RU2624255C2 - Способ управления двигателем с постоянными магнитами и соответствующая система - Google Patents

Способ управления двигателем с постоянными магнитами и соответствующая система Download PDF

Info

Publication number
RU2624255C2
RU2624255C2 RU2015112232A RU2015112232A RU2624255C2 RU 2624255 C2 RU2624255 C2 RU 2624255C2 RU 2015112232 A RU2015112232 A RU 2015112232A RU 2015112232 A RU2015112232 A RU 2015112232A RU 2624255 C2 RU2624255 C2 RU 2624255C2
Authority
RU
Russia
Prior art keywords
specified
axis
value
power plant
stator
Prior art date
Application number
RU2015112232A
Other languages
English (en)
Other versions
RU2015112232A (ru
Inventor
Абдельмалек МАЛОУМ
Original Assignee
Рено С.А.С.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Рено С.А.С. filed Critical Рено С.А.С.
Publication of RU2015112232A publication Critical patent/RU2015112232A/ru
Application granted granted Critical
Publication of RU2624255C2 publication Critical patent/RU2624255C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/12Stator flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage

Abstract

Использование: в области электротехники для управления силовой установкой, содержащей электрический двигатель, оснащенный ротором с постоянными магнитами и статором. Технический результат – повышение надежности и стабильности контроля крутящего момента двигателя. Способ включает в себя этап регулирования (ER) токов статора, таким образом, чтобы они достигали своих заданных значений, при помощи сигналов управления (Vd, Vq) электрическим двигателем, при этом указанные регулируемые токи и указанные сигналы управления (Vd, Vq) выражены во вращающейся системе координат, содержащей множество осей (d, q), отличающийся тем, что указанный этап регулирования (ER) содержит для каждой из осей указанного множества осей этап применения (Е3) для регулируемого тока на этой оси линейного оператора, который различается в зависимости от значения указанного регулируемого тока по отношению к его заданному значению, при этом результатом применения линейного оператора является сигнал управления (Vd, Vq) на этой оси. 2 н. и 7 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к технической области управления электрическими двигателями и, в частности, касается управления электрическими двигателями типа синхронных двигателей с постоянными магнитами.
Синхронный двигатель с постоянными магнитами содержит ротор с одним или несколькими постоянными магнитами, а также статор с обмотками, в которых проходят токи, смещенные по фазы относительно друг друга, создавая в двигателе вращающееся магнитное поле, приводящее во вращение ротор. Частота вращения ротора равна частоте токов, проходящих в статоре, поэтому двигатель или электрическую машину называют «синхронной».
Чтобы контролировать крутящий момент такого двигателя, система управления регулирует амплитуду токов, циркулирующих в статоре, прикладывая к каждой из фаз статора соответствующее синусоидальное напряжение. Для упрощения алгоритма управления крутящим моментом в системе, как правило, применяют преобразование Парка для перевода токов и напряжений статора во вращающуюся систему координат, связанную с ротором. Таким образом, в системе координат Парка определяют статорные напряжения, прикладываемые к статору таким образом, чтобы соответствующие статорные токи создавали необходимый крутящий момент. Эти статорные напряжения в системе координат Парка называются сигналами управления. При помощи обратного преобразования Парка система управления определяет затем синусоидальные напряжения, которые необходимо приложить к различным фазам статора для получения необходимого крутящего момента, называемого заданным крутящим моментом.
Однако использование таких двигателей, например, тяговых двигателей в электрическом или гибридном транспортном средстве, требует надежного управления крутящим моментом, которое быстро реагирует в зависимости от потребностей водителя в крутящем моменте и которое ограничивает крутящий момент областью значений, совместимой с напряжением тяговой батареи такого транспортного средства. Если крутящий момент двигателя выходит за пределы этой области значений, система управления двигателя становится нестабильной, чего следует избегать.
Для регулирования токов статора такого двигателя обычно используют так называемые пропорционально-интегральные корректоры или ПИ-корректоры. Однако в этих корректорах возникает проблема нестабильности, в частности, если необходимо реализовать скоростную систему. Для решения этой проблемы параметры этих корректоров рассчитывают таким образом, чтобы обеспечить пределы стабильности, указанные в технических требованиях, которые должен соблюдать двигатель. Кроме того, поскольку собственные параметры двигателей с постоянными магнитами, такие как внутреннее сопротивление или индуктивность, отличаются от одного двигателя к другому, то, как известно, эти пределы стабильности расширяют, то есть еще больше снижают характеристики корректора, чтобы можно было использовать одинаковый корректор на всех двигателях одной серии транспортных средств.
