WO2013077895A1 (ru) |
Families Citing this family (236)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0522968D0 (en) | 2005-11-11 | 2005-12-21 | Popovich Milan M | Holographic illumination device |
GB0718706D0 (en) | 2007-09-25 | 2007-11-07 | Creative Physics Ltd | Method and apparatus for reducing laser speckle |
US9335604B2 (en) | 2013-12-11 | 2016-05-10 | Milan Momcilo Popovich | Holographic waveguide display |
US11726332B2 (en) | 2009-04-27 | 2023-08-15 | Digilens Inc. | Diffractive projection apparatus |
US11204540B2 (en) | 2009-10-09 | 2021-12-21 | Digilens Inc. | Diffractive waveguide providing a retinal image |
US9274349B2 (en) | 2011-04-07 | 2016-03-01 | Digilens Inc. | Laser despeckler based on angular diversity |
WO2013027004A1 (en) | 2011-08-24 | 2013-02-28 | Milan Momcilo Popovich | Wearable data display |
WO2016020630A2 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Waveguide laser illuminator incorporating a despeckler |
US10670876B2 (en) | 2011-08-24 | 2020-06-02 | Digilens Inc. | Waveguide laser illuminator incorporating a despeckler |
US20150010265A1 (en) | 2012-01-06 | 2015-01-08 | Milan, Momcilo POPOVICH | Contact image sensor using switchable bragg gratings |
CN103562802B (zh) | 2012-04-25 | 2016-08-17 | 罗克韦尔柯林斯公司 | 全息广角显示器 |
WO2013167864A1 (en) | 2012-05-11 | 2013-11-14 | Milan Momcilo Popovich | Apparatus for eye tracking |
US9671566B2 (en) | 2012-06-11 | 2017-06-06 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
US9933684B2 (en) * | 2012-11-16 | 2018-04-03 | Rockwell Collins, Inc. | Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration |
US11490809B2 (en) | 2013-01-25 | 2022-11-08 | Wesley W. O. Krueger | Ocular parameter-based head impact measurement using a face shield |
US11504051B2 (en) | 2013-01-25 | 2022-11-22 | Wesley W. O. Krueger | Systems and methods for observing eye and head information to measure ocular parameters and determine human health status |
US12042294B2 (en) | 2013-01-25 | 2024-07-23 | Wesley W. O. Krueger | Systems and methods to measure ocular parameters and determine neurologic health status |
US10209517B2 (en) | 2013-05-20 | 2019-02-19 | Digilens, Inc. | Holographic waveguide eye tracker |
US10262462B2 (en) | 2014-04-18 | 2019-04-16 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
US9874749B2 (en) | 2013-11-27 | 2018-01-23 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
WO2015006784A2 (en) | 2013-07-12 | 2015-01-15 | Magic Leap, Inc. | Planar waveguide apparatus with diffraction element(s) and system employing same |
US9952042B2 (en) | 2013-07-12 | 2018-04-24 | Magic Leap, Inc. | Method and system for identifying a user location |
US9727772B2 (en) | 2013-07-31 | 2017-08-08 | Digilens, Inc. | Method and apparatus for contact image sensing |
US9701530B2 (en) | 2013-11-22 | 2017-07-11 | Michael J. Kline | System, method, and apparatus for purchasing, dispensing, or sampling of products |
US9527716B2 (en) | 2013-11-22 | 2016-12-27 | Michael J. Kline | System, method, and apparatus for purchasing, dispensing, or sampling of products |
US9633504B2 (en) | 2013-11-22 | 2017-04-25 | Michael J Kline | System, method, and apparatus for purchasing, dispensing, or sampling of products |
CN110542938B (zh) | 2013-11-27 | 2023-04-18 | 奇跃公司 | 虚拟和增强现实系统与方法 |
US9857591B2 (en) | 2014-05-30 | 2018-01-02 | Magic Leap, Inc. | Methods and system for creating focal planes in virtual and augmented reality |
CN103676175A (zh) * | 2013-12-26 | 2014-03-26 | 无锡锡飞光电科技有限公司 | 裸眼3d显示方法 |
NZ722903A (en) * | 2014-01-31 | 2020-05-29 | Magic Leap Inc | Multi-focal display system and method |
CN106461955B (zh) | 2014-01-31 | 2019-08-13 | 奇跃公司 | 显示增强现实的方法 |
US10430985B2 (en) | 2014-03-14 | 2019-10-01 | Magic Leap, Inc. | Augmented reality systems and methods utilizing reflections |
US11138793B2 (en) | 2014-03-14 | 2021-10-05 | Magic Leap, Inc. | Multi-depth plane display system with reduced switching between depth planes |
WO2015161307A1 (en) * | 2014-04-18 | 2015-10-22 | Magic Leap, Inc. | Systems and methods for augmented and virtual reality |
NZ727361A (en) | 2014-05-30 | 2020-05-29 | Magic Leap Inc | Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality |
