RU2626176C1 - Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных - Google Patents

Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных Download PDF

Info

Publication number
RU2626176C1
RU2626176C1 RU2016117737A RU2016117737A RU2626176C1 RU 2626176 C1 RU2626176 C1 RU 2626176C1 RU 2016117737 A RU2016117737 A RU 2016117737A RU 2016117737 A RU2016117737 A RU 2016117737A RU 2626176 C1 RU2626176 C1 RU 2626176C1
Authority
RU
Russia
Prior art keywords
quantization matrix
quantization
row
column
element corresponding
Prior art date
Application number
RU2016117737A
Other languages
English (en)
Inventor
Масато СИМА
Original Assignee
Кэнон Кабусики Кайся
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кэнон Кабусики Кайся filed Critical Кэнон Кабусики Кайся
Application granted granted Critical
Publication of RU2626176C1 publication Critical patent/RU2626176C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • H04N19/126Details of normalisation or weighting functions, e.g. normalisation matrices or variable uniform quantisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/162User input
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

Изобретение относится к области обработки видеоизображений и, в частности, к способу кодирования/декодирования матрицы квантования в изображении. Техническим результатом является обеспечение высокоэффективного кодирования/декодирования матриц квантования посредством горизонтального/вертикального сканирования при кодировании матриц квантования. Предложено устройство кодирования изображений, содержащее: средство получения для получения значений разности между элементами для по меньшей мере части элементов из числа множества элементов в матрице квантования, которая может быть выражена в двумерном массиве, который используется, когда данные изображения, которые должны подвергаться кодированию, квантуются, при этом средство получения получает значение разности между элементом, соответствующим первой строке и первому столбцу в матрице квантования, и элементом, соответствующим второй строке и первому столбцу, получает значение разности между элементом, соответствующим второй строке и первому столбцу в матрице квантования, и элементом, соответствующим первой строке и второму столбцу, и получает значение разности между элементом, соответствующим первой строке и второму столбцу в матрице квантования, и элементом, соответствующим третьей строке и первому столбцу. 3 н. и 6 з.п. ф-лы, 40 ил.