Другой пример корректора без применения пропорционально-интегрального корректора раскрыт в документе ЕР 0702451, в котором предложено решение регулирования скорости синхронной машины с постоянными магнитами в ответ на изменения нагрузки двигателя. Такое решение требует калибровки коэффициента усиления корректора в зависимости от режима машины или требует компенсации членов статической связи, которые необходимо очень точно измерять.
Изобретение призвано устранить по меньшей мере часть недостатков известных решений и предложить способ управления и систему управления силовой установкой, которые обеспечивают стабильный и надежный контроль крутящего момента двигателя с постоянными магнитами независимо от его режима и которые используют постоянные одинаковые коэффициенты усиления для двигателей одной серии, производимых на конвейере.
В связи с этим объектом изобретения является способ управления силовой установкой, содержащей электрический двигатель, оснащенный ротором с постоянными магнитами и статором, при этом указанный способ включает в себя этап регулирования токов статора, чтобы они достигали заданных значений токов, при помощи сигналов управления электрическим двигателем, при этом указанные регулируемые токи и указанные сигналы управления выражены во вращающейся системе координат, содержащей множество осей, при этом указанный способ отличается тем, что указанный этап регулирования содержит для каждой из осей указанного множества осей этап применения для регулируемого тока на указанной оси линейного оператора, который различается в зависимости от значения указанного регулируемого тока по отношению к его заданному значению, при этом указанный этап применения указанного линейного оператора позволяет получить значение сигнала управления на указанной оси.
Благодаря изобретению, для получения сигналов управления двигателем используют линейные операторы, позволяющие следовать заданным значениям тока без добавления интегральной составляющей, которая часто является причиной нестабильности, когда необходимо реализовать быстро реагирующий способ управления. Таким образом, способ управления в соответствии с изобретением позволяет регулировать крутящий момент двигателя даже при изменяющейся скорости.
Согласно предпочтительному признаку способа управления в соответствии с изобретением, указанный линейный оператор содержит:
- первый член, минимизирующий или максимизирующий, в зависимости от значения указанного регулируемого тока относительно его заданного значения, составляющую нулевого порядка оценочного сигнала управления на указанной оси в зависимости от указанных регулируемых токов, от скорости указанного ротора и от предельных значений диапазона значений, оценивающих характеристики указанной силовой установки,
- и второй член, пропорциональный указанному регулируемому току, на указанной оси, использующий коэффициент сходимости.
Таким образом, используют известные диапазоны изменения характеристик силовой установки, обеспечивая надежность способа управления в соответствии с изобретением. Использование этих известных диапазонов изменения, а также формулирование линейного оператора в виде двух частей позволяют добиться быстрого схождения регулируемых токов с их заданными значениями.
Согласно другому предпочтительному признаку, указанные диапазоны значений включают в себя, по меньшей мере, две оценки, выбранные из группы, в которую входят:
- оценка эквивалентного сопротивления статора,
- оценка индуктивности силовой установки на одной из указанных осей,
- оценка потока, создаваемого постоянными магнитами ротора.
Использование этих оценок позволяет отказаться от измерения для каждой силовой установки, в которой применяют способ в соответствии с изобретением, ее собственных характеристик, таких как ее внутреннее сопротивление, ее индуктивность или поток, создаваемый постоянными магнитами ротора. Таким образом, изобретение можно применять без каких-либо изменений для целого ряда серийно выпускаемых силовых установок.
Силовой установкой является, например, силовая установка электрического или гибридного транспортного средства, характеризующаяся инвариантностью ее собственных характеристик при вращении на четверть оборота.
Согласно еще одному предпочтительному признаку, способ в соответствии с изобретением включает в себя этап сглаживания сигнала управления на одной из указанных осей, как только разность по абсолютной величине между регулируемым током на этой оси и его заданным значением становится меньше заранее определенного порога.
Этот этап сглаживания обеспечивает облегченное применение способа в соответствии с изобретением при помощи стандартных приводов.