NZ764960A (en) * | 2014-05-30 | 2022-05-27 | Magic Leap Inc | Methods and system for creating focal planes in virtual and augmented reality |
WO2016020632A1 (en) | 2014-08-08 | 2016-02-11 | Milan Momcilo Popovich | Method for holographic mastering and replication |
US10241330B2 (en) | 2014-09-19 | 2019-03-26 | Digilens, Inc. | Method and apparatus for generating input images for holographic waveguide displays |
EP3198192A1 (en) | 2014-09-26 | 2017-08-02 | Milan Momcilo Popovich | Holographic waveguide opticaltracker |
KR102295496B1 (ko) | 2014-09-29 | 2021-09-01 | 매직 립, 인코포레이티드 | 상이한 파장의 광을 도파관 밖으로 출력하기 위한 아키텍쳐 및 방법 |
KR102547307B1 (ko) * | 2014-12-29 | 2023-06-22 | 매직 립, 인코포레이티드 | 음향-광학 제어 디바이스를 사용하는 광 프로젝터 |
WO2016113533A2 (en) | 2015-01-12 | 2016-07-21 | Milan Momcilo Popovich | Holographic waveguide light field displays |
CN107873086B (zh) | 2015-01-12 | 2020-03-20 | 迪吉伦斯公司 | 环境隔离的波导显示器 |
CN107533137A (zh) | 2015-01-20 | 2018-01-02 | 迪吉伦斯公司 | 全息波导激光雷达 |
US10657780B1 (en) | 2015-01-29 | 2020-05-19 | Transparensee Llc | System, method, and apparatus for mixing, blending, dispensing, monitoring, and labeling products |
US9632226B2 (en) | 2015-02-12 | 2017-04-25 | Digilens Inc. | Waveguide grating device |
US11468639B2 (en) | 2015-02-20 | 2022-10-11 | Microsoft Technology Licensing, Llc | Selective occlusion system for augmented reality devices |
US10838207B2 (en) | 2015-03-05 | 2020-11-17 | Magic Leap, Inc. | Systems and methods for augmented reality |
WO2016141373A1 (en) | 2015-03-05 | 2016-09-09 | Magic Leap, Inc. | Systems and methods for augmented reality |
US10180734B2 (en) | 2015-03-05 | 2019-01-15 | Magic Leap, Inc. | Systems and methods for augmented reality |
NZ773826A (en) | 2015-03-16 | 2022-07-29 | Magic Leap Inc | Methods and systems for diagnosing and treating health ailments |
WO2016146963A1 (en) | 2015-03-16 | 2016-09-22 | Popovich, Milan, Momcilo | Waveguide device incorporating a light pipe |
US10404975B2 (en) | 2015-03-20 | 2019-09-03 | Tilt Five, Inc | Retroreflective light field display |
US10591756B2 (en) | 2015-03-31 | 2020-03-17 | Digilens Inc. | Method and apparatus for contact image sensing |
CN106293561B (zh) | 2015-05-28 | 2020-02-28 | 北京智谷睿拓技术服务有限公司 | 显示控制方法和装置、显示设备 |
CN106303315B (zh) | 2015-05-30 | 2019-08-16 | 北京智谷睿拓技术服务有限公司 | 视频显示控制方法和装置、显示设备 |
CN106303499B (zh) | 2015-05-30 | 2018-10-16 | 北京智谷睿拓技术服务有限公司 | 视频显示控制方法和装置、显示设备 |
CN106303498B (zh) | 2015-05-30 | 2018-10-16 | 北京智谷睿拓技术服务有限公司 | 视频显示控制方法和装置、显示设备 |
KR20230025933A (ko) | 2015-06-15 | 2023-02-23 | 매직 립, 인코포레이티드 | 멀티플렉싱된 광 스트림들을 인-커플링하기 위한 광학 엘리먼트들을 가진 디스플레이 시스템 |
US10149958B1 (en) | 2015-07-17 | 2018-12-11 | Bao Tran | Systems and methods for computer assisted operation |
US10492981B1 (en) | 2015-07-17 | 2019-12-03 | Bao Tran | Systems and methods for computer assisted operation |
US10335572B1 (en) | 2015-07-17 | 2019-07-02 | Naveen Kumar | Systems and methods for computer assisted operation |
US10176642B2 (en) | 2015-07-17 | 2019-01-08 | Bao Tran | Systems and methods for computer assisted operation |
US10685488B1 (en) | 2015-07-17 | 2020-06-16 | Naveen Kumar | Systems and methods for computer assisted operation |
IL256838B2 (en) | 2015-07-20 | 2023-10-01 | Magic Leap Inc | Tuning such as a fiber scanner with inward aiming angles in a virtual/augmented reality system |
KR102511490B1 (ko) | 2015-08-18 | 2023-03-16 | 매직 립, 인코포레이티드 | 가상 및 증강 현실 시스템들 및 방법들 |
AU2016310452B2 (en) | 2015-08-21 | 2021-04-22 | Magic Leap, Inc. | Eyelid shape estimation |
CN112836664A (zh) | 2015-08-21 | 2021-05-25 | 奇跃公司 | 使用眼睛姿态测量的眼睑形状估计 |
WO2017048713A1 (en) | 2015-09-16 | 2017-03-23 | Magic Leap, Inc. | Head pose mixing of audio files |
CN118584664A (zh) | 2015-09-23 | 2024-09-03 | 奇跃公司 | 采用离轴成像器的眼睛成像 |
US10690916B2 (en) | 2015-10-05 | 2020-06-23 | Digilens Inc. | Apparatus for providing waveguide displays with two-dimensional pupil expansion |
IL257984B (en) | 2015-10-05 | 2022-08-01 | Magic Leap Inc | Microlens collimator for optical fiber scanning in a virtual/augmented reality system |
JP7216547B2 (ja) | 2015-10-06 | 2023-02-01 | マジック リープ, インコーポレイテッド | 逆角度回折格子を有する仮想/拡張現実システム |
CA3170014A1 (en) | 2015-10-16 | 2017-04-20 | Magic Leap, Inc. | Eye pose identification using eye features |
AU2016341196B2 (en) | 2015-10-20 | 2021-09-16 | Magic Leap, Inc. | Selecting virtual objects in a three-dimensional space |