Description

Область техники, к которой относится изобретение
[0001] Настоящее изобретение относится к устройству кодирования изображений, способу кодирования изображений, устройству декодирования изображений, способу декодирования изображений и носителю хранения данных. Более конкретно, настоящее изобретение относится к способу кодирования/декодирования матрицы квантования в изображении.
Уровень техники
[0002] В качестве стандарта записи со сжатием движущегося изображения, известен H.264/MPEG-4 AVC (в дальнейшем называемый H.264). (ITU-T H.264 (03/2010) Усовершенствованное кодирование видео для общих аудиовизуальных услуг). Касательно H.264 каждый элемент матрицы квантования может быть изменен на произвольное значение посредством кодирования информации списков масштабирования. Согласно главе 7.3.2.1.1.1 H.264 посредством суммирования дельта-шкалы, представляющей собой значение разности между элементом и его предыдущим элементом, каждый элемент матрицы квантования может принимать произвольное значение.
[0003] Касательно H.264 элементы матрицы квантования сканируются в направлении от элемента в верхнем левом углу двумерной матрицы квантования, который соответствует низкочастотному компоненту, к элементу в нижнем правом углу, который соответствует высокочастотному компоненту. Например, при кодировании двумерной матрицы квантования, проиллюстрированной на фиг. 6A, используется способ сканирования, называемый зигзагообразным сканированием, проиллюстрированный на фиг. 13A. Согласно этой обработке матрица квантования компонуется в одномерную матрицу, проиллюстрированную на фиг. 6B. Затем вычисляется разность между элементом, который должен быть кодирован в матрице, и ее предыдущем элементом, и получается матрица значений разностей, проиллюстрированная на фиг. 6D. Дополнительно значения разностей кодируются в качестве дельта-шкалы посредством способа, называемого кодированием экспоненциальным кодом Голомба со знаком, проиллюстрированного на фиг. 5A. Например, если разность между элементом в матрице и ее предыдущим элементом равна 0, кодируется двоичный код 1. Если разность равна -2, кодируется двоичный код 00101.
[0004] Тем не менее, касательно зигзагообразного сканирования, используемого в H.264, поскольку элементы матрицы квантования сканируются в диагональном направлении, объем кода матрицы квантования увеличивается в зависимости от характеристик матрицы квантования.
Сущность изобретения
[0005] Настоящее изобретение направлено на реализацию высокоэффективного кодирования/декодирования матриц квантования посредством введения однонаправленного способа сканирования, такого как горизонтальное/вертикальное сканирование при кодировании матриц квантования.
[0006] Согласно аспекту настоящего изобретения устройство кодирования изображений включает в себя средство разделения на блоки, сконфигурированное с возможностью разделять входное изображение на множество блоков, средство прогнозирования, сконфигурированное с возможностью осуществлять прогнозирование на основе кодированных пикселов, чтобы формировать ошибки прогнозирования, средство преобразования, сконфигурированное с возможностью осуществлять ортогональное преобразование для ошибок прогнозирования, чтобы формировать коэффициенты преобразования, средство формирования матриц квантования, сконфигурированное с возможностью формировать матрицы квантования, которые используются для того, чтобы квантовать коэффициенты преобразования, средство кодирования матриц квантования, сконфигурированное с возможностью вычислять значения разностей посредством сканирования матриц квантования и кодировать значения разностей, средство квантования, сконфигурированное с возможностью формировать коэффициенты квантования посредством квантования сформированных коэффициентов преобразования с использованием матриц квантования, и средство кодирования коэффициентов, сконфигурированное с возможностью кодировать коэффициенты квантования, при этом средство кодирования матриц квантования сконфигурировано с возможностью сканировать коэффициенты матриц квантования однонаправленным способом, чтобы вычислять значение разности.
[0007] Согласно примерному варианту осуществления настоящего изобретения объем кода, необходимого при кодировании матриц квантования, может быть уменьшен, и становится возможным высокоэффективное кодирование/декодирование.
[0008] Дополнительные признаки и аспекты настоящего изобретения должны становиться очевидными из последующего подробного описания примерных вариантов осуществления со ссылкой на прилагаемые чертежи.
Краткое описание чертежей
[0009] Прилагаемые чертежи, которые содержатся и составляют часть описания изобретения, иллюстрируют примерные варианты осуществления, признаки и аспекты изобретения и вместе с описанием предназначены для пояснения принципов изобретения.
[0010] Фиг. 1 является блок-схемой, иллюстрирующей конфигурацию устройства кодирования изображений согласно первому, пятому и седьмому примерным вариантам осуществления настоящего изобретения.
Фиг. 2 является блок-схемой, иллюстрирующей конфигурацию устройства декодирования изображений согласно второму, шестому и восьмому примерным вариантам осуществления настоящего изобретения.
Фиг. 3 является блок-схемой, иллюстрирующей конфигурацию устройства декодирования изображений согласно третьему примерному варианту осуществления настоящего изобретения.
Фиг. 4 является блок-схемой, иллюстрирующей конфигурацию устройства декодирования изображений согласно четвертому примерному варианту осуществления настоящего изобретения.
Фиг. 5A иллюстрирует пример таблицы кодирования с симметрией "плюс-минус".
Фиг. 5B иллюстрирует пример таблицы кодирования с асимметрией "плюс-минус".
Фиг. 6A иллюстрирует пример матрицы квантования.
Фиг. 6B иллюстрирует пример матрицы квантования.
Фиг. 6C иллюстрирует пример матрицы квантования.
Фиг. 6D иллюстрирует пример матрицы разностей.
Фиг. 6E иллюстрирует пример матрицы разностей.
Фиг. 7 иллюстрирует пример кодирования матрицы квантования.
Фиг. 8A иллюстрирует пример структуры потока битов.
Фиг. 8B иллюстрирует пример структуры потока битов.
Фиг. 9 является блок-схемой последовательности операций способа, иллюстрирующей обработку кодирования изображений в устройстве кодирования изображений согласно первому, пятому и седьмому примерным вариантам осуществления.
Фиг. 10 является блок-схемой последовательности операций способа, иллюстрирующей обработку декодирования изображений в устройстве декодирования изображений согласно второму, шестому и восьмому примерным вариантам осуществления.
Фиг. 11 является блок-схемой последовательности операций способа, иллюстрирующей обработку кодирования изображений в устройстве кодирования изображений согласно третьему примерному варианту осуществления.
Фиг. 12 является блок-схемой последовательности операций способа, иллюстрирующей обработку декодирования изображений в устройстве декодирования изображений согласно четвертому примерному варианту осуществления.
Фиг. 13A иллюстрирует пример способа сканирования и способа вычисления разностей коэффициентов матрицы квантования.
Фиг. 13B иллюстрирует пример способа сканирования и способа вычисления разностей коэффициентов матрицы квантования.
Фиг. 13C иллюстрирует пример способа сканирования и способа вычисления разностей коэффициентов матрицы квантования.
Фиг. 13D иллюстрирует пример способа сканирования и способа вычисления разностей коэффициентов матрицы квантования.
Фиг. 13E иллюстрирует пример способа сканирования и способа вычисления разностей коэффициентов матрицы квантования.
Фиг. 14 является блок-схемой, иллюстрирующей пример конфигурации аппаратных средств компьютера, применимого к устройству кодирования изображений и к устройству декодирования согласно примерным вариантам осуществления настоящего изобретения.
Фиг. 15 иллюстрирует пример кодирования матрицы квантования согласно пятому и шестому примерным вариантам осуществления.
Фиг. 16A иллюстрирует пример способа сканирования и способа вычисления разностей коэффициентов матрицы квантования согласно пятому и шестому примерным вариантам осуществления.
Фиг. 16B иллюстрирует пример способа сканирования и способа вычисления разностей коэффициентов матрицы квантования согласно пятому и шестому примерным вариантам осуществления.
Фиг. 16C иллюстрирует пример способа сканирования и способа вычисления разностей коэффициентов матрицы квантования согласно пятому и шестому примерным вариантам осуществления.
Фиг. 17A иллюстрирует пример матрицы квантования согласно пятому и шестому примерным вариантам осуществления.
Фиг. 17B иллюстрирует пример матрицы разностей согласно пятому и шестому примерным вариантам осуществления.
Фиг. 17C иллюстрирует пример матрицы разностей согласно пятому и шестому примерным вариантам осуществления.
Фиг. 18A иллюстрирует пример способа сканирования коэффициентов матрицы квантования согласно седьмому и восьмому примерным вариантам осуществления.
Фиг. 18B иллюстрирует пример способа сканирования коэффициентов матрицы квантования согласно седьмому и восьмому примерным вариантам осуществления.
Фиг. 18C иллюстрирует пример способа сканирования коэффициентов матрицы квантования согласно седьмому и восьмому примерным вариантам осуществления.
Фиг. 19A иллюстрирует пример матрицы квантования согласно седьмому и восьмому примерным вариантам осуществления.
Фиг. 19B иллюстрирует пример матрицы разностей согласно седьмому и восьмому примерным вариантам осуществления.
Фиг. 20A иллюстрирует пример способа сканирования коэффициентов матрицы квантования согласно седьмому и восьмому примерным вариантам осуществления.
Фиг. 20B иллюстрирует пример способа сканирования коэффициентов матрицы квантования согласно седьмому и восьмому примерным вариантам осуществления.
Фиг. 20C иллюстрирует пример способа сканирования коэффициентов матрицы квантования согласно седьмому и восьмому примерным вариантам осуществления.
Фиг. 20D иллюстрирует пример способа сканирования коэффициентов матрицы квантования согласно седьмому и восьмому примерным вариантам осуществления.
Подробное описание вариантов осуществления
[0011] Различные примерные варианты осуществления, признаки и аспекты изобретения подробно описываются ниже со ссылкой на чертежи.
[0012] В контексте настоящего описания изобретения способ сканирования для двумерной матрицы, проиллюстрированный на фиг. 13B, называется горизонтальным сканированием, а способ сканирования для двумерной матрицы, проиллюстрированный на фиг. 13D, называется вертикальным сканированием.
[0013] Фиг. 1 является блок-схемой, иллюстрирующей устройство кодирования изображений согласно первому примерному варианту осуществления настоящего изобретения.
[0014] На фиг. 1 модуль 101 разделения на блоки разделяет входное изображение на множество блоков.
[0015] Модуль 102 прогнозирования выполняет прогнозирование каждого блока, разделенного посредством модуля 101 разделения на блоки в единицах блоков, определяет способ прогнозирования, вычисляет значения разностей согласно определенному способу прогнозирования и дополнительно вычисляет ошибки прогнозирования. Если внутренний кадр движущегося изображения или неподвижного изображения должен быть обработан, выполняется внутреннее прогнозирование. Если внешний кадр движущегося изображения должен быть обработан, выполняется прогнозирование с компенсацией движения, а также внутреннее прогнозирование. Внутреннее прогнозирование, в общем, реализуется посредством выбора оптимального способа прогнозирования из множества способов при вычислении прогнозированных значений из данных соседних пикселов.
[0016] Модуль 103 преобразования выполняет ортогональное преобразование для ошибок прогнозирования каждого блока. Модуль 103 преобразования выполняет ортогональное преобразование в единицах блоков, чтобы вычислять коэффициенты преобразования. Размер блока является размером входного блока или размером, полученным посредством дополнительной сегментации входного блока. В нижеприведенном описании блок, который должен быть преобразован посредством ортогонального преобразования, называется блоком преобразования. Хотя способ ортогонального преобразования не ограничивается, может использоваться дискретное косинусное преобразование или преобразование Адамара. Дополнительно согласно настоящему варианту осуществления ошибка прогнозирования в единицах блоков 8×8 пикселов разделяется на две части в длину и в ширину, и результирующий блок преобразования в 4×4 пиксела используется в ортогональном преобразовании, чтобы упрощать описание. Тем не менее, размер и форма блока преобразования не ограничены таким примером. Например, ортогональное преобразование может выполняться посредством использования блока преобразования с идентичным размером блока или блока преобразования, полученного посредством разделения блока на меньшие части, чем получается, когда блок разделяется на две части в длину и в ширину.
[0017] Модуль 106 хранения матриц квантования формирует и сохраняет матрицы квантования. Способ формирования матриц квантования, которые сохраняются в модуле 106 хранения матриц квантования, не ограничивается. Таким образом, это могут быть матрицы квантования, вводимые пользователем, матрицы квантования, вычисленные из характеристик входного изображения, или матрицы квантования, указанные заранее в качестве начальных значений. Согласно настоящему варианту осуществления формируется и сохраняется двумерная матрица квантования, соответствующая блоку преобразования 4×4 пикселов, проиллюстрированная на фиг. 6A.
[0018] Модуль 104 квантования квантует коэффициенты преобразования с использованием матриц квантования, сохраненных в модуле 106 хранения матриц квантования. Коэффициенты квантования получаются посредством этого процесса квантования.
[0019] Модуль 105 кодирования коэффициентов кодирует коэффициенты квантования, полученные таким образом, и формирует кодированные данные коэффициентов квантования. Хотя способ кодирования не ограничивается, может использоваться такое кодирование, как кодирование методом Хаффмана и арифметическое кодирование.
[0020] Модуль 109 сканирования матриц квантования сканирует двумерные матрицы квантования, сохраненные в модуле 106 хранения матриц квантования, вычисляет разность каждого элемента и компонует ее в одномерных матрицах. Согласно настоящему примерному варианту осуществления разность, скомпонованная в этой одномерной матрице, называется матрицей разностей.
[0021] Модуль 107 кодирования матриц квантования кодирует матрицы разностей (одномерные матрицы), скомпонованные посредством модуля 109 сканирования матриц квантования, и формирует кодированные данные матриц квантования. Модуль 108 интегрирующего кодирования формирует информацию заголовка, а также коды, которые ассоциированы с прогнозированием или преобразованием, и также интегрирует кодированные данные коэффициентов квантования, сформированные посредством модуля 105 кодирования коэффициентов, и кодированные данные матриц квантования, сформированные посредством модуля 107 кодирования матриц квантования. Код, ассоциированный с прогнозированием или преобразованием, представляет собой, например, код, ассоциированный с выбором способа прогнозирования или разделением блока преобразования.
[0022] Далее описывается операция кодирования изображения, выполняемая посредством вышеописанного устройства кодирования изображений. Согласно настоящему варианту осуществления хотя данные движущихся изображений вводятся в единицах кадров, также могут вводиться данные неподвижных изображений одного кадра. Дополнительно согласно настоящему варианту осуществления, чтобы упрощать описание, описывается только обработка кодирования с внутренним прогнозированием. Тем не менее, настоящее изобретение также может применяться к обработке кодирования с внешним прогнозированием. Согласно настоящему варианту осуществления, хотя модуль 101 разделения на блоки разделяет входное изображение на блоки 8×8 пикселов, размер блоков не ограничивается таким примером.
[0023] Затем кодирование элементов матриц квантования выполняется перед кодированием изображения. Во-первых, модуль 106 хранения матриц квантования формирует матрицы квантования. Матрицы квантования определяются согласно размеру блока, который кодируется. Способ определения элемента матриц квантования не ограничивается. Например, может использоваться предварительно определенное начальное значение, либо может использоваться значение, которое задается отдельно. Дополнительно значение может быть сформировано и задано согласно характеристикам изображения.
[0024] Матрица квантования, сформированная таким образом, сохраняется в модуле 106 хранения матриц квантования. Фиг. 6A иллюстрирует пример матрицы квантования, которая соответствует блоку преобразования 4×4 пикселов. Обведенный полужирным кадр 600 представляет матрицу квантования. Чтобы упрощать описание, матрица квантования имеет размер 16 пикселов, что соответствует блоку преобразования 4×4 пикселов, и каждая ячейка матрицы представляет элемент. Согласно настоящему варианту осуществления, хотя матрица квантования, проиллюстрированная на фиг. 6A, сохраняется в двумерной матрице, элементы в матрице квантования не ограничены таким примером. Например, если блок преобразования 8×8 пикселов должен быть использован в дополнение к размеру блока по настоящему варианту осуществления, должна быть сохранена другая матрица квантования, которая соответствует блоку преобразования 8×8 пикселов.
[0025] Модуль 109 сканирования матриц квантования считывает двумерные матрицы квантования, сохраненные в модуле 106 хранения матриц квантования по порядку, сканирует каждый элемент, вычисляет разность и компонует элементы в одномерных матрицах. Согласно настоящему варианту осуществления используется вертикальное сканирование, проиллюстрированное на фиг. 13D, и разность между элементом и его предыдущим элементом вычисляется для каждого элемента в порядке сканирования. Тем не менее, способ сканирования и способ вычисления разности не ограничены таким примером. Горизонтальное сканирование, проиллюстрированное на фиг. 13B, может использоваться в качестве способа сканирования, и разность между элементом и его предыдущим элементом может быть вычислена для каждого элемента в порядке сканирования. Дополнительно при использовании способа сканирования, проиллюстрированного на фиг. 13B, разность, связанная с элементами в левом конце, может быть вычислена посредством получения разности между верхними элементами, как проиллюстрировано на фиг. 13C. Таким образом, разность между элементом и его предыдущим элементом вычисляется так, как выполняется на фиг. 13B, за исключением элементов в левом конце. Дополнительно при использовании способа сканирования, проиллюстрированного на фиг. 13D, разность, связанная с элементами в начале, может быть вычислена посредством получения разности между левыми элементами, как проиллюстрировано на фиг. 13E. Таким образом, разность между элементом и его предыдущим элементом вычисляется так, как выполняется на фиг. 13D, за исключением элементов в начале. Согласно настоящему варианту осуществления двумерная матрица квантования, проиллюстрированная на фиг. 6A, сканируется с использованием вертикального сканирования, проиллюстрированного на фиг. 13D, и вычисляется разность между каждым элементом и его предыдущим элементом, и формируется матрица разностей, проиллюстрированная на фиг. 6E. Дополнительно значение разности, которое соответствует первому элементу матрицы, получается посредством вычисления разности между значением первого элемента и предварительно определенным начальным значением. Согласно настоящему варианту осуществления хотя начальное значение задается равным 8, произвольное значение может использоваться в качестве начального значения, или значение самого первого элемента может быть кодировано.
[0026] Модуль 107 кодирования матриц квантования считывает матрицы разностей из модуля 109 сканирования матриц квантования по порядку, кодирует матрицы разностей и формирует кодированные данные матриц квантования. Согласно настоящему варианту осуществления матрицы разностей кодируются посредством использования таблицы кодирования, проиллюстрированной на фиг. 5A. Тем не менее, таблица кодирования не ограничивается таким примером, и, например, может использоваться таблица кодирования, проиллюстрированная на фиг. 5B.