Объектом изобретения является также система управления силовой установкой, содержащей электрический двигатель, оснащенный ротором с постоянными магнитами и статором, при этом указанная система содержит средства регулирования токов статора таким образом, чтобы они достигали заданных значений тока, при помощи сигналов управления электрическим двигателем, при этом указанные регулируемые токи и указанные сигналы управления выражены во вращающейся системе координат, содержащей множество осей, при этом система в соответствии с изобретением отличается тем, что указанные средства регулирования содержат для каждой из осей указанного множества осей средства применения для регулируемого тока на указанной оси линейного оператора, который различается в зависимости от значения указанного регулируемого тока по отношению к его заданному значению, при этом указанные средства применения указанного линейного оператора выдают значение сигнала управления на указанной оси.
Согласно предпочтительному признаку системы в соответствии с изобретением, указанный линейный оператор содержит:
- первый член, минимизирующий или максимизирующий, в зависимости от значения указанного регулируемого тока относительно его заданного значения, составляющую нулевого порядка оценочного сигнала управления на указанной оси в зависимости от указанных регулируемых токов, от скорости указанного ротора и от предельных значений диапазона значений, оценивающих характеристики указанной силовой установки,
- и второй член, пропорциональный указанному регулируемому току, на указанной оси, использующий коэффициент сходимости.
Согласно другому предпочтительному признаку системы в соответствии с изобретением, указанные диапазоны значений включают в себя, по меньшей мере, две оценки, выбранные из группы, в которую входят:
- оценка эквивалентного сопротивления статора,
- оценка индуктивности силовой установки на одной из указанных осей,
- оценка потока, создаваемого постоянными магнитами ротора.
Согласно еще одному предпочтительному признаку системы в соответствии с изобретением, указанная система содержит средства сглаживания сигнала управления на одной из указанных осей, как только разность по абсолютной величине между регулируемым током на этой оси и его заданным значением становится меньше заранее определенного порога.
Объектом изобретения является также компьютерная программа, содержащая команды для применения способа управления в соответствии с изобретением, когда указанную программу исполняет один или несколько процессоров.
Система управления в соответствии с изобретением, а также компьютерная программа в соответствии с изобретением имеют те же преимущества, что и способ управления в соответствии с изобретением.
Другие признаки и преимущества будут более очевидны из нижеследующего описания предпочтительного варианта выполнения со ссылками на прилагаемые чертежи, на которых:
фиг. 1 - двигатель с постоянными магнитами;
фиг. 2 - этапы способа управления силовой установкой в соответствии с изобретением согласно этому варианту выполнения изобретения;
фиг. 3 - система управления силовой установкой в соответствии с изобретением согласно этому варианту выполнения изобретения.
Согласно предпочтительному варианту выполнения изобретения, способ управления в соответствии с изобретением применяют для управления крутящим моментом двигателя с постоянными магнитами силовой установки электрического транспортного средства. Такой двигатель схематично представлен на фиг. 1, на которой для упрощения показана только одна пара полюсов. В действительности двигатель может содержать несколько пар полюсов, например, пять пар полюсов.
Он содержит статор с тремя обмотками Ва, Вb и Вс, окружающими ротор R, причем через эти три обмотки проходят соответственно синусоидальные статорные токи Ias, Ibs и Ics, смещенные по фазе относительно друг друга на 2π/3 радиан. Соответствующими синусоидальными статорными напряжениями, прикладываемыми к каждой обмотке для получения этих токов, являются соответственно Vas, Vbs и Vcs.
Для упрощения управления этим двигателем эти статорные токи и напряжения выражены в системе координат, вращающейся вместе с ротором, с полярными осями d и квадратурными осями q. Полярная ось d совпадает с направлением от южного полюса S к северному полюсу N образующего статор магнита и имеет угол поворота θ с обмоткой Ва. Производная угла θ, поделенная на число пар полюсов ротора R, дает скорость вращения ωr магнитного поля двигателя с постоянными магнитами в рад/с.
На фиг. 2 способ управления в соответствии с изобретением представлен в виде алгоритма, включающего в себя этапы Е1-Е6 более общего этапа ER регулирования статорных токов, чтобы они соответствовали заданному крутящему моменту, который должен выдавать двигатель с постоянными магнитами.
Способ осуществляют при помощи одного или нескольких вычислительных устройств силовой установки.
Этап 1 является этапом приема устройством управления DC, показанным на фиг. 3, где представлена система управления в соответствии с изобретением, измерений статорных токов двигателя и скорости вращения ωr магнитного поля двигателя, поступающих от средств измерения ММ. Этап Е1 включает в себя также прием устройством управления DC заданных статорных токов, получаемых из таблиц и соответствующих заданному крутящему моменту.