US9709807B2 (en) | 2015-11-03 | 2017-07-18 | Motorola Solutions, Inc. | Out of focus notifications |
US10260864B2 (en) | 2015-11-04 | 2019-04-16 | Magic Leap, Inc. | Dynamic display calibration based on eye-tracking |
US11231544B2 (en) | 2015-11-06 | 2022-01-25 | Magic Leap, Inc. | Metasurfaces for redirecting light and methods for fabricating |
CN108604383A (zh) | 2015-12-04 | 2018-09-28 | 奇跃公司 | 重新定位系统和方法 |
US10877438B2 (en) * | 2016-01-07 | 2020-12-29 | Magic Leap, Inc. | Dynamic fresnel projector |
KR20230134159A (ko) | 2016-01-07 | 2023-09-20 | 매직 립, 인코포레이티드 | 깊이 평면들에 걸쳐 분포된 동일하지 않은 수의 컴포넌트 컬러 이미지들을 갖는 가상 및 증강 현실 시스템들 및 방법들 |
WO2017127366A1 (en) | 2016-01-19 | 2017-07-27 | Magic Leap, Inc. | Eye image collection, selection, and combination |
JP6952713B2 (ja) | 2016-01-19 | 2021-10-20 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 反射を利用する拡張現実システムおよび方法 |
CN108474904B (zh) | 2016-01-20 | 2021-07-06 | 奇跃公司 | 虚拟/增强现实系统中的偏振保持光纤 |
US10536690B2 (en) | 2016-01-29 | 2020-01-14 | Magic Leap, Inc. | Display for three-dimensional image |
US10983340B2 (en) | 2016-02-04 | 2021-04-20 | Digilens Inc. | Holographic waveguide optical tracker |
JP6991981B2 (ja) | 2016-02-24 | 2022-01-13 | マジック リープ, インコーポレイテッド | 光エミッタのための薄型相互接続子 |
KR102682340B1 (ko) | 2016-02-24 | 2024-07-04 | 매직 립, 인코포레이티드 | 낮은 광 누설을 가진 편광 빔 분할기 및 이를 포함하는 디스플레이 시스템 |
US10775545B2 (en) | 2016-02-26 | 2020-09-15 | Magic Leap, Inc. | Display system having a plurality of light pipes for a plurality of light emitters |
IL261148B2 (en) | 2016-02-26 | 2023-12-01 | Magic Leap Inc | Light output system with reflector and lenses for high spatially uniform light output |
AU2017227598B2 (en) | 2016-03-01 | 2022-03-17 | Magic Leap, Inc. | Reflective switching device for inputting different wavelengths of light into waveguides |
NZ745738A (en) | 2016-03-04 | 2020-01-31 | Magic Leap Inc | Current drain reduction in ar/vr display systems |
EP3427185B1 (en) * | 2016-03-07 | 2024-07-31 | Magic Leap, Inc. | Blue light adjustment for biometric security |
US10867314B2 (en) | 2016-03-22 | 2020-12-15 | Magic Leap, Inc. | Head mounted display system configured to exchange biometric information |
EP3433659B1 (en) | 2016-03-24 | 2024-10-23 | DigiLens, Inc. | Method and apparatus for providing a polarization selective holographic waveguide device |
AU2017238847A1 (en) | 2016-03-25 | 2018-10-04 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
KR20230098927A (ko) | 2016-03-31 | 2023-07-04 | 매직 립, 인코포레이티드 | 포즈들 및 멀티-dof 제어기들을 사용하는 3d 가상 객체들과상호작용들 |
CA3019946C (en) | 2016-04-08 | 2023-02-28 | Magic Leap, Inc. | Augmented reality systems and methods with variable focus lens elements |
JP6734933B2 (ja) | 2016-04-11 | 2020-08-05 | ディジレンズ インコーポレイテッド | 構造化光投影のためのホログラフィック導波管装置 |
KR102548818B1 (ko) | 2016-04-21 | 2023-06-28 | 매직 립, 인코포레이티드 | 시야 주위의 시각적 아우라 |
AU2017257549B2 (en) | 2016-04-26 | 2021-09-09 | Magic Leap, Inc. | Electromagnetic tracking with augmented reality systems |
US10046229B2 (en) | 2016-05-02 | 2018-08-14 | Bao Tran | Smart device |
CN113484944A (zh) | 2016-05-06 | 2021-10-08 | 奇跃公司 | 具有用于重定向光的非对称光栅的超表面及其制造方法 |
CN115177208A (zh) | 2016-05-09 | 2022-10-14 | 奇跃公司 | 用于用户健康分析的增强现实系统和方法 |
US9904058B2 (en) | 2016-05-12 | 2018-02-27 | Magic Leap, Inc. | Distributed light manipulation over imaging waveguide |
US11328484B2 (en) | 2016-05-20 | 2022-05-10 | Magic Leap, Inc. | Contextual awareness of user interface menus |
IL299710A (en) | 2016-06-03 | 2023-03-01 | Magic Leap Inc | Identity verification in augmented reality |
KR102448938B1 (ko) | 2016-06-10 | 2022-09-28 | 매직 립, 인코포레이티드 | 텍스처 투사 전구용 적분 점광원 |
JP7385993B2 (ja) | 2016-06-20 | 2023-11-24 | マジック リープ, インコーポレイテッド | 視覚的処理および知覚の疾患を含む神経学的疾患の評価および修正のための拡張現実ディスプレイシステム |
NZ749449A (en) | 2016-06-30 | 2023-06-30 | Magic Leap Inc | Estimating pose in 3d space |
KR102442569B1 (ko) | 2016-07-14 | 2022-09-08 | 매직 립, 인코포레이티드 | 각막 곡률을 이용한 홍채 경계 추정 |
KR102648770B1 (ko) | 2016-07-14 | 2024-03-15 | 매직 립, 인코포레이티드 | 홍채 식별을 위한 딥 뉴럴 네트워크 |
CN109788901B (zh) | 2016-07-25 | 2024-01-02 | 奇跃公司 | 光场处理器系统 |
KR20230133940A (ko) | 2016-07-25 | 2023-09-19 | 매직 립, 인코포레이티드 | 증강 현실 및 가상 현실 안경류를 사용한 이미징 수정, 디스플레이 및 시각화 |
