RU2622553C2 - Слои монооксида молибдена и их получение с помощью pvd - Google Patents

Слои монооксида молибдена и их получение с помощью pvd Download PDF

Info

Publication number
RU2622553C2
RU2622553C2 RU2013124399A RU2013124399A RU2622553C2 RU 2622553 C2 RU2622553 C2 RU 2622553C2 RU 2013124399 A RU2013124399 A RU 2013124399A RU 2013124399 A RU2013124399 A RU 2013124399A RU 2622553 C2 RU2622553 C2 RU 2622553C2
Authority
RU
Russia
Prior art keywords
layer
molybdenum
oxygen
coating
coating according
Prior art date
Application number
RU2013124399A
Other languages
English (en)
Russian (ru)
Other versions
RU2013124399A (ru
Inventor
Юрген РАММ
Бено ВИДРИГ
Керстин ГЛЕНТЦ
Флориан ЗАЙБЕРТ
Original Assignee
Эрликон Серфиз Солюшнз Аг, Пфеффикон
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрликон Серфиз Солюшнз Аг, Пфеффикон filed Critical Эрликон Серфиз Солюшнз Аг, Пфеффикон
Publication of RU2013124399A publication Critical patent/RU2013124399A/ru
Application granted granted Critical
Publication of RU2622553C2 publication Critical patent/RU2622553C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M103/00Lubricating compositions characterised by the base-material being an inorganic material
    • C10M103/06Metal compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0084Producing gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/027Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physical Vapour Deposition (AREA)
  • Lubricants (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Laminated Bodies (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Coating By Spraying Or Casting (AREA)
RU2013124399A 2010-10-28 2011-10-06 Слои монооксида молибдена и их получение с помощью pvd RU2622553C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US40765610P 2010-10-28 2010-10-28
US61/407,656 2010-10-28
DE102010053751.9 2010-12-08
DE102010053751A DE102010053751A1 (de) 2010-10-28 2010-12-08 Molybdänmonoxidschichten und deren Herstellung mittels PVD
PCT/EP2011/004990 WO2012055485A1 (de) 2010-10-28 2011-10-06 Molybdänmonoxidschichten und deren herstellung mittels pvd

Publications (2)

Publication Number Publication Date
RU2013124399A RU2013124399A (ru) 2014-12-10
RU2622553C2 true RU2622553C2 (ru) 2017-06-16

Family

ID=45935681

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013124399A RU2622553C2 (ru) 2010-10-28 2011-10-06 Слои монооксида молибдена и их получение с помощью pvd

Country Status (13)

Country Link
US (1) US9822322B2 (enExample)
EP (1) EP2633095B1 (enExample)
JP (2) JP2013545893A (enExample)
KR (1) KR101930564B1 (enExample)
CN (1) CN103270188B (enExample)
BR (1) BR112013010147A2 (enExample)
CA (1) CA2815911A1 (enExample)
DE (1) DE102010053751A1 (enExample)
MX (1) MX350887B (enExample)
MY (1) MY179397A (enExample)
RU (1) RU2622553C2 (enExample)
SG (1) SG190021A1 (enExample)
WO (1) WO2012055485A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2839660C1 (ru) * 2024-04-10 2025-05-07 Федеральное государственное автономное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГАОУ ВО "МГТУ "СТАНКИН") Способ изготовления биметаллической детали из углеродистой стали и молибдена комбинированным методом