Следующим этапом Е2 является преобразование Парка измеренных статорных токов и заданных статорных токов, полученных на этапе Е1, при помощи средств MCR изменения системы координат. В варианте можно использовать другие преобразования, отличные от преобразования Парка-Конкордиа (часто называемого преобразованием Парка), например, преобразование Парка-Кларка.
Средства MCR изменения системы координат выдают в устройство управления DC следующие значения:
- Id, соответствующее значению измеренного статорного тока на оси d системы координат Парка в амперах,
- Iq, соответствующее значению измеренного статорного тока на оси q системы координат Парка в амперах,
- Idref, соответствующее заданному значению статорного тока на оси d системы координат Парка в амперах,
- и Iqref, соответствующее заданному значению статорного тока на оси q системы координат Парка в амперах.
Следует отметить, что для упрощения фиг. 3, на ней показано, что устройство управления DC получает непосредственно значения токов, выраженных в системе координат Парка.
Следующим этапом Е3 является применение для измеренных и предназначенных для регулирования статорных токов Id и Iq линейного оператора на каждой из осей системы координат Парка, который различается в зависимости от значения регулируемого тока на этой оси по отношению к его заданному значению. Этот этап Е3 основан на представленной ниже теории.
Сигналы управления двигателем выражаются в виде:
Figure 00000001
Figure 00000002
где:
- Vd и Vq - статорные напряжения соответственно на осях d и q системы координат Парка, в вольтах,
- Rs - эквивалентное сопротивление статора двигателя, в омах,
- Ld u Lq - индуктивность на каждой оси d и q системы координат Парка, в генри,
- Фf - поток, создаваемый магнитами ротора, в веберах,
- оператор
Figure 00000003
является оператором, производным от переменной х.
Ставится цель достичь заданного крутящего момента, несмотря на наличие связи между осью d и осью q (при нулевом режиме связи нет, см. Уравнение 1) и на неизвестность точных значений потока Фf, значений индуктивности Ld и Lq и сопротивления Rs. Крутящий момент, выдаваемый двигателем, выражается в виде:
Figure 00000004
где:
- Сеm - электромагнитный момент, создаваемый двигателем,
- p - число пар полюсов ротора,
- Фd и Фq - создаваемые потоки на осях d и q системы координат Парка. Более конкретно:
Figure 00000005
Как правило, двигатели с постоянными магнитами имеют идеальную симметрию между осями d и q, то есть можно записать:
Figure 00000006
и, следовательно, комбинируя (2) и (3), крутящий момент, выдаваемый двигателем, можно записать:
Figure 00000007
Таким образом, чтобы контролировать крутящий момент, максимально ограничивая при этом потери, необходимо иметь статорный ток Id на оси d, максимально близкий к нулю. Для получения заданного крутящего момента необходимо получить статорный ток Iq на оси q и нулевой статорный ток Id на оси d, чтобы получить самую слабую амплитуду токов для этого крутящего момента и, следовательно, обеспечить минимум потерь в железе.
Кроме того, в устройстве управления DC имеется таблица TAB, содержащая возможные диапазоны изменений или диапазоны значений для каждого параметра Rs, Фf и Ls:
Figure 00000008
при этом каждое из минимальных или максимальных значений в этих интервалах учитывает изменения токов и возможные разбросы, связанные с серийным выпуском двигателя с постоянными магнитами, которым необходимо управлять при помощи заявленного способа. В варианте, таблица TAB содержит только один или два диапазона значений, соответствующих одному или двум параметрам, выбранным среди Rs, Фf и Ls, а также оценочное значение, например, среднее значение, для каждого параметра, не имеющего диапазона значений.
Вернемся к описанию этапа Е3. На этом этапе Е3 средства сравнения МСОМР устройства управления DC сначала сравнивают измеренные статорные токи Id и Iq с их заданными значениями Idref и Iqref. В зависимости от знака разности между каждым из этих регулируемых токов и его заданным значением, получаемого от средств сравнения МСОМР, средство применения МАРР применяет для каждого из этих токов линейный оператор, что позволяет получить два возможных значения статорных напряжений на каждой из осей d и q в зависимости от этого знака. Таким образом:
- Если Id≥Idref, к току Id применяют линейный оператор OP1D и получают статорное напряжение:
Figure 00000009
где min(x) является минимальным оператором переменной х, и λd является положительным коэффициентом, который служит коэффициентом сходимости. Действительно, чем меньше этот коэффициент, тем больше ток Id медленно стремится к своему заданному значению Idref.
Член min(RsIdrpLsIq) минимизирует составляющую нулевого порядка сигнала управления Vd, выбирая для сопротивления Rs минимальное значение Rs min из его диапазона значений, если ток Id является положительным, или его максимальное значение Rs max, если ток Id является отрицательным, и для индуктивности Ls - максимальное значение Ls max, если ток Iq является положительным, или его минимальное значение Ls min, если ток Iq является отрицательным.