CA3032282A1 (en) | 2016-07-29 | 2018-02-01 | Magic Leap, Inc. | Secure exchange of cryptographically signed records |
US10649211B2 (en) | 2016-08-02 | 2020-05-12 | Magic Leap, Inc. | Fixed-distance virtual and augmented reality systems and methods |
CA3033344A1 (en) | 2016-08-11 | 2018-02-15 | Magic Leap, Inc. | Automatic placement of a virtual object in a three-dimensional space |
CN117198277A (zh) | 2016-08-12 | 2023-12-08 | 奇跃公司 | 单词流注释 |
JP6813666B2 (ja) | 2016-08-22 | 2021-01-13 | マジック リープ, インコーポレイテッドMagic Leap,Inc. | 多層回折接眼レンズ |
KR102529137B1 (ko) | 2016-08-22 | 2023-05-03 | 매직 립, 인코포레이티드 | 딥 러닝 센서들을 갖는 증강 현실 디스플레이 디바이스 |
CN106131541A (zh) * | 2016-08-26 | 2016-11-16 | 广州巧瞳科技有限公司 | 基于增强现实的智能显示装置及方法 |
AU2017328161B2 (en) | 2016-09-13 | 2022-02-17 | Magic Leap, Inc. | Sensory eyewear |
CN112987303A (zh) | 2016-09-21 | 2021-06-18 | 奇跃公司 | 用于具有出瞳扩展器的光学系统的系统和方法 |
KR102266343B1 (ko) | 2016-09-22 | 2021-06-17 | 매직 립, 인코포레이티드 | 증강 현실 분광기 |
KR20240011881A (ko) | 2016-09-26 | 2024-01-26 | 매직 립, 인코포레이티드 | 가상 현실 또는 증강 현실 디스플레이 시스템에서 자기 및 광학 센서들의 교정 |
WO2018064169A1 (en) | 2016-09-28 | 2018-04-05 | Magic Leap, Inc. | Face model capture by a wearable device |
RU2016138608A (ru) | 2016-09-29 | 2018-03-30 | Мэджик Лип, Инк. | Нейронная сеть для сегментации изображения глаза и оценки качества изображения |
US10489680B2 (en) | 2016-10-04 | 2019-11-26 | Magic Leap, Inc. | Efficient data layouts for convolutional neural networks |
IL295059A (en) | 2016-10-05 | 2022-09-01 | Magic Leap Inc | A blind eye test for mixed reality calibration |
KR102603745B1 (ko) | 2016-10-21 | 2023-11-17 | 매직 립, 인코포레이티드 | 다수의 동공내 시차 뷰들을 제공함으로써 다수의 깊이평면들 상에 이미지 콘텐츠를 제공하기 위한 시스템 및 방법 |
CN106657970A (zh) * | 2016-10-25 | 2017-05-10 | 乐视控股(北京)有限公司 | 一种深度图成像装置 |
KR102217797B1 (ko) | 2016-11-11 | 2021-02-18 | 매직 립, 인코포레이티드 | 전체 얼굴 이미지의 안구주위 및 오디오 합성 |
AU2017361061B2 (en) | 2016-11-15 | 2022-02-03 | Magic Leap, Inc. | Deep learning system for cuboid detection |
KR102595171B1 (ko) | 2016-11-16 | 2023-10-26 | 매직 립, 인코포레이티드 | 웨어러블 컴포넌트들을 위한 열 관리 시스템들 |
AU2017361424B2 (en) | 2016-11-18 | 2022-10-27 | Magic Leap, Inc. | Spatially variable liquid crystal diffraction gratings |
JP7019695B2 (ja) | 2016-11-18 | 2022-02-15 | マジック リープ, インコーポレイテッド | 広入射角範囲の光を再指向するための多層液晶回折格子 |
US11067860B2 (en) | 2016-11-18 | 2021-07-20 | Magic Leap, Inc. | Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same |
CN110199220B (zh) | 2016-11-18 | 2022-11-01 | 奇跃公司 | 使用交叉光栅的波导光复用器 |
US11513350B2 (en) | 2016-12-02 | 2022-11-29 | Digilens Inc. | Waveguide device with uniform output illumination |
EP3549109B1 (en) | 2016-12-05 | 2023-04-19 | Magic Leap, Inc. | Virtual user input controls in a mixed reality environment |
US10531220B2 (en) | 2016-12-05 | 2020-01-07 | Magic Leap, Inc. | Distributed audio capturing techniques for virtual reality (VR), augmented reality (AR), and mixed reality (MR) systems |
IL304304B2 (en) | 2016-12-08 | 2024-08-01 | Magic Leap Inc | Light beam breaking devices based on cholesteric liquid crystal |
EP3555865B1 (en) | 2016-12-13 | 2024-09-18 | Magic Leap, Inc. | 3d object rendering using detected features |
CN110291453B (zh) | 2016-12-14 | 2022-11-01 | 奇跃公司 | 使用具有表面对准图案的软压印复制对液晶图案化 |
US10371896B2 (en) | 2016-12-22 | 2019-08-06 | Magic Leap, Inc. | Color separation in planar waveguides using dichroic filters |
US10746999B2 (en) | 2016-12-28 | 2020-08-18 | Magic Leap, Inc. | Dual depth exit pupil expander |
CN117251053A (zh) | 2016-12-29 | 2023-12-19 | 奇跃公司 | 基于外部条件的可穿戴显示装置的自动控制 |
US10545346B2 (en) | 2017-01-05 | 2020-01-28 | Digilens Inc. | Wearable heads up displays |
JP7071374B2 (ja) | 2017-01-05 | 2022-05-18 | マジック リープ, インコーポレイテッド | プラズマエッチングによる高屈折率ガラスのパターン化 |
EP3568783A4 (en) | 2017-01-11 | 2020-11-11 | Magic Leap, Inc. | MEDICAL ASSISTANT |
IL268135B2 (en) | 2017-01-23 | 2024-03-01 | Magic Leap Inc | Eyepiece for virtual, augmented or mixed reality systems |
US10812936B2 (en) | 2017-01-23 | 2020-10-20 | Magic Leap, Inc. | Localization determination for mixed reality systems |
US10841724B1 (en) | 2017-01-24 | 2020-11-17 | Ha Tran | Enhanced hearing system |
WO2018140502A1 (en) | 2017-01-27 | 2018-08-02 | Magic Leap, Inc. | Antireflection coatings for metasurfaces |
IL307294A (en) | 2017-01-27 | 2023-11-01 | Magic Leap Inc | Diffraction gratings produced using a surface cell with differently oriented nanobeams |