[0027] Фиг. 7 иллюстрирует пример результата, полученного посредством вычисления матрицы разностей матрицы квантования, проиллюстрированной на фиг. 6A, с использованием способов сканирования на фиг. 13A и 13D, и кодирования матрицы разностей с использованием таблицы кодирования, проиллюстрированной на фиг. 5A. Столбцы элемента на фиг. 7 представляют результаты, полученные из сканирования каждого элемента в матрице квантования, проиллюстрированной на фиг. 6A, и столбцы значения разности представляют значение разности между элементом и предварительно определенным начальным значением 8 или предыдущим элементом. Столбцы кода зигзагообразного сканирования представляют коды в случае, если используется зигзагообразное сканирование традиционного способа, проиллюстрированного на фиг. 13A, и требуется всего 68 битов. С другой стороны, столбцы кода вертикального сканирования представляют коды в случае, если используется вертикальное сканирование, проиллюстрированное на фиг. 13D, и требуется всего 60 битов. Таким образом, посредством использования вертикального сканирования, идентичная матрица квантования может быть кодирована с меньшим объемом кода. Кодированные данные матриц квантования, сформированных таким образом, вводятся в модуль 108 интегрирующего кодирования. Модуль 108 интегрирующего кодирования кодирует информацию заголовка, необходимую при кодировании данных изображений, и интегрирует кодированные данные матриц квантования.
[0028] После этого выполняется кодирование данных изображений. Когда данные изображений одного кадра вводятся в модуль 101 разделения на блоки, он разделяется на единицы блоков 8×8 пикселов. Разделенные данные изображений вводятся в модуль 102 прогнозирования.
[0029] Модуль 102 прогнозирования выполняет прогнозирование в единицах блоков, чтобы формировать ошибки прогнозирования. Модуль 103 преобразования разделяет ошибки прогнозирования, сформированные посредством модуля 102 прогнозирования, на блоки с размером блока преобразования, и выполняет ортогональное преобразование, чтобы получать коэффициенты преобразования. Затем полученные коэффициенты преобразования вводятся в модуль 104 квантования. Согласно настоящему варианту осуществления ошибки прогнозирования в единицах блоков 8×8 пикселов разделяются на единицы блоков преобразования 4×4 пикселов, чтобы выполнять ортогональное преобразование.
[0030] Снова ссылаясь на фиг. 1, модуль 104 квантования квантует вывод коэффициентов преобразования из модуля 103 преобразования посредством использования матриц квантования, сохраненных в модуле 106 хранения матриц квантования, и формирует коэффициенты квантования. Сформированные коэффициенты квантования вводятся в модуль 105 кодирования коэффициентов.
[0031] Модуль 105 кодирования коэффициентов кодирует коэффициенты квантования, сформированные посредством модуля 104 квантования, формирует кодированные данные коэффициентов квантования и выводит сформированные кодированные данные коэффициентов квантования в модуль 108 интегрирующего кодирования. Модуль 108 интегрирующего кодирования формирует коды, ассоциированные с прогнозированием и преобразованием в единицах блоков, интегрирует коды в единицах блоков и кодированные данные коэффициентов квантования, сформированные посредством модуля 105 кодирования коэффициентов, вместе с кодированными данными заголовка, и формирует поток битов. Затем модуль 108 интегрирующего кодирования выводит сформированный поток битов.
[0032] Фиг. 8A иллюстрирует пример потока битов, который выводится согласно первому примерному варианту осуществления. Заголовок последовательности включает в себя кодированные данные матриц квантования и в силу этого включает в себя результаты кодирования каждого элемента. Тем не менее, позиция кодированных данных не ограничивается таким примером. Например, кодированные данные могут быть включены в часть заголовка изображения или другие части заголовка. Дополнительно, если изменение в матрице квантования должно выполняться в одной последовательности, матрица квантования может быть обновлена посредством нового кодирования матрицы квантования. В таком случае может перезаписываться вся матрица квантования. Дополнительно, если указаны способ сканирования и размер блока преобразования матрицы квантования, которая должна быть перезаписана, часть матрицы квантования может быть изменена согласно указанию.
[0033] Фиг. 9 является блок-схемой последовательности операций способа, иллюстрирующей обработку кодирования изображений, выполняемую посредством устройства кодирования изображений согласно первому примерному варианту осуществления. На этапе S901 модуль 106 хранения матриц квантования формирует матрицы квантования.
[0034] На этапе S902 модуль 109 сканирования матриц квантования сканирует матрицы квантования, сформированные на этапе S901 вычисляет разность между элементами и формирует матрицы разностей. Согласно настоящему варианту осуществления матрица квантования, проиллюстрированная на фиг. 6A, сканируется с использованием способа сканирования, проиллюстрированного на фиг. 13D, и формируется матрица разностей, проиллюстрированная на фиг. 6E. Тем не менее, матрицы квантования и способ сканирования не ограничены такими примерами.
[0035] На этапе S903 модуль 107 кодирования матриц квантования кодирует матрицы разностей, сформированные на этапе S902. Согласно настоящему варианту осуществления модуль 107 кодирования матриц квантования кодирует матрицы разностей, проиллюстрированные на фиг. 6E, с использованием таблицы кодирования, проиллюстрированной на фиг. 5A. Тем не менее, таблица кодирования не ограничивается такой таблицей.
[0036] На этапе S904 модуль 108 интегрирующего кодирования кодирует и выводит часть заголовка потока битов. На этапе S905 модуль 101 разделения на блоки разделяет входное изображение в единице кадра на единицу блока. На этапе S906 модуль 102 прогнозирования выполняет прогнозирование в единицах блоков и формирует ошибки прогнозирования.
[0037] На этапе S907 модуль 103 преобразования разделяет ошибки прогнозирования, сформированные на этапе S906, на блоки с размером блока преобразования, выполняет ортогональное преобразование и формирует коэффициенты преобразования. На этапе S908 модуль 104 квантования формирует коэффициенты квантования посредством квантования коэффициентов преобразования, сформированных на этапе S907, с использованием матриц квантования, сформированных на этапе S901 и сохраненных в модуле 106 хранения матриц квантования.
[0038] На этапе S909 модуль 105 кодирования коэффициентов кодирует коэффициенты квантования, сформированные на этапе S908, и формирует кодированные данные коэффициентов квантования. На этапе S910 устройство кодирования изображений определяет то, завершено или нет кодирование всех блоков преобразования в блоке, Если кодирование всех блоков преобразования завершено ("Да" на этапе S910), обработка переходит к этапу S911. Если кодирование всех блоков преобразования еще не завершено ("Нет" на этапе S910), обработка возвращается к этапу S907 и обрабатывается следующий блок преобразования.
[0039] На этапе S911 устройство кодирования изображений определяет то, завершено или нет кодирование всех блоков. Если кодирование всех блоков завершено ("Да" на этапе S911), устройство кодирования изображений прекращает все операции, и затем обработка завершается. Если кодирование всех блоков еще не завершено ("Нет" на этапе S911), обработка возвращается к этапу S905 и обрабатывается следующий блок.
[0040] Согласно вышеописанной конфигурации и работе в частности, посредством обработки вычислений матрицы разностей посредством однонаправленного сканирования матрицы квантования на этапе S902 может быть сформирован поток битов, включающий в себя меньший объем кода матриц квантования.
[0041] Согласно настоящему варианту осуществления хотя описывается кадр, который использует только внутреннее прогнозирование, очевидно, что настоящее изобретение может применяться к кадру, который может использовать внешнее прогнозирование.
[0042] Дополнительно согласно настоящему варианту осуществления хотя используются блок 8×8 пикселов и блок преобразования 4×4 пикселов, настоящее изобретение не ограничено такими примерами. Например, размер блока может составлять 16×16 пикселов или 32×32 пиксела. Дополнительно форма блока не ограничивается квадратом, и, например, может использоваться прямоугольник в 16×8 пикселов.
[0043] Дополнительно, хотя размер блока преобразования составляет половину размера блока в длину и в ширину в настоящем варианте осуществления, размер блока преобразования может быть идентичным размеру блока или еще меньшим, чем половина размера блока в длину и в ширину.
[0044] Дополнительно согласно настоящему варианту осуществления матрицы разностей формируются, а затем кодируются. Тем не менее, модуль 107 кодирования матриц квантования может непосредственно вычислять значения разностей из матриц квантования с использованием предварительно определенного способа сканирования и кодировать значения разностей. В таком случае модуль 109 сканирования матриц квантования не требуется.
[0045] Дополнительно, если различные матрицы квантования должны быть использованы в зависимости от способа сканирования коэффициентов преобразования, способ сканирования элементов матрицы квантования может быть определен согласно способу сканирования коэффициентов преобразования.
[0046] Дополнительно согласно настоящему варианту осуществления, хотя описывается случай только с одной матрицей квантования, матрица квантования не обязательно одна. Например, если различные матрицы квантования предоставляются для яркости/цветности, может использоваться общий способ сканирования матриц квантования, или может предоставляться другой способ сканирования.
[0047] Фиг. 2 является блок-схемой, иллюстрирующей конфигурацию устройства декодирования изображений согласно второму примерному варианту осуществления настоящего изобретения. Согласно настоящему варианту осуществления описывается декодирование потока битов, сформированного в первом примерном варианте осуществления.
[0048] На фиг. 2 модуль 201 декодирования/разделения декодирует информацию заголовка входного потока битов, разделяет необходимые коды из потока битов и выводит разделенные коды на последующие стадии. Модуль 201 декодирования/разделения выполняет обратную операцию относительно операции, выполняемой посредством модуля 108 интегрирующего кодирования, проиллюстрированного на фиг. 1. Модуль 206 декодирования матриц квантования декодирует кодированные данные матриц квантования из информации заголовка потока битов и формирует матрицы разностей.
[0049] Модуль 208 обратного сканирования матриц квантования воспроизводит матрицы квантования посредством выполнения обратного сканирования матриц разностей, сформированных посредством модуля 206 декодирования матриц квантования. Модуль 208 обратного сканирования матриц квантования выполняет обратную операцию относительно операции, выполняемой посредством модуля 109 сканирования матриц квантования, проиллюстрированного на фиг. 1. Модуль 207 хранения матриц квантования сохраняет матрицы квантования, воспроизведенные посредством модуля 208 обратного сканирования матриц квантования.
[0050] С другой стороны, модуль 202 декодирования коэффициентов декодирует коэффициенты квантования из кода, разделенного посредством модуля 201 декодирования/разделения, и воспроизводит коэффициенты квантования. Модуль 203 обратного квантования выполняет обратное квантование коэффициентов квантования посредством использования матриц квантования, сохраненных в модуле 207 хранения матриц квантования, и воспроизводит коэффициенты преобразования. Модуль 204 обратного преобразования выполняет обратное ортогональное преобразование, которое является обратной операцией относительно операции, выполняемой посредством модуля 103 преобразования, проиллюстрированного на фиг. 1, и воспроизводит ошибки прогнозирования. Модуль 205 переконфигурирования прогнозирования воспроизводит блочные данные изображений из воспроизведенных ошибок прогнозирования и уже декодированных данных соседних изображений.
[0051] Далее описывается операция декодирования изображения согласно вышеописанному устройству декодирования изображений. Согласно настоящему варианту осуществления, хотя поток битов движущегося изображения, сформированный в первом примерном варианте осуществления, вводится в единице кадра, также может вводиться поток битов неподвижного изображения одного кадра. Дополнительно согласно настоящему варианту осуществления, чтобы упрощать описание, описывается только процесс декодирования с внутренним прогнозированием. Тем не менее, настоящее изобретение также может применяться к процессу декодирования с внешним прогнозированием.
[0052] Касательно иллюстрации на фиг. 2 поток битов одного кадра вводится в модуль 201 декодирования/разделения, и декодируется информация заголовка, необходимая при воспроизведении изображения. Дополнительно коды, используемые на последующих стадиях, отделяются от информации заголовка и выводятся. Кодированные данные матриц квантования, включенные в информацию заголовка, вводятся в модуль 206 декодирования матриц квантования, и воспроизводятся одномерные матрицы разностей. Согласно настоящему варианту осуществления посредством использования таблицы декодирования, проиллюстрированной на фиг. 5A, декодируется значение разности каждого элемента матриц квантования, и воспроизводятся матрицы разностей. Тем не менее, таблица декодирования не ограничивается таблицей, проиллюстрированной на фиг. 5A. Воспроизведенные матрицы разностей вводятся в модуль 208 обратного сканирования матриц квантования.
[0053] Модуль 208 обратного сканирования матриц квантования вычисляет каждый элемент матриц квантования из каждого значения разности во входных матрицах разностей, выполняет обратное сканирование и воспроизводит двумерные матрицы квантования. Воспроизведенные матрицы квантования вводятся в и сохраняются в модуле 207 хранения матриц квантования. Дополнительно из кодов, разделенных посредством модуля 201 декодирования/разделения, кодированные данные коэффициентов квантования вводятся в модуль 202 декодирования коэффициентов. Дополнительно модуль 202 декодирования коэффициентов декодирует кодированные данные коэффициентов квантования для каждого блока преобразования, воспроизводит коэффициенты квантования и выводит воспроизведенные коэффициенты квантования в модуль 203 обратного квантования.
[0054] Модуль 203 обратного квантования вводит коэффициенты квантования, воспроизведенные посредством модуля 202 декодирования коэффициентов, и матрицы квантования, сохраненные в модуле 207 хранения матриц квантования. Затем модуль 203 обратного квантования выполняет обратное квантование посредством использования матриц квантования, воспроизводит коэффициенты преобразования и выводит воспроизведенные коэффициенты преобразования в модуль 204 обратного преобразования. Модуль 204 обратного преобразования выполняет обратное ортогональное преобразование, которое является обратной операцией относительно операции, выполняемой посредством модуля 103 преобразования, проиллюстрированного на фиг. 1, посредством использования входных коэффициентов преобразования, воспроизводит ошибки прогнозирования и выводит ошибки прогнозирования в модуль 205 переконфигурирования прогнозирования. Модуль 205 переконфигурирования прогнозирования выполняет прогнозирование на основе входных ошибок прогнозирования и с использованием данных соседних пикселов после окончания декодирования, воспроизводит данные изображений в единицах блоков и выводит данные изображений.
[0055] Фиг. 10 является блок-схемой последовательности операций способа, иллюстрирующей обработку декодирования изображений в устройстве декодирования изображений согласно второму примерному варианту осуществления.
[0056] На этапе S1001 модуль 201 декодирования/разделения декодирует информацию заголовка и разделяет коды, которые должны выводиться на последующие стадии. На этапе S1002 модуль 206 декодирования матриц квантования декодирует кодированные данные матриц квантования, включенные в информацию заголовка, с использованием таблицы декодирования, проиллюстрированной на фиг. 5A, и формирует матрицы разностей, необходимые на воспроизведении матрицы квантования. На этапе S1003 модуль 208 обратного сканирования матриц квантования вычисляет каждый элемент матриц квантования из матриц разностей, сформированных на этапе S1002, выполняет обратное сканирование и воспроизводит двумерные матрицы квантования.
[0057] На этапе S1004 модуль 202 декодирования коэффициентов декодирует кодированные данные коэффициентов квантования в единицах блоков преобразования и воспроизводит коэффициенты квантования. На этапе S1005 модуль 203 обратного квантования выполняет обратное квантование для коэффициентов квантования, воспроизведенных на этапе S1004, посредством использования матриц квантования, воспроизведенных на этапе S1003, и воспроизводит коэффициенты преобразования. На этапе S1006 модуль 204 обратного преобразования выполняет обратное ортогональное преобразование для коэффициентов преобразования, воспроизведенных на этапе S1005, и воспроизводит ошибки прогнозирования. На этапе S1007 устройство декодирования изображений определяет то, завершено или нет декодирование всех блоков преобразования в блоке. Если декодирование всех блоков преобразования завершено ("Да" на этапе S1007), обработка переходит к этапу S1008. Если кодирование всех блоков преобразования еще не завершено ("Нет" на этапе S1007), обработка возвращается к этапу S1004 и обрабатывается следующий блок преобразования.
[0058] На этапе S1008 модуль 205 переконфигурирования прогнозирования выполняет прогнозирование с использованием уже декодированных соседних пикселов, суммирует результат с ошибками прогнозирования, воспроизведенными на этапе S1006, и воспроизводит декодированное изображение блока. На этапе S1009 устройство декодирования изображений определяет то, завершено или нет декодирование всех блоков. Если декодирование всех блоков завершено ("Да" на этапе S1009), все операции прекращаются, и обработка завершается. Если декодирование всех блоков еще не завершено ("Нет" на этапе S1009), обработка возвращается к этапу S1003 и обрабатывается следующий блок.
[0059] Согласно вышеописанной обработке выполняется декодирование потока битов, имеющего меньший объем кода матрицы квантования, сформированной согласно первому примерному варианту осуществления, и может получаться воспроизведенное изображение. Дополнительно, как описано в первом примерном варианте осуществления, размер блока, размер блока преобразования и форма блока не ограничены вышеописанными примерами.
[0060] Дополнительно согласно настоящему варианту осуществления значение разности каждого элемента матрицы квантования декодируется с использованием таблицы декодирования, проиллюстрированной на фиг. 5A. Тем не менее, таблица декодирования не ограничивается таким примером.
[0061] Дополнительно, если одна последовательность потока битов содержит несколько кодированных данных матриц квантования, матрицы квантования могут обновляться. В таком случае модуль 201 декодирования/разделения обнаруживает кодированные данные матриц квантования, декодирует кодированные данные матриц квантования посредством модуля 206 декодирования матриц квантования и формирует матрицы разностей. Сформированные матрицы разностей обратно сканируются посредством модуля 208 обратного сканирования матриц квантования, и воспроизводятся матрицы квантования. Затем соответствующие данные матриц квантования, сохраненных в модуле 207 хранения матриц квантования, перезаписываются посредством воспроизведенных данных матриц квантования. В таком случае может перезаписываться вся матрица квантования. Альтернативно, часть матрицы квантования может перезаписываться посредством определения части, которая должна быть перезаписана.
[0062] Согласно настоящему варианту осуществления, хотя обработка выполняется после того, как накапливаются кодированные данные одного кадра, настоящее изобретение не ограничено таким примером. Например, данные могут вводиться в единице блока или в единице серии последовательных макроблоков. Серия последовательных макроблоков включает в себя множество блоков. Дополнительно вместо блоков могут вводиться данные, разделенные на пакеты фиксированной длины.
[0063] Дополнительно согласно настоящему варианту осуществления, хотя матрица квантования воспроизводится после того, как матрица разностей формируется, модуль 206 декодирования матриц квантования может непосредственно воспроизводить матрицу квантования посредством использования предварительно определенного способа сканирования после декодирования значения разности. В таком случае модуль 208 обратного сканирования матриц квантования не требуется.