- Если Id<Idref, для тока Id применяют линейный оператор OP2D и получают статорное напряжение:
Figure 00000010
где mах(х) является максимальным оператором переменной х, и член mах(RsIdrpLsIq) максимизирует составляющую нулевого порядка сигнала управления Vd, выбирая для Rs и Ls соответствующие пределы из соответствующих диапазонов значений аналогично случаю, когда Id≥Idref.
- Аналогично, если Iq≥Iqref, для тока Iq применяют линейный оператор OP1Q и получают статорное напряжение:
Figure 00000011
где λq является положительным коэффициентом, который служит коэффициентом сходимости. Действительно, чем меньше этот коэффициент, тем больше ток Iq медленно стремится к своему заданному значению Iqref.
Член min(RsIqrpLsIdrФf) минимизирует составляющую нулевого порядка сигнала управления Vq, выбирая для Rs, Ls и Фf соответствующие пределы из соответствующих диапазонов значений, как для предыдущих операторов.
Наконец, если Iq<Iqref, для тока Iq применяют линейный оператор OP2Q и получают статорное напряжение:
Figure 00000012
Член max(RsIqrpLsIdrрФf) максимизирует составляющую нулевого порядка сигнала управления Vq, выбирая для Rs, Ls и Фf соответствующие пределы из соответствующих диапазонов значений, как для предыдущих операторов.
Применение этих линейных операторов к измеренным статорным токам Id и Iq на этом этапе Е3 обеспечивает схождение этих токов к их соответствующим заданным значениям. Действительно уравнение (Уравнение 1) в комбинации с уравнениями, определяющими статорные напряжения
Figure 00000013
и
Figure 00000014
позволяет получить положительный знак производной тока Id, если Id<Idref, и отрицательный знак, если Id≥Idref, а также получить положительный знак производной тока Iq, если Iq<Iqref, и отрицательный знак, если Iq≥Iqref.
Следующий этап Е4 представляет собой сглаживание полученного на этапе Е3 статорного напряжения Vd, переходящего между
Figure 00000015
и
Figure 00000016
которое происходит, как только разность по абсолютной величие между током Id и его заданным значением Idref становится меньше заранее определенного порога εd, и сглаживание полученного на этапе Е3 статорного напряжения Vq, переходящего между
Figure 00000017
и
Figure 00000018
которое происходит, как только разность по абсолютной величие между током Iq и его заданным значением Iqref становится меньше заранее определенного порога εq.
Таким образом, в конце этапа Е4 сигналы управления Vd и Vq равны:
Figure 00000019
Figure 00000020
Этот этап Е4 сглаживания посредством линейном интерполяции осуществляют при помощи средств MLIS. Этот этап является необходимым, когда статорные токи достаточно близки к своим соответствующим заданным значениям, чтобы эти токи не колебались вокруг своих заданных значений на частоте вычислительного устройства, реализующего способ управления в соответствии с изобретением.
Параметры λd, λq, εd и εq определяют в результате этапа калибровки, предваряющего применение способа управления в соответствии с изобретением, с учетом технических требований и таким образом, чтобы обеспечить надежность способа в соответствии с изобретением.
На следующем этапе Е5 определяют сигналы управления Vd и Vq в трехфазной системе при помощи средств MCR изменения системы координат, которые осуществляют на этих сигналах обратное преобразование Парка.
Наконец, этап Е6 предусматривает передачу устройством управления DC сигналов управления, выраженных в трехфазной системе, в инвертор PWM, который исполняет эти сигналы и передает их в двигатель с постоянными магнитами для получения необходимого крутящего момента.
Следует отметить, что для упрощения фиг. 3 на ней показано, что инвертор PWM принимает непосредственно сигналы управления, выраженные в системе координат Парка.
Таким образом, способ управления в соответствии с изобретением обеспечивает надлежащее изменение тока без использования интегрального члена, который может расходиться в случае большой погрешности на каком-либо параметре. Разумеется, для обеспечения работы привода необходимо оценивать диапазон изменения параметров.
Преимуществом этой стратегии регулирования является постоянная возможность изменения токов в направлении заданного значения, пока реальные параметры двигателя остаются в выбранном диапазоне. За счет этого обеспечивают стабильность более надежно, чем при помощи классических регуляторов, которые не учитывают разброса параметров. Кроме того, регулирование является более скоростным, так как оно всегда учитывает наихудшие случаи. Теперь можно отказаться от необходимости оценивать средние параметры, а просто определять их границы, что является более простым способом.
Необходимо отметить, что в этом варианте выполнения изобретения двигатель имеет симметрию между осями d и q, что упрощает выражение сигналов управления машиной, однако специалист может легко применить вариант выполнения для случая, когда двигатель является асимметричным между осями d и q. Точно так же, в варианте выполнения изобретения двигатель с постоянными магнитами является несинхронным.