US11347054B2 (en) | 2017-02-16 | 2022-05-31 | Magic Leap, Inc. | Systems and methods for augmented reality |
IL307602A (en) | 2017-02-23 | 2023-12-01 | Magic Leap Inc | Variable focus virtual imagers based on polarization conversion |
IL301886A (en) | 2017-03-14 | 2023-06-01 | Magic Leap Inc | Waveguides with light absorbing layers and processes for their creation |
CA3054619C (en) | 2017-03-17 | 2024-01-30 | Magic Leap, Inc. | Mixed reality system with virtual content warping and method of generating virtual content using same |
AU2018233733B2 (en) | 2017-03-17 | 2021-11-11 | Magic Leap, Inc. | Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same |
US10657376B2 (en) | 2017-03-17 | 2020-05-19 | Magic Leap, Inc. | Room layout estimation methods and techniques |
EP3596705A4 (en) | 2017-03-17 | 2020-01-22 | Magic Leap, Inc. | COLOR VIRTUAL CONTENT DEFORMATION MIXED REALITY SYSTEM AND VIRTUAL CONTENT GENERATION METHOD USING THE SAME |
EP4246214A3 (en) | 2017-03-21 | 2023-12-06 | Magic Leap, Inc. | Methods, devices, and systems for illuminating spatial light modulators |
WO2018175344A1 (en) | 2017-03-21 | 2018-09-27 | Magic Leap, Inc. | Depth sensing techniques for virtual, augmented, and mixed reality systems |
KR20240069826A (ko) | 2017-03-21 | 2024-05-20 | 매직 립, 인코포레이티드 | 저-프로파일 빔 스플리터 |
IL303471B2 (en) | 2017-03-21 | 2024-08-01 | Magic Leap Inc | An eye imaging device that uses optical refractive elements |
WO2018175625A1 (en) | 2017-03-22 | 2018-09-27 | Magic Leap, Inc. | Depth based foveated rendering for display systems |
JP7516048B2 (ja) | 2017-04-18 | 2024-07-16 | マジック リープ, インコーポレイテッド | 反射性流動可能材料によって形成された反射性層を有する導波管 |
AU2018256365A1 (en) | 2017-04-19 | 2019-10-31 | Magic Leap, Inc. | Multimodal task execution and text editing for a wearable system |
US10388077B2 (en) | 2017-04-25 | 2019-08-20 | Microsoft Technology Licensing, Llc | Three-dimensional environment authoring and generation |
US11163416B2 (en) | 2017-04-27 | 2021-11-02 | Magic Leap, Inc. | Light-emitting user input device for calibration or pairing |
US10412378B2 (en) | 2017-05-08 | 2019-09-10 | Microsoft Technology Licensing, Llc | Resonating optical waveguide using multiple diffractive optical elements |
US10222615B2 (en) | 2017-05-26 | 2019-03-05 | Microsoft Technology Licensing, Llc | Optical waveguide with coherent light source |
KR102627882B1 (ko) | 2017-05-30 | 2024-01-22 | 매직 립, 인코포레이티드 | 전자 디바이스를 위한 팬 조립체를 갖는 전력 공급기 조립체 |
US10671160B2 (en) | 2017-05-31 | 2020-06-02 | Magic Leap, Inc. | Eye tracking calibration techniques |
US10338400B2 (en) | 2017-07-03 | 2019-07-02 | Holovisions LLC | Augmented reality eyewear with VAPE or wear technology |
US10859834B2 (en) | 2017-07-03 | 2020-12-08 | Holovisions | Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear |
US10908680B1 (en) | 2017-07-12 | 2021-02-02 | Magic Leap, Inc. | Pose estimation using electromagnetic tracking |
AU2018308418A1 (en) | 2017-07-26 | 2020-01-16 | Magic Leap, Inc. | Training a neural network with representations of user interface devices |
CA3068612A1 (en) | 2017-07-28 | 2019-01-31 | Magic Leap, Inc. | Fan assembly for displaying an image |
US10521661B2 (en) | 2017-09-01 | 2019-12-31 | Magic Leap, Inc. | Detailed eye shape model for robust biometric applications |
US10719951B2 (en) | 2017-09-20 | 2020-07-21 | Magic Leap, Inc. | Personalized neural network for eye tracking |
WO2019060741A1 (en) | 2017-09-21 | 2019-03-28 | Magic Leap, Inc. | INCREASED REALITY DISPLAY HAVING A WAVEGUIDE CONFIGURED TO CAPTURE IMAGES OF THE EYE AND / OR THE ENVIRONMENT |
KR102481884B1 (ko) | 2017-09-22 | 2022-12-28 | 삼성전자주식회사 | 가상 영상을 표시하는 방법 및 장치 |
CN107682686B (zh) * | 2017-10-11 | 2019-03-12 | 京东方科技集团股份有限公司 | 一种虚拟现实显示装置、显示设备及显示方法 |
CN116149058A (zh) | 2017-10-16 | 2023-05-23 | 迪吉伦斯公司 | 用于倍增像素化显示器的图像分辨率的系统和方法 |
KR102695589B1 (ko) | 2017-10-22 | 2024-08-14 | 루머스 리미티드 | 광학 벤치를 사용하는 헤드 장착형 증강 현실 장치 |
CA3078530A1 (en) | 2017-10-26 | 2019-05-02 | Magic Leap, Inc. | Gradient normalization systems and methods for adaptive loss balancing in deep multitask networks |
WO2019118930A1 (en) | 2017-12-15 | 2019-06-20 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