[0064] Дополнительно, если различные матрицы квантования должны быть использованы в зависимости от способа сканирования коэффициентов преобразования, способ сканирования элементов матриц квантования может быть определен согласно способу сканирования коэффициентов преобразования.
[0065] Фиг. 3 является блок-схемой, иллюстрирующей устройство кодирования изображений согласно третьему примерному варианту осуществления настоящего изобретения. На фиг. 3 компоненты, аналогичные компонентам на фиг. 1 первого примерного варианта осуществления, обозначаются посредством идентичных ссылок с номерами, и их описания не повторяются.
[0066] Модуль 321 формирования информации управления сканированием формирует информацию способа сканирования матриц квантования, которая представляет собой информацию способа сканирования каждой матрицы квантования. Модуль 309 сканирования матриц квантования определяет способ сканирования на основе информации способа сканирования матриц квантования, сформированной посредством модуля 321 формирования информации управления сканированием, сканирует матрицы квантования, сохраненные в модуле 106 хранения матриц квантования, вычисляет значения разностей и формирует матрицы разностей.
[0067] Модуль 308 интегрирующего кодирования формирует информацию заголовка и коды, ассоциированные с прогнозированием и преобразованием, выполняемым посредством модуля 108 интегрирующего кодирования на фиг. 1. Модуль 308 интегрирующего кодирования отличается от модуля 108 интегрирующего кодирования тем, что он вводит информацию способа сканирования матриц квантования, сформированную посредством модуля 321 формирования информации управления сканированием, и кодирует ее.
[0068] Далее описывается операция кодирования изображений, выполняемая посредством вышеописанного устройства кодирования изображений.
[0069] Модуль 321 формирования информации управления сканированием формирует информацию способа сканирования матриц квантования, которая указывает способ сканирования каждой матрицы квантования и способ вычисления значения разности. Согласно настоящему варианту осуществления если информация способа сканирования матриц квантования равна 1, матрица квантования сканируется с использованием способа сканирования, проиллюстрированного на фиг. 13A. Затем значение разности между элементом и его предыдущим элементом в порядке сканирования вычисляется для всех элементов, и формируется матрица разностей. Дополнительно, если информация способа сканирования матриц квантования равна 1, матрица квантования сканируется с использованием способа сканирования, проиллюстрированного на фиг. 13B. Затем значение разности между элементом и его предыдущим элементом в порядке сканирования вычисляется для всех элементов, и формируется матрица разностей. Кроме того, если информация способа сканирования матриц квантования равна 2, матрица квантования сканируется с использованием способа сканирования, проиллюстрированного на фиг. 13D. Затем значение разности между элементом и его предыдущим элементом в порядке сканирования вычисляется для всех элементов, и формируется матрица разностей. Способ сканирования каждого элемента матрицы квантования и способ вычисления разностей не ограничиваются вышеописанными примерами, и могут использоваться способы, отличные от способов, описанных со ссылкой на фиг. 13A, 13B и 13D. Например, могут использоваться способы вычисления разностей, проиллюстрированные на фиг. 13C и 13E. Дополнительно комбинация информации способа сканирования матриц квантования и способа сканирования матрицы квантования не ограничены вышеописанным примером. Способ формирования информации способа сканирования матриц квантования не ограничивается. Таким образом, информация может представлять собой значение, введенное пользователем, значение, указанное в качестве фиксированного значения, или значение, вычисленное из характеристик матриц квантования, сохраненных в модуле 106 хранения матриц квантования. Сформированная информация способа сканирования матриц квантования вводится в модуль 309 сканирования матриц квантования и модуль 308 интегрирующего кодирования.
[0070] На основе информации способа сканирования матриц квантования, которая введена, модуль 309 сканирования матриц квантования сканирует каждую матрицу квантования, сохраненную в модуле 106 хранения матриц квантования, вычисляет значение разности, формирует матрицу разностей и выводит матрицу разностей в модуль 107 кодирования матриц квантования.
[0071] Модуль 308 интегрирующего кодирования кодирует информацию способа сканирования матриц квантования, сформированную посредством модуля 321 формирования информации управления сканированием, формирует код информации способа сканирования матриц квантования и выводит сформированный код информации способа сканирования матриц квантования посредством реализации его в информации заголовка. Хотя способ кодирования не ограничивается, может использоваться кодирование методом Хаффмана и арифметическое кодирование. Фиг. 8B иллюстрирует пример потока битов, включающего в себя код информации способа сканирования матриц квантования. Код информации способа сканирования матриц квантования может быть включен в заголовок последовательности либо в заголовок изображения. Тем не менее, он должен существовать перед каждым фрагментом кодированных данных матриц квантования.
[0072] Фиг. 11 является блок-схемой последовательности операций способа, иллюстрирующей обработку кодирования изображений в устройстве кодирования изображений согласно третьему примерному варианту осуществления. На фиг. 11 компоненты, аналогичные компонентам на фиг. 9 первого примерного варианта осуществления, обозначаются посредством идентичных ссылок с номерами, и их описания не повторяются.
[0073] На этапе S1151 модуль 321 формирования информации управления сканированием определяет способ сканирования матриц квантования, который должен выполняться на этапе S1152, и формирует информацию способа сканирования матриц квантования. На этапе S1152 модуль 309 сканирования матриц квантования вычисляет значения разностей посредством сканирования матриц квантования, сформированных на этапе S901 посредством использования способа сканирования матриц квантования, определенного на этапе S1151, и формирует матрицы разностей. На этапе S1153 модуль 107 кодирования матриц квантования кодирует матрицы разностей, сформированные на этапе S1152. На этапе S1154 модуль 107 кодирования матриц квантования кодирует информацию способа сканирования матриц квантования, формирует код информации способа сканирования матриц квантования, реализует его в части заголовка так, как реализуются другие коды, и выводит код.
[0074] Согласно вышеописанной конфигурации и работе каждая матрица квантования сканируется посредством оптимального способа сканирования, и может формироваться поток битов с меньшим объемом кода матрицы квантования. Дополнительно, если различные матрицы квантования должны быть использованы в зависимости от способа сканирования коэффициентов преобразования, способ сканирования элементов матриц квантования может быть определен согласно способу сканирования коэффициентов преобразования. Если должен использоваться другой способ сканирования, может кодироваться флаг, указывающий такой способ, и информация способа сканирования матриц квантования, которая должна быть использована.
[0075] Дополнительно согласно настоящему варианту осуществления, хотя описывается случай, в котором используется одна матрица квантования, матрица квантования не обязательно одна. Например, если различные матрицы квантования предоставляются для яркости/цветности, может использоваться общая кодированная информация способа сканирования матриц квантования, либо может предоставляться, кодироваться и использоваться другой способ сканирования.
[0076] Дополнительно модуль 321 формирования информации управления сканированием может формировать способ сканирования посредством ссылки на матрицы квантования, сформированные посредством модуля 106 хранения матриц квантования. Дополнительно, как описано выше, если множество способов сканирования подготавливается заранее, требуемый способ сканирования может быть выбран из способов сканирования и использован в качестве информации сканирования матриц квантования. Кроме того, может кодироваться порядок элементов, которые сканируются. Касательно матрицы квантования на фиг. 13A, может кодироваться и передаваться такой порядок, как 1, 2, 6, 7, 3, 5, 8, 13, 4, 9, 12, 14, 10, 11, 15, 16.
[0077] Фиг. 4 является блок-схемой, иллюстрирующей устройство декодирования изображений согласно четвертому примерному варианту осуществления настоящего изобретения. На фиг. 4 компоненты, аналогичные компонентам на фиг. 2 второго примерного варианта осуществления, обозначаются посредством идентичных ссылок с номерами, и их описания не повторяются. Согласно настоящему варианту осуществления описывается декодирование потока битов, сформированного в третьем примерном варианте осуществления.
[0078] Модуль 401 декодирования/разделения декодирует информацию заголовка потока битов, который введен, разделяет необходимые коды из потока битов и выводит коды на последующие стадии. Модуль 401 декодирования/разделения отличается от модуля 201 декодирования/разделения, проиллюстрированного на фиг. 2, тем, что код информации способа сканирования матриц квантования отделяется от информации заголовка потока битов, и тем, что он выводится на последующую стадию.
[0079] Модуль 421 декодирования информации управления сканированием декодирует код информации способа сканирования матриц квантования, разделенный посредством модуля 401 декодирования/разделения, и воспроизводит информацию способа сканирования матриц квантования. Модуль 408 обратного сканирования матриц квантования воспроизводит матрицы квантования посредством выполнения обратного сканирования матриц разностей, сформированных посредством модуля 206 декодирования матриц квантования, на основе информации способа сканирования матриц квантования.
[0080] Далее описывается операция декодирования изображений вышеописанного устройства декодирования изображений.
[0081] На фиг. 4 входной поток битов одного кадра вводится в модуль 401 декодирования/разделения, и декодируется информация заголовка, необходимая при воспроизведении изображения. Дополнительно коды, используемые на последующих стадиях, разделяются и выводятся. Код информации способа сканирования матриц квантования, включенный в информацию заголовка, вводится в модуль 421 декодирования информации управления сканированием, и воспроизводится информация способа сканирования матриц квантования. Затем воспроизведенная информация способа сканирования матриц квантования вводится в модуль 408 обратного сканирования матриц квантования. С другой стороны, кодированные данные матриц квантования, включенные в информацию заголовка, вводятся в модуль 206 декодирования матриц квантования.
[0082] Модуль 206 декодирования матриц квантования декодирует кодированные данные матриц квантования и воспроизводит матрицы разностей. Воспроизведенные матрицы разностей вводятся в модуль 408 обратного сканирования матриц квантования. Модуль 408 обратного сканирования матриц квантования обратно сканирует матрицы разностей, вводимые из модуля 206 декодирования матриц квантования, на основе информации способа сканирования матриц квантования, суммирует разность в единицах элементов и воспроизводит матрицы квантования. Воспроизведенные матрицы квантования сохраняются в модуле 207 хранения матриц квантования.
[0083] Фиг. 12 является блок-схемой последовательности операций способа, иллюстрирующей обработку декодирования изображений в устройстве декодирования изображений согласно четвертому примерному варианту осуществления. На фиг. 12 компоненты, аналогичные компонентам на фиг. 10 второго примерного варианта осуществления, обозначаются посредством идентичных ссылок с номерами, и их описания не повторяются.
[0084] На этапе S1001 модуль 401 декодирования/разделения декодирует информацию заголовка. На этапе S1251 модуль 421 декодирования информации управления сканированием декодирует код информации способа сканирования матриц квантования, включенный в информацию заголовка, и воспроизводит информацию способа сканирования матриц квантования. На этапе S1253 модуль 408 обратного сканирования матриц квантования выполняет обратное сканирование матриц разностей, воспроизведенных на этапе S1252, посредством использования информации способа сканирования матрицы квантования, воспроизведенной на этапе S1251, и воспроизводит матрицы квантования.
[0085] Согласно вышеописанной конфигурации и работе каждая матрица квантования, сформированная согласно третьему примерному варианту осуществления, сканируется посредством оптимального способа сканирования, и поток битов с меньшим объемом кода матрицы квантования декодируется, и получается воспроизведенное изображение.
[0086] Дополнительно, если различные матрицы квантования должны быть использованы в зависимости от способа сканирования коэффициента ортогонального преобразования, способ сканирования элементов матриц квантования может быть определен согласно способу сканирования коэффициентов преобразования. Если должен использоваться другой способ сканирования, может кодироваться флаг, указывающий такой способ, и информация способа сканирования матриц квантования, которая должна быть использована.
[0087] Согласно пятому примерному варианту осуществления настоящего изобретения конфигурация устройства кодирования изображений является аналогичной устройству кодирования изображений по первому примерному варианту осуществления, проиллюстрированного на фиг. 1. Тем не менее, работа модуля 109 сканирования матриц квантования отличается. Поскольку обработка, за исключением обработки модуля 109 сканирования матриц квантования, является аналогичной обработке первого примерного варианта осуществления, описание такой обработки не повторяется.
[0088] Модуль 109 сканирования матриц квантования считывает матрицы квантования в двумерной форме по порядку из модуля 106 хранения матриц квантования, вычисляет разность между каждым элементом и его прогнозированным значением, сканирует вычисленную разность и компонует полученный результат в одномерных матрицах. Способ вычисления разности отличается от способа, используемого посредством модуля 109 сканирования матриц квантования по первому примерному варианту осуществления.
[0089] Согласно настоящему варианту осуществления, как проиллюстрировано на фиг. 16C, прогнозированное значение вычисляется посредством ссылки на левый и верхний элементы, и вычисленное прогнозированное значение сканируется посредством горизонтального сканирования, проиллюстрированного на фиг. 16A. Затем полученный результат компонуется в одномерной матрице. Касательно способа вычисления прогнозированного значения, хотя элемент с большим значением из левого и верхнего элементов используется в качестве прогнозированного значения согласно настоящему варианту осуществления, настоящее изобретение не ограничено таким примером. Например, меньшее значение может использоваться в качестве прогнозированного значения, или среднее значение двух элементов может использоваться в качестве прогнозированного значения. Касательно кодирования элементов в первой строке матрицы, левый элемент рассматривается как прогнозированное значение. Дополнительно касательно кодирования элементов в самом левом столбце матрицы, верхний элемент рассматривается как прогнозированное значение. Дополнительно значение разности, которое соответствует первому элементу матрицы, получается посредством вычисления разности между значением первого элемента и предварительно определенным начальным значением. Согласно настоящему варианту осуществления, хотя начальное значение задается равным 8, может использоваться произвольное значение, либо может использоваться значение самого первого элемента. Дополнительно способ сканирования не ограничивается горизонтальным сканированием. Другими словами, может использоваться другой способ сканирования, такой как вертикальное сканирование, проиллюстрированное на фиг. 16B, до тех пор пока он представляет собой однонаправленный способ сканирования.
[0090] Блок-схема последовательности операций способа для процесса кодирования изображений согласно настоящему варианту осуществления является аналогичной блок-схеме последовательности операций способа согласно первому примерному варианту осуществления, проиллюстрированной на фиг. 9, за исключением операции на этапе S902. Поскольку операции, отличные от операций, выполняемых на этапе S902, являются аналогичными операциям, описанным в первом примерном варианте осуществления, их описания не повторяются.
[0091] На этапе S902 модуль 109 сканирования матриц квантования вычисляет разность каждого элемента матриц квантования, сформированных на этапе S901, сканирует разность, которая вычислена, и формирует матрицы разностей. Настоящий вариант осуществления описывает случай, в котором матрица квантования, проиллюстрированная на фиг. 17A, формируется на этапе S901. Двумерная матрица значений разности, проиллюстрированная на фиг. 17B, вычисляется с использованием наибольшего значения из верхнего и левого элементов сформированной матрицы квантования, проиллюстрированной на фиг. 16C, в качестве прогнозированного значения. Затем полученная матрица значений разности сканируется посредством горизонтального сканирования, проиллюстрированного на фиг. 16A, и формируется матрица разностей, проиллюстрированная на фиг. 17C. Если используются верхний и левый элементы, значение, которое используется для способа вычисления значения разности, не ограничивается наибольшим значением, и также может использоваться наименьшее значение или среднее значение. Дополнительно способ сканирования не ограничивается горизонтальным сканированием, и может использоваться другой способ сканирования до тех пор, пока он представляет собой однонаправленный способ сканирования.
[0092] Фиг. 15 является таблицей, полученной посредством вычисления значений разностей матрицы квантования, проиллюстрированной на фиг. 17A, посредством использования наибольшего значения верхнего и левого элементов в качестве прогнозированного значения, как проиллюстрировано на фиг. 16C, сканирования значения разности посредством использования способа сканирования, проиллюстрированного на фиг. 16A, и его кодирования с использованием таблицы кодирования, проиллюстрированной на фиг. 5A. Столбец значения разности на фиг. 15 показывает результат, полученный посредством горизонтального сканирования значения разности между прогнозированным значением и каждым элементом, при этом прогнозированное значение является предварительно определенным начальным значением (8) или наибольшим значением левого и верхнего элементов. Значения в этой таблице являются идентичными значениям матрицы разностей, проиллюстрированной на фиг. 17C. Столбец кода на фиг. 15 показывает код, полученный посредством кодирования значения разности с использованием таблицы кодирования на фиг. 5A, и требуется всего 50 битов. Это указывает, что матрица квантования может быть кодирована с помощью менее чем 68 битов, требуемых в традиционном способе, проиллюстрированном на фиг. 7. Дополнительно еще меньше 60 битов требуется в первом примерном варианте осуществления.
[0093] Согласно вышеописанной конфигурации и работе может быть сформирован поток битов, который требует гораздо меньшего числа битов для матриц квантования.
[0094] Согласно настоящему варианту осуществления, хотя прогнозированное значение вычисляется посредством использования левого и верхнего элементов, прогнозированное значение альтернативно также может быть вычислено, например, посредством использования верхнего левого элемента. Кроме того, также может использоваться элемент, отличный от таких элементов. В таком случае в дополнение к наибольшему, наименьшему и среднему значениям, альтернативно также может использоваться значение среднего.
[0095] Согласно шестому примерному варианту осуществления настоящего изобретения устройство декодирования изображений имеет конфигурацию, аналогичную устройству декодирования изображений второго примерного варианта осуществления, проиллюстрированного на фиг. 2. Тем не менее, работа модуля 208 обратного сканирования матриц квантования отличается. Поскольку обработка настоящего варианта осуществления является аналогичной обработке второго примерного варианта осуществления за исключением операции, выполняемой посредством модуля 208 обратного сканирования матриц квантования, описание аналогичной обработки не повторяется. Согласно настоящему варианту осуществления описывается декодирование потока битов, сформированного согласно пятому примерному варианту осуществления.