Claims (21)

1. Способ управления силовой установкой, содержащей электрический двигатель, оснащенный ротором (R) с постоянными магнитами и статором, включающий этап регулирования (ER) токов (Id, Iq) статора, таким образом, чтобы они достигали заданных значений (Idref, Iqref) токов, при помощи сигналов управления (Vd, Vq) электрическим двигателем, при этом указанные регулируемые токи (Id, Iq) и указанные сигналы управления (Vd, Vq) выражены во вращающейся системе координат, содержащей множество осей (d, q),
отличающийся тем, что указанный этап регулирования (ER) содержит для каждой из осей (d, q) указанного множества осей этап применения (Е3) для регулируемого тока (Id, Iq) на указанной оси линейного оператора (OP1D, OP2D, OP1Q, OP2Q), который различается в зависимости от значения указанного регулируемого тока (Id, Iq) по отношению к его заданному значению (Idref, Iqref), при этом указанный этап применения указанного линейного оператора позволяет получить значение сигнала управления (Vd, Vq) на указанной оси.
2. Способ управления по п. 1, отличающийся тем, что указанный линейный оператор (OP1D, OP2D, OP1Q, OP2Q) содержит:
первый член, минимизирующий или максимизирующий, в зависимости от значения указанного регулируемого тока (Id, Iq) относительно его заданного значения (Idref, Iqref), составляющую нулевого порядка оценочного сигнала управления на указанной оси в зависимости от указанных регулируемых токов (Id, Iq), от скорости (ωr) указанного ротора и от предельных значений (Rsmin, Rsmax, Lsmin, Lsmax) диапазона значений, оценивающих характеристики указанной силовой установки,
и второй член, пропорциональный указанному регулируемому току (Id, Iq) на указанной оси (d, q), использующий коэффициент сходимости (λd, λq).
3. Способ управления по п. 2, отличающийся тем, что указанные диапазоны значений включают в себя по меньшей мере две оценки, выбранные из группы, в которую входят:
оценка эквивалентного сопротивления (Rs) статора,
оценка индуктивности (Ls) силовой установки на одной из указанных осей (d, q),
оценка потока (Фf), создаваемого постоянными магнитами ротора (R).
4. Способ управления по п. 1, отличающийся тем, что включает в себя этап (Е4) сглаживания сигнала управления (Vd, Vq) на одной из указанных осей (d, q), как только разность по абсолютной величине между регулируемым током (Id, Iq) на этой оси и его заданным значением (Idref, Iqref) становится меньше заранее определенного порога (εd, εq).
5. Способ управления по п. 1, отличающийся тем, что силовая установка является силовой установкой электрического или гибридного транспортного средства, характеризующейся инвариантностью своих внутренних характеристик при повороте на четверть оборота.
6. Система управления силовой установкой, содержащей электрический двигатель, оснащенный ротором (R) с постоянными магнитами и статором, при этом указанная система содержит средства регулирования токов (Id, Iq) статора таким образом, чтобы они достигали заданных значений (Idref, Iqref) тока, при помощи сигналов управления (Vd, Vq) электрическим двигателем, при этом указанные регулируемые токи (Id, Iq) и указанные сигналы управления (Vd, Vq) выражены во вращающейся системе координат, содержащей множество осей (d, q),
отличающаяся тем, что указанные средства регулирования содержат для каждой из осей (d, q) указанного множества осей средства применения (МАРР) для регулируемого тока (Id, Iq) на указанной оси линейного оператора (OP1D, OP2D, OP1Q, OP2Q), который различается в зависимости от значения указанного регулируемого тока (Id, Iq) по отношению к его заданному значению (Idref, Iqref), при этом указанные средства применения указанного линейного оператора выдают значение сигнала управления (Vd, Vq) на указанной оси.
7. Система управления силовой установкой по п. 6, отличающаяся тем, что указанный линейный оператор (OP1D, OP2D, OP1Q, OP2Q) содержит:
первый член, минимизирующий или максимизирующий, в зависимости от значения указанного регулируемого тока (Id, Iq) относительно его заданного значения (Idref, Iqref), составляющую нулевого порядка оценочного сигнала (Vd, Vq) управления на указанной оси в зависимости от указанных регулируемых токов (Id, Iq), от скорости (ωr) указанного ротора и от предельных значений (Rsmin, Rsmax, Lsmin, Lsmax, Фfmin, Фfmax) диапазона значений, оценивающих характеристики указанной силовой установки,
и второй член, пропорциональный указанному регулируемому току (Id, Iq) на указанной оси (d, q), использующий коэффициент сходимости (λd, λq).
8. Система управления силовой установкой по п. 7, отличающаяся тем, что указанные диапазоны значений включают в себя по меньшей мере две оценки, выбранные из группы, в которую входят:
оценка эквивалентного сопротивления (Rs) статора,
оценка индуктивности (Ls) силовой установки на одной из указанных осей (d, q),
оценка потока (Фf), создаваемого постоянными магнитами ротора (R).
9. Система управления силовой установкой по п.8, отличающаяся тем, что дополнительно содержит средства сглаживания (MLIS) сигнала управления (Vd, Vq) на одной из указанных осей (d, q), как только разность по абсолютной величине между регулируемым током (Id, Iq) на этой оси и его заданным значением (Idref, Iqref) становится меньше заранее определенного порога (εd, εq).
RU2015112232A 2012-09-04 2013-07-09 Способ управления двигателем с постоянными магнитами и соответствующая система RU2624255C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1258211 2012-09-04
FR1258211A FR2995156B1 (fr) 2012-09-04 2012-09-04 Procede de commande d'un moteur a aimants permanents et systeme correspondant
PCT/FR2013/051635 WO2014037635A2 (fr) 2012-09-04 2013-07-09 Procede de commande d'un moteur a aimants permanents et systeme correspondant