KR20200104402A (ko) | 2018-01-08 | 2020-09-03 | 디지렌즈 인코포레이티드. | 도파관 셀을 제조하기 위한 시스템 및 방법 |
KR20200108030A (ko) | 2018-01-08 | 2020-09-16 | 디지렌즈 인코포레이티드. | 도파관 셀 내의 홀로그래픽 격자의 높은 처리능력의 레코딩을 위한 시스템 및 방법 |
WO2019136476A1 (en) | 2018-01-08 | 2019-07-11 | Digilens, Inc. | Waveguide architectures and related methods of manufacturing |
US11567627B2 (en) | 2018-01-30 | 2023-01-31 | Magic Leap, Inc. | Eclipse cursor for virtual content in mixed reality displays |
US10540941B2 (en) | 2018-01-30 | 2020-01-21 | Magic Leap, Inc. | Eclipse cursor for mixed reality displays |
CN108366250B (zh) * | 2018-02-06 | 2020-03-17 | 深圳市鹰硕技术有限公司 | 影像显示系统、方法以及数字眼镜 |
IL312231A (en) | 2018-02-06 | 2024-06-01 | Magic Leap Inc | Systems and methods for augmented reality |
US10735649B2 (en) | 2018-02-22 | 2020-08-04 | Magic Leap, Inc. | Virtual and augmented reality systems and methods using display system control information embedded in image data |
EP4212222A1 (en) | 2018-03-07 | 2023-07-19 | Magic Leap, Inc. | Visual tracking of peripheral devices |
JP7381482B2 (ja) | 2018-03-16 | 2023-11-15 | マジック リープ, インコーポレイテッド | ディスプレイシステムのための深度ベースの中心窩化レンダリング |
US10690851B2 (en) | 2018-03-16 | 2020-06-23 | Digilens Inc. | Holographic waveguides incorporating birefringence control and methods for their fabrication |
US11480467B2 (en) | 2018-03-21 | 2022-10-25 | Magic Leap, Inc. | Augmented reality system and method for spectroscopic analysis |
US11157159B2 (en) | 2018-06-07 | 2021-10-26 | Magic Leap, Inc. | Augmented reality scrollbar |
USD875729S1 (en) | 2018-06-27 | 2020-02-18 | Magic Leap, Inc. | Portion of an augmented reality headset |
WO2020018938A1 (en) | 2018-07-19 | 2020-01-23 | Magic Leap, Inc. | Content interaction driven by eye metrics |
EP3824622A4 (en) | 2018-07-20 | 2021-09-08 | Flex-N-gate Advanced Product Development, LLC | FLOATING IMAGE GENERATION |
WO2020018899A1 (en) * | 2018-07-20 | 2020-01-23 | Flex-N-Gate Advanced Product Development, Llc | Animated 3d image multiplier |
CN112513712B (zh) | 2018-07-23 | 2023-05-09 | 奇跃公司 | 具有虚拟内容翘曲的混合现实系统和使用该系统生成虚拟内容的方法 |
US10943521B2 (en) | 2018-07-23 | 2021-03-09 | Magic Leap, Inc. | Intra-field sub code timing in field sequential displays |
CN112513711B (zh) | 2018-07-23 | 2023-03-07 | 奇跃公司 | 用于使用位置向量解析半球模糊度的方法和系统 |
USD924204S1 (en) | 2018-07-24 | 2021-07-06 | Magic Leap, Inc. | Totem controller having an illumination region |
USD918176S1 (en) | 2018-07-24 | 2021-05-04 | Magic Leap, Inc. | Totem controller having an illumination region |
US11567336B2 (en) | 2018-07-24 | 2023-01-31 | Magic Leap, Inc. | Display systems and methods for determining registration between display and eyes of user |
USD930614S1 (en) | 2018-07-24 | 2021-09-14 | Magic Leap, Inc. | Totem controller having an illumination region |
US11402801B2 (en) | 2018-07-25 | 2022-08-02 | Digilens Inc. | Systems and methods for fabricating a multilayer optical structure |
US11914148B2 (en) | 2018-09-07 | 2024-02-27 | Adeia Semiconductor Inc. | Stacked optical waveguides |
US11141645B2 (en) | 2018-09-11 | 2021-10-12 | Real Shot Inc. | Athletic ball game using smart glasses |
US11103763B2 (en) | 2018-09-11 | 2021-08-31 | Real Shot Inc. | Basketball shooting game using smart glasses |
JP7455121B2 (ja) | 2018-10-26 | 2024-03-25 | マジック リープ, インコーポレイテッド | 電磁追跡のための周囲電磁歪み補正 |
EP3877831A4 (en) | 2018-11-09 | 2022-08-03 | Beckman Coulter, Inc. | MAINTENANCE GOGGLES WITH SELECTIVE DATA SUPPLY |
US11237393B2 (en) | 2018-11-20 | 2022-02-01 | Magic Leap, Inc. | Eyepieces for augmented reality display system |
KR20210138609A (ko) | 2019-02-15 | 2021-11-19 | 디지렌즈 인코포레이티드. | 일체형 격자를 이용하여 홀로그래픽 도파관 디스플레이를 제공하기 위한 방법 및 장치 |
JP7518844B2 (ja) | 2019-02-28 | 2024-07-18 | マジック リープ, インコーポレイテッド | 光エミッタアレイによって形成される複数の瞳孔内視差ビューを使用して可変遠近調節キューを提供するためのディスプレイシステムおよび方法 |
JP2022525165A (ja) | 2019-03-12 | 2022-05-11 | ディジレンズ インコーポレイテッド | ホログラフィック導波管バックライトおよび関連する製造方法 |
CN114008514A (zh) | 2019-04-15 | 2022-02-01 | 奇跃公司 | 用于电磁跟踪的传感器融合 |
WO2020214897A1 (en) | 2019-04-18 | 2020-10-22 | Beckman Coulter, Inc. | Securing data of objects in a laboratory environment |
USD962981S1 (en) | 2019-05-29 | 2022-09-06 | Magic Leap, Inc. | Display screen or portion thereof with animated scrollbar graphical user interface |
CN114207492A (zh) | 2019-06-07 | 2022-03-18 | 迪吉伦斯公司 | 带透射光栅和反射光栅的波导及其生产方法 |