[0096] Модуль 208 обратного сканирования матриц квантования выполняет обратную операцию относительно модуля 109 сканирования матриц квантования согласно пятому примерному варианту осуществления. Матрицы разностей, вводимые в модуль 208 обратного сканирования матриц квантования, имеют каждое из значений разностей, обратно сканированных, и воспроизводятся двумерные матрицы значений разности. Дополнительно вычисляется каждый элемент матриц квантования, и воспроизводятся двумерные матрицы квантования. Согласно настоящему варианту осуществления матрицы разностей обратно сканируются с использованием горизонтального сканирования, проиллюстрированного на фиг. 16A, и воспроизводятся двумерные матрицы значений разности. Дополнительно каждый элемент матриц квантования вычисляется из левого и верхнего элемента и значения разности, как проиллюстрировано на фиг. 16C, и воспроизводятся двумерные матрицы квантования. Способ для обратного сканирования не ограничивается горизонтальным сканированием, и также может использоваться вертикальное сканирование, проиллюстрированное на фиг. 16B. Другими словами, может использоваться любой способ сканирования до тех пор, пока он представляет собой однонаправленный способ сканирования. Что касается способа вычисления каждого элемента матриц квантования, согласно настоящему варианту осуществления элемент с большим значением из левого и верхнего элементов определяется в качестве прогнозированного значения и сумма прогнозированного значения и значения разности рассматривается как значение каждого элемента матриц квантования. Тем не менее, прогнозированное значение каждого элемента не ограничивается таким значением. Например, меньшее значение из левого и верхнего элементов или среднее значение двух элементов может использоваться в качестве прогнозированного значения. Затем сумма прогнозированного значения и значения разности определяется в качестве значения каждого элемента матриц квантования. Дополнительно касательно воспроизведения элементов в верхней строке матрицы, их левый элемент используется в качестве прогнозированного значения. Кроме того, касательно воспроизведения элементов в левом конце матрицы, их верхний элемент используется в качестве прогнозированного значения. Затем сумма прогнозированного значения и значения разности определяется в качестве значения каждого элемента. Дополнительно касательно воспроизведения первого элемента матрицы, предварительно определенное начальное значение используется в качестве прогнозированного значения. Затем сумма прогнозированного значения и значения разности определяется в качестве значения первого элемента матрицы. Согласно настоящему варианту осуществления хотя начальное значение задается равным 8, произвольное значение может использоваться в качестве начального значения, или значение самого первого элемента может быть кодировано. Дополнительно способ сканирования не ограничивается горизонтальным сканированием. Другими словами, может использоваться другой способ сканирования, такой как вертикальное сканирование, проиллюстрированное на фиг. 16B, до тех пор, пока он представляет собой однонаправленный способ сканирования.
[0097] Блок-схема последовательности операций способа для обработки декодирования изображений согласно настоящему варианту осуществления является аналогичной блок-схеме последовательности операций способа второго примерного варианта осуществления, проиллюстрированного на фиг. 10, за исключением операции на этапе S1003. Таким образом, операции, за исключением этапа S1003, являются аналогичными операциям второго примерного варианта осуществления и их описания не повторяются.
[0098] На этапе S1003 модуль 208 обратного сканирования матриц квантования воспроизводит двумерные матрицы значений разности посредством выполнения обратного сканирования каждого значения разности, полученного из матриц разностей, сформированных на этапе S1002. Дополнительно двумерные матрицы квантования воспроизводятся посредством вычисления каждого элемента матриц квантования. Согласно настоящему варианту осуществления матрица разностей, проиллюстрированная на фиг. 17C, используется при описании этой обработки. Матрица разностей обратно сканируется посредством горизонтального сканирования, проиллюстрированного на фиг. 16A, и вычисляется двумерная матрица значений разности, проиллюстрированная на фиг. 17B. Затем большее значение из верхнего и левого элементов определяется в качестве прогнозированного значения. Дополнительно сумма каждого прогнозированного значения и каждого значения разности задается в качестве значения каждого элемента матрицы квантования. Способ обратного сканирования не ограничивается горизонтальным сканированием до тех пор, пока он представляет собой однонаправленный способ обратного сканирования. Дополнительно элемент с меньшим значением из левого и верхнего элементов или среднее значение элементов может использоваться в качестве прогнозированного значения альтернативно при получении значения каждого элемента, используемого для воспроизведения каждого элемента матрицы квантования.
[0099] Согласно вышеописанной конфигурации и работе воспроизведенное изображение может быть получено посредством декодирования потока битов с меньшим объемом кода матрицы квантования, сформированной согласно пятому примерному варианту осуществления.
[0100] Согласно настоящему варианту осуществления хотя прогнозированное значение вычисляется посредством использования левого и верхнего элементов, прогнозированное значение альтернативно также может быть вычислено, например, посредством использования верхнего левого элемента. Кроме того, также может использоваться элемент, отличный от таких элементов. В таком случае в дополнение к наибольшему, наименьшему и среднему значениям, альтернативно также может использоваться значение среднего.
[0101] Согласно седьмому примерному варианту осуществления настоящего изобретения, конфигурация устройства кодирования изображений является аналогичной устройству кодирования изображений по первому примерному варианту осуществления, проиллюстрированного на фиг. 1. Тем не менее, работа модуля 109 сканирования матриц квантования отличается. Поскольку обработка, за исключением обработки модуля 109 сканирования матриц квантования, является аналогичной обработке первого примерного варианта осуществления, описание такой обработки не повторяется.
[0102] Модуль 109 сканирования матриц квантования считывает матрицы квантования в двумерной форме по порядку из модуля 106 хранения матриц квантования, вычисляет разность между каждым элементом и прогнозированным значением, сканирует вычисленные разности и компонует полученный результат в одномерных матрицах. Способ вычисления значений разностей отличается от способа, используемого посредством модуля 109 сканирования матриц квантования по первому примерному варианту осуществления.
[0103] Согласно настоящему варианту осуществления используется диагональное однонаправленное сканирование, проиллюстрированное на фиг. 18A, и разность между элементом и его предыдущим элементом вычисляется для каждого элемента в порядке сканирования. Тем не менее, способ сканирования не ограничивается таким примером. Например, альтернативно также может использоваться диагональное однонаправленное сканирование, проиллюстрированное на фиг. 18B. Направление сканирования на фиг. 18B и направление сканирования на фиг. 18A являются симметричными относительно диагональной линии. Другими словами, может использоваться любой способ сканирования до тех пор, пока он представляет собой однонаправленный способ сканирования. Дополнительно, если размер блока преобразования 8×8 пикселов дополнительно используется в настоящем варианте осуществления, используется однонаправленное сканирование в диагональном направлении, соответствующем блоку преобразования 8×8 пикселов, проиллюстрированному на фиг. 18C.
[0104] Блок-схема последовательности операций способа для процесса кодирования изображений согласно настоящему варианту осуществления является аналогичной блок-схеме последовательности операций способа согласно первому примерному варианту осуществления, проиллюстрированной на фиг. 9, за исключением операции на этапе S902. Поскольку операции, отличные от операций, выполняемых на этапе S902, являются аналогичными операциям, описанным в первом примерном варианте осуществления, их описания не повторяются.
[0105] На этапе S902 модуль 109 сканирования матриц квантования сканирует матрицы квантования, сформированные на этапе S901. Затем вычисляется разность каждого элемента, и формируются матрицы разностей. Согласно настоящему варианту осуществления матрица квантования, проиллюстрированная на фиг. 19A, сканируется посредством способа сканирования, проиллюстрированного на фиг. 18A, и формируется матрица разностей, проиллюстрированная на фиг. 19B. Тем не менее, матрица квантования и способ сканирования не ограничены такими примерами.
[0106] Согласно вышеописанной конфигурации и работе для способа кодирования видео, который использует диагональное сканирование, проиллюстрированное на фиг. 18A, вместо зигзагообразного сканирования, проиллюстрированного на фиг. 13A, чтобы кодировать коэффициенты квантования, поток битов с аналогичной или более высокой эффективностью может быть сформирован при экономии объема запоминающего устройства, используемого посредством совместного использования способа сканирования.
[0107] Недавно экспертами из ISO/IEC и ITU-T создана JCT-VC (объединенная группа для совместной работы над видеостандартами) для того, чтобы разрабатывать новый международный стандарт кодирования видео в качестве продолжения H.264. В статье JCTVC-J0150, предоставленной в JCT-VC, сообщается, что эквивалентная или немного более высокая эффективность подтверждается посредством использования способа диагонального сканирования, который является эквивалентным способу настоящего варианта осуществления для кодирования матриц квантования. Дополнительно, поскольку зигзагообразное сканирование не используется в стандарте высокоэффективного кодирования видео (HEVC), который является объектом стандартизации в JCT-VC, эффект экономии объема запоминающего устройства посредством совместного использования способа сканирования также сообщается в статье.<http://phenix.int-evry.fr/jct/doc_end_user/documents/10_Stockholm/wg11/>
[0108] Дополнительно, как проиллюстрировано на фиг. 20A-20D, если матрица квантования разделяется на определенное число небольших матриц, небольшие матрицы могут быть сканированы посредством однонаправленного сканирования. Таким образом, способ сканирования матрицы квантования 4×4 может применяться к матрице квантования большего размера, и может сокращаться объем запоминающего устройства, требуемого при сохранении информации порядка сканирования.
[0109] Согласно восьмому примерному варианту осуществления настоящего изобретения устройство декодирования изображений имеет конфигурацию, аналогичную устройству декодирования изображений второго примерного варианта осуществления, проиллюстрированного на фиг. 2. Тем не менее, работа модуля 208 обратного сканирования матриц квантования отличается. Поскольку обработка настоящего варианта осуществления является аналогичной обработке второго примерного варианта осуществления за исключением операции, выполняемой посредством модуля 208 обратного сканирования матриц квантования, описание аналогичной обработки не повторяется. Согласно настоящему варианту осуществления описывается декодирование потока битов, сформированного согласно седьмому примерному варианту осуществления.
[0110] Модуль 208 обратного сканирования матриц квантования выполняет обратную операцию относительно модуля 109 сканирования матриц квантования согласно седьмому примерному варианту осуществления. Матрицы разностей, вводимые в модуль 208 обратного сканирования матриц квантования, имеют каждый элемент матрицы квантования, вычисленный из каждого значения разности. Затем вычисленные элементы обратно сканируются, и воспроизводятся двумерные матрицы квантования.
[0111] Согласно настоящему варианту осуществления каждый элемент матриц квантования вычисляется из каждого значения разности матриц разностей, и полученный элемент обратно сканируется с использованием способа сканирования, проиллюстрированного на фиг. 18A, чтобы воспроизводить двумерные матрицы квантования. Способ обратного сканирования не ограничивается способом, проиллюстрированным на фиг. 18A, и альтернативно может представлять собой диагональное однонаправленное сканирование, проиллюстрированное на фиг. 18B. Направление сканирования на фиг. 18B и направление сканирования на фиг. 18A являются симметричными относительно диагональной линии. Другими словами, может использоваться любой способ сканирования до тех пор, пока он представляет собой однонаправленный способ сканирования.
[0112] Блок-схема последовательности операций способа для обработки декодирования изображений согласно настоящему варианту осуществления является аналогичной блок-схеме последовательности операций способа второго примерного варианта осуществления, проиллюстрированного на фиг. 10, за исключением операции на этапе S1003. Таким образом, операции, за исключением этапа S1003, являются аналогичными операциям второго примерного варианта осуществления и их описания не повторяются.
[0113] На этапе S1003 модуль 208 обратного сканирования матриц квантования воспроизводит двумерные матрицы квантования посредством вычисления каждого элемента матриц квантования из матриц разностей, сформированных на этапе S1002, и выполнения обратного сканирования каждого элемента. Согласно настоящему варианту осуществления каждый элемент матрицы квантования вычисляется из матрицы разностей, проиллюстрированной на фиг. 19B, и каждый вычисленный элемент обратно сканируется с использованием способа обратного сканирования, проиллюстрированного на фиг. 18A. Следовательно, воспроизводится матрица квантования, проиллюстрированная на фиг. 19A. Матрица разностей и способ обратного сканирования не ограничены такими примерами.
[0114] Согласно вышеописанной конфигурации и работе воспроизведенное изображение может быть получено посредством декодирования потока битов с аналогичной или немного более высокой эффективностью кодирования, сформированной посредством седьмого примерного варианта осуществления, при экономии объема запоминающего устройства, используемого посредством совместного использования способа сканирования.
[0115] Согласно вышеописанному примерному варианту осуществления каждый модуль обработки, проиллюстрированный на фиг. 1-4, реализуется посредством аппаратного компонента. Тем не менее, обработка, выполняемая посредством каждого модуля обработки, проиллюстрированного на фиг. 1-4, может выполняться посредством машиноисполняемой программы.
[0116] Фиг. 14 является блок-схемой, иллюстрирующей пример аппаратной конфигурации компьютера, который может использоваться для устройства обработки изображений согласно вышеописанным примерным вариантам осуществления.
[0117] Центральный процессор 1401 (CPU) управляет всем компьютером согласно компьютерной программе или данным, сохраненным в оперативном запоминающем устройстве 1402 (RAM) или постоянном запоминающем устройстве 1403 (ROM). Дополнительно CPU 1401 выполняет вышеописанную обработку, выполняемую посредством устройства обработки изображений согласно вышеописанным примерным вариантам осуществления. Другими словами, CPU 1401 выступает в качестве каждого из модулей обработки, проиллюстрированных на фиг. 1-4.
[0118] RAM 1402 включает в себя область, используемую для временного сохранения компьютерной программы или данных, загружаемых из внешнего устройства 1406 хранения данных, либо данных, полученных внешне через интерфейс 1407. Дополнительно RAM 1402 включает в себя рабочую область, которая используется, когда CPU 1401 выполняет различные типы обработки. Другими словами, RAM 1402 может назначаться в качестве запоминающего устройства кадров или произвольно предоставлять другие различные области.
[0119] Настроечные данные компьютера и программы, такие как загрузочная программа, сохраняются в ROM 1403. Функциональный модуль 1404 включает в себя клавиатуру или мышь. Посредством управления функциональным модулем 1404 пользователем компьютера, различные инструкции вводятся в CPU 1401. Модуль 1405 вывода выводит результат обработки, выполняемой посредством CPU 1401. Модуль 1405 вывода является, например, устройством отображения, таким как жидкокристаллический дисплей, и допускает отображение результата обработки.
[0120] Внешнее устройство 1406 хранения данных представляет собой модуль хранения информации большой емкости, в качестве примера, жесткий диск. Операционная система (ОС) и компьютерная программа, которая используется, когда CPU 1401 реализует функцию каждого модуля, проиллюстрированного на фиг. 1-4, сохраняются во внешнем устройстве 1406 хранения данных. Дополнительно каждые данные изображений в качестве объекта для обработки могут быть сохранены во внешнем устройстве 1406 хранения данных.
[0121] Компьютерная программа или данные, сохраненные во внешнем устройстве 1406 хранения данных, загружаются в RAM 1402 надлежащим образом согласно управлению CPU 1401 и обрабатываются посредством CPU 1401. Сеть, к примеру, локальная вычислительная сеть (LAN) или Интернет и другое устройство, к примеру, проекционный аппарат или устройство отображения могут подключаться к интерфейсу 1407, так что компьютер может принимать и передавать различные фрагменты информации через интерфейс 1407. Шина 1408 соединяет каждый из вышеописанных модулей.
[0122] Работа, реализованная посредством вышеописанной конфигурации, выполняется, главным образом, посредством CPU 1401. Обработка, описанная со ссылкой на блок-схему последовательности операций способа, описанную выше, управляется посредством CPU 1401.
[0123] Настоящее изобретение может осуществляться, когда носитель хранения данных, сохраняющий код компьютерной программы, которая реализует вышеописанную функцию, предоставляется в систему, и система считывает и выполняет код компьютерной программы. В этом случае программный код, считываемый из самого носителя хранения данных, реализует функцию вышеописанного примерного варианта осуществления, и носитель хранения данных, который сохраняет программный код, составляет настоящее изобретение. Дополнительно случай, в котором ОС и т.п., которая работает на компьютере, выполняет часть или всю фактическую обработку на основе инструкции программного кода так, что реализуется функционал вышеописанной функции, также включается в настоящее изобретение.
[0124] Кроме того, настоящее изобретение может осуществляться посредством следующей конфигурации. В частности, компьютерный программный код, считываемый из носителя хранения данных, записывается в запоминающее устройство, предоставленное в функциональной плате расширения, вставленной в компьютер, или в функциональном модуле расширения, подключенном к компьютеру, и CPU, предоставленное в функциональной плате расширения или в функциональном модуле расширения, выполняет полностью или часть фактической обработки на основе инструкции из компьютерного программного кода, чтобы реализовывать функции вышеописанного примерного варианта осуществления. Вышеописанная конфигурация также включается в настоящее изобретение.
[0125] Когда настоящее изобретение применяется к вышеописанному носителю хранения данных, код компьютерной программы, соответствующей блок-схеме последовательности операций способа, описанной выше, сохраняется в носителе хранения данных.
[0126] Хотя настоящее изобретение описано со ссылкой на примерные варианты осуществления, следует понимать, что изобретение не ограничено раскрытыми примерными вариантами осуществления. Объем нижеприведенной формулы изобретения должен согласовываться с самой широкой интерпретацией так, что он охватывает все модификации, эквивалентные структуры и функции.
[0127] Данная заявка притязает на приоритет заявок на патент (Япония) № 2011-243942 поданной 7 ноября 2011 года, № 2012-008199, поданной 18 января 2012 года, № 2012-057424, поданной 14 марта 2012 года, и № 2012-093113, поданной 16 апреля 2012 года, которые настоящим полностью содержатся в данном документе по ссылке.