Publications (2)

Publication Number Publication Date
RU2015112232A RU2015112232A (ru) 2016-10-27
RU2624255C2 true RU2624255C2 (ru) 2017-07-03

Family

ID=47557177

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015112232A RU2624255C2 (ru) 2012-09-04 2013-07-09 Способ управления двигателем с постоянными магнитами и соответствующая система

Country Status (10)

Country Link
US (1) US9484847B2 (ru)
EP (1) EP2893630B1 (ru)
JP (1) JP6290214B2 (ru)
KR (1) KR102142020B1 (ru)
CN (1) CN104584420B (ru)
BR (1) BR112015004663A2 (ru)
FR (1) FR2995156B1 (ru)
IN (1) IN2015DN01317A (ru)
RU (1) RU2624255C2 (ru)
WO (1) WO2014037635A2 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1100191A2 (en) * 1999-11-12 2001-05-16 Hitachi, Ltd. Inverter control apparatus and method for controlling an inverter
JP2004072856A (ja) * 2002-08-05 2004-03-04 Nissan Motor Co Ltd 同期電動機の制御装置
RU2397601C1 (ru) * 2006-09-26 2010-08-20 Мицубиси Электрик Корпорейшн Устройство векторного управления двигателя с синхронизацией на постоянном магните
JP2012120297A (ja) * 2010-11-30 2012-06-21 Aisin Aw Co Ltd 回転電機制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245181A (en) * 1979-02-26 1981-01-13 General Electric Company Method and apparatus for generating an air gap flux signal for an AC machine from AC line voltage and current values
DE3026202A1 (de) * 1980-07-10 1982-02-04 Siemens AG, 1000 Berlin und 8000 München Drehfeldmaschinenantrieb mit einer umrichtergespeisten drehfeldmaschine und einer mit zwei wechselspannungsintegratoren und einer rechenmodellschaltung verbundenen umrichtersteuerung
US4677360A (en) * 1986-03-13 1987-06-30 General Electric Company Field weakening induction drive
US4814677A (en) * 1987-12-14 1989-03-21 General Electric Company Field orientation control of a permanent magnet motor
US6605912B1 (en) * 1998-06-25 2003-08-12 Delphi Technologies, Inc. Method for controlling a permanent magnet motor
JP4718041B2 (ja) * 2000-11-22 2011-07-06 ダイキン工業株式会社 インバータ制御方法およびその装置
DE602008000946D1 (de) * 2007-07-10 2010-05-20 Jtekt Corp Motorsteuervorrichtung
JP5265962B2 (ja) * 2008-05-09 2013-08-14 東芝機械株式会社 サーボモータにおける電流制御方法、電流制御プログラム、記録媒体、サーボモータおよび射出成形機
JP5152207B2 (ja) * 2010-01-11 2013-02-27 株式会社デンソー 多相回転機の制御装置