EP3987343A4 (en) | 2019-06-20 | 2023-07-19 | Magic Leap, Inc. | EYEWEARS FOR AUGMENTED REALITY DISPLAY SYSTEM |
KR20220024410A (ko) | 2019-06-27 | 2022-03-03 | 루머스 리미티드 | 도광 광학 소자를 통한 눈 이미징에 기초한 시선 추적 장치 및 방법 |
KR20220038452A (ko) | 2019-07-29 | 2022-03-28 | 디지렌즈 인코포레이티드. | 픽셀화된 디스플레이의 이미지 해상도와 시야를 증배하는 방법 및 장치 |
KR20220054386A (ko) | 2019-08-29 | 2022-05-02 | 디지렌즈 인코포레이티드. | 진공 브래그 격자 및 이의 제조 방법 |
JP2023509305A (ja) | 2019-12-25 | 2023-03-08 | ルムス エルティーディー. | 光ガイド光学素子と関連付けられた光学配置を使用して、眼からの光を方向転換することに基づく、アイトラッキングのための光学システムおよび方法 |
JP7545564B2 (ja) | 2020-07-15 | 2024-09-04 | マジック リープ, インコーポレイテッド | 非球面角膜モデルを使用した眼追跡 |
WO2023023628A1 (en) * | 2021-08-18 | 2023-02-23 | Advanced Neuromodulation Systems, Inc. | Systems and methods for providing digital health services |
TW202323949A (zh) * | 2021-09-30 | 2023-06-16 | 以色列商魯姆斯有限公司 | 用於控制有源遮擋子系統的裝置、方法和電腦可讀存儲裝置 |
KR20230103379A (ko) | 2021-12-31 | 2023-07-07 | 삼성전자주식회사 | Ar 처리 방법 및 장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090052040A1 (en) * | 2005-02-22 | 2009-02-26 | Kenzaburo Suzuki | Diffractive optical element |
RU2359297C1 (ru) * | 2007-12-21 | 2009-06-20 | Олег Леонидович Головков | Виртуальный шлем |
US20100149611A1 (en) * | 2007-05-16 | 2010-06-17 | Seereal Technologies S.A. | Method and Apparatus for Reconstructing a Three-Dimensional Scene in a Holographic Display |
US20100157433A1 (en) * | 2008-12-19 | 2010-06-24 | Sony Corporation | Head mounted display |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2728994B2 (ja) | 1991-07-30 | 1998-03-18 | 三菱電機株式会社 | 開閉機器の動作異常検出装置 |
JP2786352B2 (ja) * | 1991-10-02 | 1998-08-13 | シャープ株式会社 | 焦点可変光学装置 |
JPH0536327U (ja) * | 1991-10-21 | 1993-05-18 | 三菱電機株式会社 | 撮像装置 |
JPH05328260A (ja) * | 1992-05-26 | 1993-12-10 | Olympus Optical Co Ltd | 頭部装着式ディスプレイ装置 |
US5572343A (en) | 1992-05-26 | 1996-11-05 | Olympus Optical Co., Ltd. | Visual display having see-through function and stacked liquid crystal shutters of opposite viewing angle directions |
JP3630746B2 (ja) * | 1994-12-05 | 2005-03-23 | キヤノン株式会社 | 画像観察装置 |
JP3556389B2 (ja) * | 1996-05-01 | 2004-08-18 | 日本電信電話株式会社 | ヘッドマウントディスプレイ装置 |
EP1798592A3 (en) | 1996-01-17 | 2007-09-19 | Nippon Telegraph And Telephone Corporation | Optical device and three-dimensional display device |
WO1997035223A1 (en) * | 1996-03-15 | 1997-09-25 | Retinal Display Cayman Limited | Method of and apparatus for viewing an image |
GB9713658D0 (en) * | 1997-06-28 | 1997-09-03 | Travis Adrian R L | View-sequential holographic display |
US20040108971A1 (en) * | 1998-04-09 | 2004-06-10 | Digilens, Inc. | Method of and apparatus for viewing an image |
JP2000171750A (ja) * | 1998-12-03 | 2000-06-23 | Sony Corp | ヘッドマウントディスプレイ、表示方法、および提供媒体 |
US6546438B1 (en) | 1999-06-08 | 2003-04-08 | Siemens Energy & Automation | System for interfacing components |
US6456438B1 (en) * | 1999-08-12 | 2002-09-24 | Honeywell Inc. | Variable immersion vignetting display |
GB0000589D0 (en) | 2000-01-13 | 2000-03-01 | Guiver Matthew | Cutting guide |
FI114945B (fi) * | 2002-09-19 | 2005-01-31 | Nokia Corp | Sähköisesti säädettävä diffraktiivinen hilaelementti |
DE102005045174A1 (de) | 2005-09-21 | 2007-03-22 | Bayer Cropscience Ag | Steigerung der Pathogenabwehr in Pflanzen |
JPWO2007037089A1 (ja) * | 2005-09-27 | 2009-04-02 | コニカミノルタホールディングス株式会社 | 頭部装着型映像表示装置 |
JP4810949B2 (ja) * | 2005-09-29 | 2011-11-09 | ソニー株式会社 | 光学装置及び画像表示装置 |
US7702468B2 (en) | 2006-05-03 | 2010-04-20 | Population Diagnostics, Inc. | Evaluating genetic disorders |
US7936489B2 (en) * | 2007-02-09 | 2011-05-03 | GM Global Technology Operations LLC | Holographic information display |
CN101029968A (zh) * | 2007-04-06 | 2007-09-05 | 北京理工大学 | 可寻址光线屏蔽机制光学透视式头盔显示器 |
CN101688977B (zh) * | 2007-06-04 | 2011-12-07 | 诺基亚公司 | 衍射扩束器和基于衍射扩束器的虚拟显示器 |
BRPI0701380E2 (pt) | 2007-06-29 | 2009-10-06 | Valmor Da Cunha Gravio | redutor mecánico de velocidade por correia |
EP2170698B1 (en) | 2007-07-31 | 2017-10-11 | B/E Aerospace, Inc. | Aircraft cargo door |
US20100011368A1 (en) | 2008-07-09 | 2010-01-14 | Hiroshi Arakawa | Methods, systems and programs for partitioned storage resources and services in dynamically reorganized storage platforms |
US20100011036A1 (en) | 2008-07-09 | 2010-01-14 | The Go Daddy Group, Inc. | Document storage access on a per-approval basis |