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200378A1 (de) * 2012-01-12 2013-07-18 Federal-Mogul Burscheid Gmbh Kolbenring
US10041017B2 (en) 2012-03-12 2018-08-07 Oerlikon Surface Solutions Ag, Pfäffikon Coating with enhanced sliding properties
DE102012207814A1 (de) * 2012-05-10 2013-11-14 Mahle International Gmbh Bauelement, insbesondere ein Gleitelement
DE102012207813A1 (de) * 2012-05-10 2013-11-14 Mahle International Gmbh Gleitkörper mit Beschichtung
SG11201501437YA (en) * 2012-08-29 2015-03-30 Oerlikon Surface Solutions Ag Trubbach Arc pvd coating with enhanced reducing friction and reducing wear properties
DE102012017033A1 (de) * 2012-08-29 2014-05-28 Oerlikon Trading Ag, Trübbach PVD Lichtbogenbeschichtung mit verbesserten reibungsmindernden und verschleissreduzierenden Eigenschaften
AR092945A1 (es) 2012-10-10 2015-05-06 Oerlikon Trading Ag Trübbach Recubrimiento para usos a altas temperaturas con solicitacion tribologica
DE102012023260A1 (de) * 2012-11-29 2014-06-05 Oerlikon Trading Ag, Trübbach Verfahren zur Strukturierung von Schichtoberflächen und Vorrichtung dazu
CN104372299B (zh) * 2013-09-23 2017-08-04 中国科学院合肥物质科学研究院 多层结构硬质、耐磨、润滑涂层及其制备方法
DE102013018007A1 (de) 2013-11-29 2015-06-03 Oerlikon Trading Ag, Trübbach Verfahren zur Verbesserung des Gegenkörperverschleisses im tribologischen Kontakt
CN103789725B (zh) * 2014-01-29 2016-08-31 仪征亚新科双环活塞环有限公司 一种活塞环表面的多层多元复合硬质pvd镀层、活塞环及制备工艺
EP3172359B1 (en) * 2014-07-24 2018-06-06 Oerlikon Surface Solutions AG, Pfäffikon Arc evaporated me11-ame2azi/mo1-b-csicbbzii multilayer coatings
KR101673712B1 (ko) * 2014-12-10 2016-11-08 현대자동차주식회사 자동차 습동 부품용 코팅재 및 이를 이용한 자동차 습동부품 표면처리 방법
CN108048809B (zh) * 2017-09-22 2019-07-30 南京航空航天大学 耐蚀抗菌的含银MoO3-SiO2纳米晶复合涂层的制备方法
US11149651B2 (en) * 2019-08-07 2021-10-19 Raytheon Technologies Corporation Seal ring assembly for a gas turbine engine
WO2021053072A1 (de) * 2019-09-19 2021-03-25 Oerlikon Surface Solutions Ag, Pfäffikon Substrat mit einem molydännitrid schichtsystem, sowie beschichtungsverfahren zur herstellung eines schichtsystems
KR20230115987A (ko) * 2020-11-30 2023-08-03 오를리콘 서피스 솔루션스 아크티엔게젤샤프트, 페피콘 마모 및 마찰 감소를 위한 질화몰리브덴 기반 다층 코팅
CN114583055B (zh) * 2022-02-18 2023-09-15 电子科技大学 一种喷涂MoO3薄膜的有机光电探测器及其制备方法
CN114907900B (zh) * 2022-05-31 2023-07-21 东莞市嘉丰润滑科技有限公司 一种自动变速箱油、i类金属切削液和新型润滑油
JP2024018601A (ja) * 2022-07-29 2024-02-08 株式会社Screenホールディングス 基板処理方法および基板処理装置
CN117488301B (zh) * 2023-10-31 2025-10-24 深圳技术大学 一种金属表面的蜂窝状复合氧化钼涂层及其制备方法和在油水分离中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU12540U1 (ru) * 1999-07-02 2000-01-20 Открытое акционерное общество "ГАЗ" Устройство для электроискрового легирования металлических поверхностей
RU2196665C1 (ru) * 2001-09-10 2003-01-20 Открытое акционерное общество "Иркутское авиационное производственное объединение" Способ электроискрового легирования
RU2211260C1 (ru) * 2001-12-26 2003-08-27 Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский институт авиационных материалов Антифрикционное композиционное покрытие
US20090256215A1 (en) * 2005-03-18 2009-10-15 Nano-Proprietary, Inc. Gated metal oxide sensor
WO2010020362A1 (de) * 2008-08-17 2010-02-25 Oerlikon Trading Ag, Trübbach Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847171A (en) * 1988-03-10 1989-07-11 Ford Motor Company Molybdenum oxide electrodes for thermoelectric generators