FR2960358B1 (fr) * 2010-05-21 2012-06-29 Michelin Soc Tech Installation et procede de mesure de decalage de l'angle d'un resolveur dans une machine electrique synchrone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1100191A2 (en) * 1999-11-12 2001-05-16 Hitachi, Ltd. Inverter control apparatus and method for controlling an inverter
JP2004072856A (ja) * 2002-08-05 2004-03-04 Nissan Motor Co Ltd 同期電動機の制御装置
RU2397601C1 (ru) * 2006-09-26 2010-08-20 Мицубиси Электрик Корпорейшн Устройство векторного управления двигателя с синхронизацией на постоянном магните
JP2012120297A (ja) * 2010-11-30 2012-06-21 Aisin Aw Co Ltd 回転電機制御装置

Also Published As

Publication number Publication date
EP2893630A2 (fr) 2015-07-15
KR20150048774A (ko) 2015-05-07
US20150214866A1 (en) 2015-07-30
KR102142020B1 (ko) 2020-08-06
US9484847B2 (en) 2016-11-01
CN104584420A (zh) 2015-04-29
JP6290214B2 (ja) 2018-03-07
BR112015004663A2 (pt) 2017-07-04
RU2015112232A (ru) 2016-10-27
WO2014037635A3 (fr) 2014-07-03
JP2016508013A (ja) 2016-03-10
FR2995156B1 (fr) 2014-08-29
EP2893630B1 (fr) 2018-09-19
FR2995156A1 (fr) 2014-03-07
CN104584420B (zh) 2017-10-20
WO2014037635A2 (fr) 2014-03-13
IN2015DN01317A (ru) 2015-07-03

Similar Documents

Publication Publication Date Title
EP1115196B1 (en) Motor control device
CN107078674B (zh) 逆变器控制装置以及电机驱动系统
CN100440720C (zh) 永磁同步电动机的混合式调速方法
JP3686596B2 (ja) 永久磁石モータ用の制御システム
CN103812410B (zh) 交流电动机的控制装置
EP2770627B1 (en) Motor control device and motor control method
US20090237021A1 (en) Apparatus for carrying out improved control of rotary machine
EP2760127A2 (en) Method of controlling an AC machine and controller for controlling an AC machine
CN112740537B (zh) 永磁同步电机的mtpa控制方法、装置、系统及设备
CN103988419A (zh) 电动机控制装置
US10469014B2 (en) Control device for permanent magnet-type rotating electrical machine
CN102647134A (zh) 一种永磁同步电机无角度传感器的效率优化控制方法
JP4402600B2 (ja) 同期電動機の駆動システム及び同期電動機の駆動方法
JP4056237B2 (ja) 同期機の制御装置
RU2624255C2 (ru) Способ управления двигателем с постоянными магнитами и соответствующая система
CN110535390A (zh) 一种永磁同步电机mtpa控制与fw控制的切换方法
JP5222630B2 (ja) モータ制御装置
JP6417881B2 (ja) 誘導モータの制御装置
CN113348620A (zh) 电机控制方法及电机的控制装置
US20240113645A1 (en) Symmetrical components domain control in a multiphase machine system
CN111224602B (zh) 基于功率平衡的永磁同步电机的控制方法和控制装置
CN109729756B (zh) 用于控制同步电机的方法和用于同步电机的控制设备
KR101736006B1 (ko) 전류 지령 보정 장치
Panda Direct Torque Control of Permanent Magnet Synchronous Motor
CN117544047A (zh) 永磁同步电机电流环控制方法及装置