WO2010062481A1 (en) * | 2008-11-02 | 2010-06-03 | David Chaum | Near to eye display system and appliance |
WO2010067117A1 (en) * | 2008-12-12 | 2010-06-17 | Bae Systems Plc | Improvements in or relating to waveguides |
JP5316391B2 (ja) * | 2009-08-31 | 2013-10-16 | ソニー株式会社 | 画像表示装置及び頭部装着型ディスプレイ |
JP5333067B2 (ja) * | 2009-08-31 | 2013-11-06 | ソニー株式会社 | 画像表示装置及び頭部装着型ディスプレイ |
KR101099137B1 (ko) | 2010-01-29 | 2011-12-27 | 주식회사 팬택 | 이동 통신 시스템에서 증강 현실 정보를 제공하기 위한 장치 및 방법 |
US20110213664A1 (en) * | 2010-02-28 | 2011-09-01 | Osterhout Group, Inc. | Local advertising content on an interactive head-mounted eyepiece |
KR101479262B1 (ko) | 2010-09-02 | 2015-01-12 | 주식회사 팬택 | 증강현실 정보 이용 권한 부여 방법 및 장치 |
KR101260576B1 (ko) | 2010-10-13 | 2013-05-06 | 주식회사 팬택 | Ar 서비스를 제공하기 위한 사용자 단말기 및 그 방법 |
KR101407670B1 (ko) | 2011-09-15 | 2014-06-16 | 주식회사 팬택 | 증강현실 기반 모바일 단말과 서버 및 그 통신방법 |
-
2012
- 2012-11-23 KR KR1020147017217A patent/KR102116697B1/ko active IP Right Grant
- 2012-11-23 KR KR1020217006982A patent/KR102376368B1/ko active IP Right Grant
- 2012-11-23 EP EP12851157.3A patent/EP2783352B1/en active Active
- 2012-11-23 EP EP19154686.0A patent/EP3503035B1/en active Active
- 2012-11-23 AU AU2012341069A patent/AU2012341069B2/en active Active
- 2012-11-23 BR BR112014012615A patent/BR112014012615A2/pt not_active Application Discontinuation
- 2012-11-23 CA CA2858208A patent/CA2858208C/en active Active
- 2012-11-23 EP EP22163415.7A patent/EP4036862A1/en active Pending
- 2012-11-23 US US13/684,489 patent/US8950867B2/en active Active
- 2012-11-23 KR KR1020177030366A patent/KR102095220B1/ko active IP Right Grant
- 2012-11-23 KR KR1020227030044A patent/KR102513896B1/ko active IP Right Grant
- 2012-11-23 CN CN201710904801.4A patent/CN107664847B/zh active Active
- 2012-11-23 KR KR1020207014691A patent/KR102227381B1/ko active IP Right Grant
- 2012-11-23 RU RU2014125226A patent/RU2628164C2/ru not_active IP Right Cessation
- 2012-11-23 CA CA3024054A patent/CA3024054C/en active Active
- 2012-11-23 WO PCT/US2012/000560 patent/WO2013077895A1/en active Application Filing
- 2012-11-23 CN CN201280067730.2A patent/CN104067316B/zh active Active
- 2012-11-23 JP JP2014543465A patent/JP6250547B2/ja active Active
- 2012-11-23 KR KR1020227008484A patent/KR102440195B1/ko active IP Right Grant
-
2014
- 2014-05-22 IL IL232746A patent/IL232746A/en active IP Right Grant
-
2015
- 2015-01-07 US US14/591,543 patent/US20150124317A1/en not_active Abandoned
-
2016
- 2016-10-06 US US15/286,695 patent/US10191294B2/en active Active
-
2017
- 2017-02-10 JP JP2017022805A patent/JP6422518B2/ja active Active
- 2017-05-15 IL IL252284A patent/IL252284B/en active IP Right Grant
-
2018
- 2018-05-11 AU AU2018203315A patent/AU2018203315B2/en active Active
- 2018-05-11 AU AU2018203318A patent/AU2018203318B2/en active Active
- 2018-07-04 JP JP2018127444A patent/JP6646712B2/ja active Active
- 2018-10-04 JP JP2018189007A patent/JP6785277B2/ja active Active
- 2018-11-07 US US16/183,619 patent/US10444527B2/en active Active
-
2019
- 2019-07-15 US US16/511,488 patent/US10670881B2/en active Active
-
2020
- 2020-04-09 US US16/844,464 patent/US11474371B2/en active Active
- 2020-08-13 JP JP2020136613A patent/JP2020181225A/ja not_active Withdrawn
- 2020-10-20 AU AU2020257062A patent/AU2020257062B2/en active Active
-
2022
- 2022-04-11 AU AU2022202379A patent/AU2022202379B2/en active Active
- 2022-08-02 US US17/816,902 patent/US11822102B2/en active Active
-
2023
- 2023-10-04 US US18/481,090 patent/US20240027785A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090052040A1 (en) * | 2005-02-22 | 2009-02-26 | Kenzaburo Suzuki | Diffractive optical element |
US20100149611A1 (en) * | 2007-05-16 | 2010-06-17 | Seereal Technologies S.A. | Method and Apparatus for Reconstructing a Three-Dimensional Scene in a Holographic Display |
RU2359297C1 (ru) * | 2007-12-21 | 2009-06-20 | Олег Леонидович Головков | Виртуальный шлем |
US20100157433A1 (en) * | 2008-12-19 | 2010-06-24 | Sony Corporation | Head mounted display |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2628164C2 (ru) | Система отображения трехмерной виртуальной и дополненной реальности |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191124 |