SU1832751A1 (ru) 1990-06-18 1998-01-20 Научно-производственное объединение "НИИТавтопром" Способ получения износостойких покрытий из соединений металлов
DK0617199T3 (da) * 1993-03-26 1996-07-01 Siemens Ag Katalysator til nitrogenoxid-formindskelse i udstødsgassen fra en forbrændingsmotor
DK16494A (da) 1994-02-08 1995-08-09 Man B & W Diesel Gmbh Fremgangsmåde til fremstilling af en cylinderforing samt en sådan foring
JP3452664B2 (ja) * 1994-11-21 2003-09-29 帝国ピストンリング株式会社 摺動部材およびその製造方法
JP3286097B2 (ja) * 1994-12-22 2002-05-27 帝国ピストンリング株式会社 摺動部材およびその製造方法
DE29620687U1 (de) 1996-11-28 1997-01-30 Fehling, Ulrike, 63791 Karlstein Chirurgisches Instrument
JP3439949B2 (ja) * 1997-06-09 2003-08-25 帝国ピストンリング株式会社 硬質被覆材およびそれを被覆した摺動部材ならびにその製造方法
US6802457B1 (en) 1998-09-21 2004-10-12 Caterpillar Inc Coatings for use in fuel system components
US6537613B1 (en) * 2000-04-10 2003-03-25 Air Products And Chemicals, Inc. Process for metal metalloid oxides and nitrides with compositional gradients
US7311961B2 (en) * 2000-10-24 2007-12-25 Ppg Industries Ohio, Inc. Method of making coated articles and coated articles made thereby
US7344806B2 (en) * 2003-03-31 2008-03-18 Shin-Etsu Chemical Co., Ltd. Method of producing phase shift mask blank, method of producing phase shift mask, phase shift mask blank, and phase shift mask
US20060042728A1 (en) * 2004-08-31 2006-03-02 Brad Lemon Molybdenum sputtering targets
US7332618B2 (en) * 2004-09-28 2008-02-19 Praxair Technology, Inc. Organometallic precursor compounds
CA2599374A1 (en) * 2005-03-18 2006-09-28 Nano-Proprietary, Inc. Gated gas sensor
SG160397A1 (en) * 2005-03-24 2010-04-29 Oerlikon Trading Ag Hard material layer
KR100655366B1 (ko) * 2005-07-04 2006-12-08 한국과학기술연구원 내열, 내마모, 저마찰 특성을 가지는 코팅제 및 이의코팅방법
DE102006036101A1 (de) 2005-08-02 2007-02-08 Caterpillar Motoren Gmbh & Co. Kg Verfahren zur Herstellung von Ventilkomponenten
JP4824989B2 (ja) 2005-11-02 2011-11-30 株式会社神戸製鋼所 硬質皮膜
JP2006255708A (ja) 2006-07-05 2006-09-28 Mitsubishi Heavy Ind Ltd 中空糸膜の逆洗方法及び中空糸膜水処理装置
US20090087673A1 (en) 2007-09-28 2009-04-02 Taylor Steven C Method for coating fuel system components
ES2377225T3 (es) * 2008-09-19 2012-03-23 OERLIKON TRADING AG, TRÜBBACH Método para producir capas de óxido metálico mediante vaporización por arco
KR101127236B1 (ko) * 2008-12-29 2012-03-29 주식회사 하이닉스반도체 저항성 메모리 소자의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU12540U1 (ru) * 1999-07-02 2000-01-20 Открытое акционерное общество "ГАЗ" Устройство для электроискрового легирования металлических поверхностей
RU2196665C1 (ru) * 2001-09-10 2003-01-20 Открытое акционерное общество "Иркутское авиационное производственное объединение" Способ электроискрового легирования
RU2211260C1 (ru) * 2001-12-26 2003-08-27 Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский институт авиационных материалов Антифрикционное композиционное покрытие
US20090256215A1 (en) * 2005-03-18 2009-10-15 Nano-Proprietary, Inc. Gated metal oxide sensor
WO2010020362A1 (de) * 2008-08-17 2010-02-25 Oerlikon Trading Ag, Trübbach Verwendung eines targets für das funkenverdampfen und verfahren zum herstellen eines für diese verwendung geeigneten targets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2839660C1 (ru) * 2024-04-10 2025-05-07 Федеральное государственное автономное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГАОУ ВО "МГТУ "СТАНКИН") Способ изготовления биметаллической детали из углеродистой стали и молибдена комбинированным методом