Claims (25)

1. Устройство кодирования изображений, содержащее:
средство получения для получения значений разности между элементами для по меньшей мере части элементов из числа множества элементов в матрице квантования, которая может быть выражена в двумерном массиве, который используется, когда данные изображения, которые должны подвергаться кодированию, квантуются,
при этом средство получения получает значение разности между элементом, соответствующим первой строке и первому столбцу в матрице квантования, и элементом, соответствующим второй строке и первому столбцу,
получает значение разности между элементом, соответствующим второй строке и первому столбцу в матрице квантования, и элементом, соответствующим первой строке и второму столбцу, и
получает значение разности между элементом, соответствующим первой строке и второму столбцу в матрице квантования, и элементом, соответствующим третьей строке и первому столбцу.
2. Устройство кодирования изображений по п.1, при этом средство получения получает значение разности между предварительно определенным начальным значением и элементом, соответствующим первой строке и первому столбцу.
3. Устройство кодирования изображений по п.1, при этом число строк в матрице квантования равно числу столбцов в матрице квантования.
4. Устройство кодирования изображений по п.1, дополнительно содержащее средство кодирования для кодирования значений разности, полученных средством получения, в кодированные данные, размещаемые в одномерном массиве.
5. Устройство кодирования изображений по п.1, дополнительно содержащее средство формирования для формирования информации способа сканирования матриц квантования для идентификации способа сканирования для средства получения для получения значения разности между элементами в матрице квантования.
6. Устройство кодирования изображений по п.1, в котором средство получения разделяет матрицу квантования на множество меньших матриц квантования и получает значение разности между элементами в каждой из этих меньших матриц квантования, полученных упомянутым разделением.
7. Устройство кодирования изображений по п.1,
при этом матрица квантования является матрицей с n строк и n столбцов, где n является целым числом, равным или превышающим 1, и
при этом средство получения получает значение разности между элементом, соответствующим (m + 1)-ой строке, где m является целым числом, равным или превышающим 1, и (m - 1)-ому столбцу в матрице квантования, и элементом, соответствующим m-ой строке и m-ому столбцу, который не является ни элементом, соответствующим первому столбцу в матрице квантования, ни элементом, соответствующим n-ой строке в матрице квантования.
8. Способ кодирования изображений, содержащий:
получение значений разности между элементами для по меньшей мере части элементов из числа множества элементов в матрице квантования, которая может быть выражена в двумерном массиве, который используется, когда данные изображения, которые должны подвергаться кодированию, квантуются,
при этом упомянутое получение содержит:
получение значения разности между элементом, соответствующим первой строке и первому столбцу в матрице квантования, и элементом, соответствующим второй строке и первому столбцу,
получение значения разности между элементом, соответствующим второй строке и первому столбцу в матрице квантования, и элементом, соответствующим первой строке и второму столбцу, и
получение значения разности между элементом, соответствующим первой строке и второму столбцу в матрице квантования, и элементом, соответствующим третьей строке и первому столбцу.
9. Считываемый компьютером носитель, хранящий исполняемые компьютером инструкции, которые при загрузке и исполнении компьютером заставляют компьютер выполнять способ кодирования изображений, содержащий:
получение значений разности между элементами для по меньшей мере части элементов из числа множества элементов в матрице квантования, которая может быть выражена в двумерном массиве, который используется, когда данные изображения, которые должны подвергаться кодированию, квантуются,
при этом упомянутое получение содержит:
получение значения разности между элементом, соответствующим первой строке и первому столбцу в матрице квантования, и элементом, соответствующим второй строке и первому столбцу,
получение значения разности между элементом, соответствующим второй строке и первому столбцу в матрице квантования, и элементом, соответствующим первой строке и второму столбцу, и
получение значения разности между элементом, соответствующим первой строке и второму столбцу в матрице квантования, и элементом, соответствующим третьей строке и первому столбцу.
RU2016117737A 2011-11-07 2012-10-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных RU2626176C1 (ru)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-243942 2011-11-07
JP2011243942 2011-11-07
JP2012-008199 2012-01-18
JP2012008199 2012-01-18
JP2012-057424 2012-03-14
JP2012057424 2012-03-14
JP2012093113A JP6120490B2 (ja) 2011-11-07 2012-04-16 画像符号化装置、画像符号化方法及びプログラム、画像復号装置、画像復号方法及びプログラム
JP2012-093113 2012-04-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2014123380/07A Division RU2586888C2 (ru) 2011-11-07 2012-10-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2017124142A Division RU2663199C1 (ru) 2011-11-07 2017-07-07 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных

Publications (1)

Publication Number Publication Date
RU2626176C1 true RU2626176C1 (ru) 2017-07-24

Family

ID=47215690

Family Applications (8)

Application Number Title Priority Date Filing Date
RU2014123380/07A RU2586888C2 (ru) 2011-11-07 2012-10-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2016117739A RU2627301C1 (ru) 2011-11-07 2012-10-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2016117737A RU2626176C1 (ru) 2011-11-07 2012-10-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2016117738A RU2624456C1 (ru) 2011-11-07 2012-10-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2017124142A RU2663199C1 (ru) 2011-11-07 2017-07-07 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2018126967A RU2685247C1 (ru) 2011-11-07 2018-07-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2019110263A RU2706236C1 (ru) 2011-11-07 2019-04-08 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2019135483A RU2733206C1 (ru) 2011-11-07 2019-11-06 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных

Family Applications Before (2)

Application Number Title Priority Date Filing Date
RU2014123380/07A RU2586888C2 (ru) 2011-11-07 2012-10-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2016117739A RU2627301C1 (ru) 2011-11-07 2012-10-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных

Family Applications After (5)

Application Number Title Priority Date Filing Date
RU2016117738A RU2624456C1 (ru) 2011-11-07 2012-10-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2017124142A RU2663199C1 (ru) 2011-11-07 2017-07-07 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2018126967A RU2685247C1 (ru) 2011-11-07 2018-07-23 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2019110263A RU2706236C1 (ru) 2011-11-07 2019-04-08 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
RU2019135483A RU2733206C1 (ru) 2011-11-07 2019-11-06 Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных

Country Status (15)

Country Link
US (5) US9826241B2 (ru)
EP (5) EP2777264B1 (ru)
JP (1) JP6120490B2 (ru)
KR (6) KR101985004B1 (ru)
CN (7) CN107071419B (ru)
BR (5) BR112014010794B1 (ru)
ES (3) ES2913855T3 (ru)
HR (1) HRP20230620T1 (ru)
HU (3) HUE061988T2 (ru)
IN (1) IN2014CN03856A (ru)
PL (3) PL3745723T3 (ru)
PT (3) PT3745723T (ru)
RS (3) RS64287B1 (ru)
RU (8) RU2586888C2 (ru)
WO (1) WO2013069216A1 (ru)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442127B1 (ko) * 2011-06-21 2014-09-25 인텔렉추얼디스커버리 주식회사 쿼드트리 구조 기반의 적응적 양자화 파라미터 부호화 및 복호화 방법 및 장치
JP6120490B2 (ja) * 2011-11-07 2017-04-26 キヤノン株式会社 画像符号化装置、画像符号化方法及びプログラム、画像復号装置、画像復号方法及びプログラム
EP3346705B1 (en) 2012-04-16 2020-10-28 Electronics and Telecommunications Research Institute Method for encoding/decoding image
EP3085090B8 (en) 2013-12-18 2020-09-30 HFI Innovation Inc. Method for palette table prediction
US10321141B2 (en) 2013-12-18 2019-06-11 Hfi Innovation Inc. Method and apparatus for palette initialization and management
CN105850136B (zh) 2013-12-22 2019-10-15 Lg电子株式会社 使用预测信号和变换编译信号预测视频信号的方法和装置
CN110225345B (zh) 2013-12-27 2022-07-19 寰发股份有限公司 用于主颜色索引图编码的方法及装置
CA2934743C (en) 2013-12-27 2018-11-27 Hfi Innovation Inc. Method and apparatus for syntax redundancy removal in palette coding
EP3087738B1 (en) 2013-12-27 2019-10-02 MediaTek Inc. Method and apparatus for palette coding with cross block prediction
EP3061247A4 (en) 2014-01-07 2016-08-31 Mediatek Inc METHOD AND APPARATUS FOR COLOR INDEX PREDICTION
TWI561060B (en) * 2015-01-15 2016-12-01 Mstar Semiconductor Inc Signal processing apparatus and signal processing method including quantization or inverse-quantization process
US11144820B2 (en) * 2017-02-28 2021-10-12 Microsoft Technology Licensing, Llc Hardware node with position-dependent memories for neural network processing
KR102450506B1 (ko) * 2017-07-31 2022-10-05 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
CA3210247A1 (en) * 2017-12-15 2019-06-20 Lg Electronics Inc. Image coding method on basis of transformation and device therefor
GB2578633B (en) * 2018-11-02 2021-10-13 Advanced Risc Mach Ltd Encoding data arrays
WO2020141892A1 (ko) * 2019-01-01 2020-07-09 엘지전자 주식회사 이차 변환에 기반한 영상 코딩 방법 및 그 장치
JP7267785B2 (ja) * 2019-03-11 2023-05-02 キヤノン株式会社 画像復号装置、画像復号方法、及びプログラム
JP2020150340A (ja) * 2019-03-11 2020-09-17 キヤノン株式会社 画像符号化装置、画像符号化方法、及びプログラム
JP2020150338A (ja) * 2019-03-11 2020-09-17 キヤノン株式会社 画像復号装置、画像復号方法、及びプログラム
WO2021054380A1 (ja) * 2019-09-20 2021-03-25 日本放送協会 符号化装置、復号装置、及びプログラム
CN114322847B (zh) * 2022-03-15 2022-05-31 北京精雕科技集团有限公司 单方向扫描传感器测量数据矢量化方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072312A2 (en) * 2004-01-20 2005-08-11 Matsushita Electric Industrial Co., Ltd. Picture coding method, picture decoding method, picture coding apparatus, picture decoding apparatus, and program thereof
US20080089421A1 (en) * 1992-02-29 2008-04-17 Samsung Electronics Co., Ltd. Signal compressing signal
US20080232475A1 (en) * 2002-07-14 2008-09-25 Maynard Handley Video encoding and decoding
RU2414093C2 (ru) * 2006-02-13 2011-03-10 Кабусики Кайся Тосиба Способ и устройство, и программа кодирования/декодирования видео

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247770A (ja) * 1991-02-04 1992-09-03 Fujitsu Ltd 画像データ圧縮方法および画像データ圧縮装置ならびに画像データ復元装置
GB2259421B (en) * 1991-09-04 1995-01-18 Sony Broadcast & Communication Image data recording and transmission
JP2679769B2 (ja) * 1992-11-16 1997-11-19 富士ゼロックス株式会社 画像信号の符号化装置
US5500678A (en) * 1994-03-18 1996-03-19 At&T Corp. Optimized scanning of transform coefficients in video coding
EP0808069B1 (en) * 1996-05-14 2003-05-02 Daewoo Electronics Corporation A Quantizer for video signal encoding system
JP4099682B2 (ja) * 1998-09-18 2008-06-11 ソニー株式会社 画像処理装置および方法、並びに記録媒体
CN1213611C (zh) * 2000-04-04 2005-08-03 皇家菲利浦电子有限公司 利用小波变换的视频编码方法
KR100525785B1 (ko) * 2001-06-15 2005-11-03 엘지전자 주식회사 이미지 화소 필터링 방법
JP2003143414A (ja) * 2001-11-05 2003-05-16 Canon Inc 画像処理装置および画像処理方法
US7082450B2 (en) * 2001-08-30 2006-07-25 Nokia Corporation Implementation of a transform and of a subsequent quantization
US6882685B2 (en) * 2001-09-18 2005-04-19 Microsoft Corporation Block transform and quantization for image and video coding
EP2302929B1 (en) * 2001-11-27 2015-03-25 Samsung Electronics Co., Ltd. Coding and decoding of a bitstream with a coordinate interpolator
US7130472B2 (en) * 2002-01-21 2006-10-31 Canon Kabushiki Kaisha Image distribution apparatus, communication terminal apparatus, and control method thereof
JP2003250156A (ja) * 2002-02-25 2003-09-05 Matsushita Electric Ind Co Ltd 画像通信装置
JP2004040673A (ja) * 2002-07-08 2004-02-05 Toko Inc 監視カメラの画像にタイムコードを付加する方法及び装置
JP4014087B2 (ja) * 2002-09-19 2007-11-28 株式会社リコー 画像処理装置、画像処理方法、プログラム及び記憶媒体
CN100542262C (zh) * 2004-01-30 2009-09-16 松下电器产业株式会社 逆量化方法图像解码方法和设备及处理器
CN1910922B (zh) * 2004-01-30 2013-04-17 松下电器产业株式会社 运动图片编码方法和运动图片解码方法
JP2006060656A (ja) * 2004-08-23 2006-03-02 Victor Co Of Japan Ltd 画像信号符号化方法及び画像信号符号化装置
JP2006157481A (ja) * 2004-11-30 2006-06-15 Canon Inc 画像符号化装置及びその方法
US20060153294A1 (en) * 2005-01-12 2006-07-13 Nokia Corporation Inter-layer coefficient coding for scalable video coding
US8218634B2 (en) * 2005-01-13 2012-07-10 Ntt Docomo, Inc. Nonlinear, in-the-loop, denoising filter for quantization noise removal for hybrid video compression
US7925108B2 (en) * 2005-03-14 2011-04-12 Panasonic Corporation Encoding device and dynamic image recording system having the encoding device
US7873105B2 (en) * 2005-04-01 2011-01-18 Broadcom Corporation Hardware implementation of optimized single inverse quantization engine for a plurality of standards
EP2733952A1 (en) * 2005-10-21 2014-05-21 Electronics and Telecommunications Research Institute Method for encoding moving picture using adaptive scanning
CN100477796C (zh) * 2005-12-27 2009-04-08 中国科学院计算技术研究所 用于视频转换的变换系数块的转换方法
CN101039421A (zh) * 2006-03-16 2007-09-19 华为技术有限公司 在编解码中的实现量化的方法和装置
JP4417919B2 (ja) * 2006-03-31 2010-02-17 株式会社東芝 画像符号化装置及び画像復号化装置
CN100409693C (zh) * 2006-07-13 2008-08-06 王国秋 用于图像和视频压缩的正交变换方法
JP4747975B2 (ja) * 2006-07-14 2011-08-17 ソニー株式会社 画像処理装置および方法、プログラム、並びに、記録媒体
CA2680140A1 (en) * 2007-04-16 2008-11-06 Kabushiki Kaisha Toshiba Image encoding and decoding method and apparatus
CN101127909B (zh) * 2007-09-29 2010-07-07 华为技术有限公司 一种图像码率控制方法及装置
EP2046053A1 (en) * 2007-10-05 2009-04-08 Thomson Licensing Method and device for adaptively quantizing parameters for image coding
US8798137B2 (en) * 2008-02-29 2014-08-05 City University Of Hong Kong Bit rate estimation in data or video compression
JP5241622B2 (ja) 2008-07-02 2013-07-17 キヤノン株式会社 符号化装置および符号化方法
JP5680283B2 (ja) * 2008-09-19 2015-03-04 株式会社Nttドコモ 動画像符号化装置、動画像復号装置、動画像符号化方法、動画像復号方法、動画像符号化プログラム、及び動画像復号プログラム
JP4698743B2 (ja) * 2009-01-22 2011-06-08 シャープ株式会社 画像圧縮方法、画像圧縮装置、画像形成装置、コンピュータプログラム及び記録媒体
CN101604975A (zh) * 2009-07-08 2009-12-16 复旦大学 一种低功耗多模qc-ldpc码解码器及其工作方法
TW201134225A (en) * 2009-08-06 2011-10-01 Panasonic Corp Encoding method, decoding method, encoding device and decoding device
EP2375751A1 (en) * 2010-04-12 2011-10-12 Panasonic Corporation Complexity reduction of edge-detection based spatial interpolation
NO2559244T3 (ru) 2010-04-13 2017-12-30
KR101152402B1 (ko) 2010-05-20 2012-06-05 에스케이하이닉스 주식회사 매립비트라인을 구비한 반도체장치 및 그 제조 방법
JP2012008199A (ja) 2010-06-22 2012-01-12 Fujitsu Ten Ltd 表示制御装置、表示システム及び表示制御方法
JP5582609B2 (ja) 2010-09-13 2014-09-03 株式会社ニッカリ 噛合式軌条走行車の軌条架設構造
JP2012093113A (ja) 2010-10-25 2012-05-17 Panasonic Corp 静電容量式加速度センサ
US10992958B2 (en) * 2010-12-29 2021-04-27 Qualcomm Incorporated Video coding using mapped transforms and scanning modes
US9338449B2 (en) 2011-03-08 2016-05-10 Qualcomm Incorporated Harmonized scan order for coding transform coefficients in video coding
JPWO2012176465A1 (ja) 2011-06-24 2015-02-23 パナソニック株式会社 復号方法及び復号装置
WO2013001767A1 (ja) 2011-06-29 2013-01-03 パナソニック株式会社 画像復号方法、画像符号化方法、画像復号装置、画像符号化装置及び画像符号化復号装置
KR20130049523A (ko) * 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 장치
JP6120490B2 (ja) 2011-11-07 2017-04-26 キヤノン株式会社 画像符号化装置、画像符号化方法及びプログラム、画像復号装置、画像復号方法及びプログラム
US10277915B2 (en) * 2011-11-07 2019-04-30 Qualcomm Incorporated Signaling quantization matrices for video coding
JP5871628B2 (ja) * 2011-11-07 2016-03-01 キヤノン株式会社 画像符号化装置、画像符号化方法及びプログラム、画像復号装置、画像復号方法及びプログラム
EP3346705B1 (en) * 2012-04-16 2020-10-28 Electronics and Telecommunications Research Institute Method for encoding/decoding image
EP2963908B1 (en) * 2014-07-01 2020-10-28 Canon Kabushiki Kaisha Image processing apparatus, image processing method and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080089421A1 (en) * 1992-02-29 2008-04-17 Samsung Electronics Co., Ltd. Signal compressing signal
US20080232475A1 (en) * 2002-07-14 2008-09-25 Maynard Handley Video encoding and decoding
WO2005072312A2 (en) * 2004-01-20 2005-08-11 Matsushita Electric Industrial Co., Ltd. Picture coding method, picture decoding method, picture coding apparatus, picture decoding apparatus, and program thereof
RU2414093C2 (ru) * 2006-02-13 2011-03-10 Кабусики Кайся Тосиба Способ и устройство, и программа кодирования/декодирования видео

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHUOHAO YEO еt al, Mode-Dependent Coefficient Scanning for Intra Prediction Residual Coding, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11,JCTVC-D049, 4th Meeting: Daegu, 20-28 January 2011. KRIT PANUSOPONE et al, Motorola Mobility’s adaptive scan, Joint Collaborative Team on Video Coding (JCT-VC); of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-E363, 5rd Meeting: Geneva, 16-23 March 2011. *

Also Published As

Publication number Publication date
ES2913855T3 (es) 2022-06-06
RS65220B1 (sr) 2024-03-29
RU2014123380A (ru) 2015-12-20
ES2944463T3 (es) 2023-06-21
US9826241B2 (en) 2017-11-21
CN103931190A (zh) 2014-07-16
RU2663199C1 (ru) 2018-08-02
CN108366261B (zh) 2020-12-25
KR20170084361A (ko) 2017-07-19
PL2777264T3 (pl) 2021-01-11
US10652554B2 (en) 2020-05-12
IN2014CN03856A (ru) 2015-09-04
CN108769678A (zh) 2018-11-06
CN108810536A (zh) 2018-11-13
US20140307782A1 (en) 2014-10-16
BR112014010794A2 (pt) 2017-04-25
JP2013219727A (ja) 2013-10-24
KR20160099106A (ko) 2016-08-19
BR122020000397B1 (pt) 2021-03-23
RU2586888C2 (ru) 2016-06-10
HUE051945T2 (hu) 2021-03-29
EP4075801A1 (en) 2022-10-19
EP2777264A1 (en) 2014-09-17
PT4075802T (pt) 2024-01-02
KR101985004B1 (ko) 2019-06-03
HUE059081T2 (hu) 2022-10-28
KR102086310B1 (ko) 2020-03-06
US10165287B2 (en) 2018-12-25
RU2627301C1 (ru) 2017-08-07
EP3745723A1 (en) 2020-12-02
PT4075801T (pt) 2023-12-28
EP3742731B1 (en) 2022-05-04
KR101759461B1 (ko) 2017-07-18
KR20180078343A (ko) 2018-07-09
BR122020000394B1 (pt) 2021-03-23
CN108337511B (zh) 2020-09-04
RU2624456C1 (ru) 2017-07-04
CN108769678B (zh) 2021-01-12
ES2817844T3 (es) 2021-04-08
KR20190062618A (ko) 2019-06-05
CN107087170A (zh) 2017-08-22
US10750192B2 (en) 2020-08-18
KR20180078342A (ko) 2018-07-09
HUE061988T2 (hu) 2023-09-28
PL3742731T3 (pl) 2022-08-01
WO2013069216A1 (en) 2013-05-16
BR112014010794B1 (pt) 2020-03-24
EP3745723B1 (en) 2023-04-12
PT3745723T (pt) 2023-07-10
KR101672607B1 (ko) 2016-11-03
CN108366261A (zh) 2018-08-03
RU2733206C1 (ru) 2020-09-30
US20190075304A1 (en) 2019-03-07
CN108810536B (zh) 2021-06-11
EP4075802A1 (en) 2022-10-19
US20190075303A1 (en) 2019-03-07
CN107071419A (zh) 2017-08-18
CN107087170B (zh) 2020-02-28
RU2685247C1 (ru) 2019-04-17
RU2706236C1 (ru) 2019-11-15
CN103931190B (zh) 2018-04-10
KR102041744B1 (ko) 2019-11-06
EP4075801B1 (en) 2023-12-06
HRP20230620T1 (hr) 2023-09-29
US20170078675A1 (en) 2017-03-16
EP4075802B1 (en) 2023-12-06
BR122020000395B1 (pt) 2021-03-23
US10645401B2 (en) 2020-05-05
PL3745723T3 (pl) 2023-08-21
RS64287B1 (sr) 2023-07-31
EP3742731A1 (en) 2020-11-25
US20190075305A1 (en) 2019-03-07
BR122020000396B1 (pt) 2021-03-23
CN108337511A (zh) 2018-07-27
CN107071419B (zh) 2019-12-20
EP2777264B1 (en) 2020-07-29
RS65236B1 (sr) 2024-03-29
KR20140089584A (ko) 2014-07-15
JP6120490B2 (ja) 2017-04-26

Similar Documents

Publication Publication Date Title
RU2706236C1 (ru) Устройство кодирования изображений, способ кодирования изображений, устройство декодирования изображений, способ декодирования изображений и носитель хранения данных
JP2013012887A (ja) 画像符号化装置、画像符号化方法及びプログラム、画像復号装置、画像復号方法及びプログラム
JP6679778B2 (ja) 画像符号化装置、画像符号化方法及びプログラム、画像復号装置、画像復号方法及びプログラム
JP2007306528A (ja) 動画像復号装置および動画像復号方法