Also Published As

Publication number Publication date
JP2013545893A (ja) 2013-12-26
JP2018035442A (ja) 2018-03-08
RU2013124399A (ru) 2014-12-10
EP2633095B1 (de) 2017-09-13
EP2633095A1 (de) 2013-09-04
CN103270188B (zh) 2016-03-16
WO2012055485A1 (de) 2012-05-03
MX2013004780A (es) 2013-12-16
MY179397A (en) 2020-11-05
CA2815911A1 (en) 2012-05-03
MX350887B (es) 2017-09-22
SG190021A1 (en) 2013-06-28
BR112013010147A2 (pt) 2016-09-06
KR20140066967A (ko) 2014-06-03
US20130303414A1 (en) 2013-11-14
DE102010053751A1 (de) 2012-05-03
CN103270188A (zh) 2013-08-28
KR101930564B1 (ko) 2019-03-11
US9822322B2 (en) 2017-11-21

Similar Documents

Publication Publication Date Title
RU2622553C2 (ru) Слои монооксида молибдена и их получение с помощью pvd
US11293548B2 (en) Sliding member and coating film
US8911867B2 (en) Protective coating, a coated member having a protective coating as well as method for producing a protective coating
Franz et al. Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review
Knotek et al. Industrial deposition of binary, ternary, and quaternary nitrides of titanium, zirconium, and aluminum
Geng et al. Microstructure, oxidation behavior and tribological properties of AlCrN/Cu coatings deposited by a hybrid PVD technique
Wang et al. Friction and wear behavior of duplex-treated AISI 316L steels by rapid plasma nitriding and (CrWAlTiSi) N ceramic coating
Taktak et al. High temperature wear and friction properties of duplex surface treated bearing steels
CN114466950B (zh) 滑动构件、其制造方法及包覆膜
Wu et al. Wear behavior of AlCrSiVN coatings at elevated temperature up to 700° C
Ju et al. Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrV x N hard coatings
Wu et al. High-temperature oxidation behavior of (TiZrNbMoTa) N high entropy ceramic coating for dry cutting tools
Kuprin et al. Effect of nitrogen pressure on the structural and mechanical properties of V-Mo-N coatings deposited by cathodic arc evaporation
JP2011012336A (ja) 多層皮膜被覆部材およびその製造方法
JP2018172706A (ja) 硬質炭素被覆膜
Łuszcz et al. Effect of hBN on Wear of AlCrN-Coated Spark Plasma-Sintered TiB2/Ti Composites at Temperatures up to 900° C
Kılınç et al. Dry sliding wear behavior of Cr-Al-N diffusion coatings against silicon nitride
Geiger Solid self-lubricating characteristics of tungsten boride thin films
Li et al. Chemistry-dependent mechanical and tribological properties of high-entropy TiN-and ZrN-based hard coatings
Khamseh et al. A new strategy for enhancement of structural ordering and H-diamond formation in (Mo: aC) overcoats through substrate temperature: Microstructure, mechanical and tribological performances
Vijayan A Preliminary Investigations on Second Generation Nano Composite Super Nitride Coatings on Astm A681 Tool Steels
JP2022147326A (ja) 表面被覆切削工具
Polcar et al. The effect of increasing V content on the structure
Xiang et al. Excellent High-Temperature Stability and Tribological Properties of TiAlTa x N Coatings
Pramanik et al. Duplex surface treatment of steels by nitriding and chromizing

Legal Events

Date Code Title Description
HZ9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191007