RU2600173C1 - Планетарная зубчатая передача - Google Patents

Планетарная зубчатая передача Download PDF

Info

Publication number
RU2600173C1
RU2600173C1 RU2015116676/11A RU2015116676A RU2600173C1 RU 2600173 C1 RU2600173 C1 RU 2600173C1 RU 2015116676/11 A RU2015116676/11 A RU 2015116676/11A RU 2015116676 A RU2015116676 A RU 2015116676A RU 2600173 C1 RU2600173 C1 RU 2600173C1
Authority
RU
Russia
Prior art keywords
planetary gear
ring
annular groove
gear according
planetary
Prior art date
Application number
RU2015116676/11A
Other languages
English (en)
Inventor
Доменико КАЯЦЦО
Энцо КОНЬИНЬИ
Эрмес ФОРАБОСКО
Original Assignee
ДАНИЕЛИ И КО ОФФИЧИНЕ МЕККАНИКЕ С.п.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДАНИЕЛИ И КО ОФФИЧИНЕ МЕККАНИКЕ С.п.А. filed Critical ДАНИЕЛИ И КО ОФФИЧИНЕ МЕККАНИКЕ С.п.А.
Application granted granted Critical
Publication of RU2600173C1 publication Critical patent/RU2600173C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2809Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
    • F16H1/2836Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels by allowing limited movement of the planets relative to the planet carrier or by using free floating planets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/04Ball or roller bearings, e.g. with resilient rolling bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/085Bearings for orbital gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Glass Compositions (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Изобретение относится к машиностроению, а именно к планетарным зубчатым передачам. Передача содержит заранее заданное количество планетарных шестерен и водило с двумя стенками, на которых установлены планетарные шестерни. Шестерни поддерживаются опорными штифтами, определяющими соответствующую ось, концевые участки которых закреплены к соответствующей стенке водила планетарных шестерней. В этой стенке на концевом участке внутри каждого опорного штифта предусмотрена кольцевая канавка, размер которой вдоль оси превышает размер зубчатого венца планетарной шестерни вдоль оси. Кольцо может быть частично вставлено в канавку и иметь профиль, совпадающий с профилем части канавки, в которую оно вставляется. Данное кольцо используют в качестве механического ограничителя для деформируемой части штифта, которая деформируется под действием заранее заданной нагрузки до достижения контакта с кольцом. Обеспечивается компенсация неравномерности нагрузки планетарной зубчатой передачи. 19 з.п. ф-лы, 9 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к планетарной зубчатой передаче, в частности к зубчатому механизму, который содержит солнечную шестерню, планетарные шестерни и водила планетарных шестерней, используемому в качестве редуктора.
Уровень техники
Планетарные зубчатые передачи представляют собой механические системы шестерней, в которых центральное колесо или ведущая шестерня, также называемая солнечной шестерней (солнечным зубчатым колесом), выполняет функцию входного устройства передачи движения и распределяет прилагаемую нагрузку на планетарные шестерни, расположенные вокруг нее и соединенные с шестерней с внутренним зацеплением. В дополнение к вращению вокруг собственной оси планетарные шестерни вращаются вместе с водилом планетарных шестерней, также называемым водилом зубчатой передачи или коническим дифференциалом, на котором они установлены с помощью специальных штифтов и роликовых подшипников. Оси вращения водила планетарных шестерней и солнечной шестерни совпадают.
Конструкция водила планетарных шестерней в планетарной системе может иметь две стенки или выступающие штифты. Поскольку опорные штифты планетарных шестерней опираются на оба конца соответствующих стенок водила планетарных шестерней, то водила планетарных шестерней с двумя стенками позволяют использовать более широкие зубчатые венцы и более устойчивы к нагрузкам, что позволяет обеспечить более эффективную работу по сравнению с водилами планетарных шестерней с выступающими штифтами.
В некоторых точках водил планетарных шестерней возникает концентрация нагрузок, передаваемых через штифты на стенку водила планетарных шестерней, которая находится на выходной стороне передачи движения, то есть на стороне планетарной системы, с которой опорные штифты планетарных шестерней выступают на большую величину. На другой стороне планетарной системы (напротив выходной стороны передачи движения) передаваемые нагрузки меньше. Несбалансированность такой системы приводит к постепенному увеличению величины несовпадения осей штифтов планетарных шестерней при увеличении передаваемого крутящего момента. Это приводит к неравномерному распределению линейной нагрузки вдоль сторон зубьев шестерней, сцепленных друг с другом (между зубьями солнечной шестерни и планетарных шестерней и между зубьями планетарных шестерней), а также к неравномерному разделению тангенциальных нагрузок между всеми планетарными шестернями системы.
Ранее были разработаны системы для водил планетарных шестерней с выступающими штифтами, имеющие повышенную гибкость, пример таких систем раскрыт в документах US 2010/0077881 и US 8075443. Известные из этих документов решения относятся к водилам планетарных шестерней с выступающими элементами, то есть с опорными штифтами планетарных шестерней, прикрепленными к одной стенке, и в данных системах предусмотрено использование специального подшипника с внутренним кольцом подшипника, которое имеет большую ширину по сравнению с наружным кольцом, прикрепленным к штифту, что делает систему боле гибкой. Таким образом, данные системы могут использоваться только вместе со специальным подшипником, имеющим более высокую стоимость на рынке по сравнению со стандартными подшипниками.
В планетарной зубчатой передаче с водилом планетарных шестерней, имеющим две стенки, распределение нагрузки между шестернями аналогично показателям гибкой системы, которая содержит водило планетарных шестерней с двумя стенками, соединительные спицы между двумя противоположными стенками и опорные штифты, определяющие границы гнезд для опорных подшипников планетарных шестерней.
Однако неравномерное распределение общего крутящего момента, передаваемого через штифты планетарных шестерней на две противоположные стенки водила планетарных шестерней, приводит к тому, что две стенки водила планетарных шестерней будут вести себя по-разному, из-за чего при концентрации нагрузок на одном из двух концов (на выходной стороне передачи движения) будет наблюдаться значительное несовпадение осей опорных штифтов и последующее значительное снижение эффективности работы планетарной системы. Проблемы, связанные с несовпадением осей, становятся более существенными при увеличении количества планетарных шестерней, в результате чего может начаться точечная коррозия, то есть образование полостей на шестернях и последующее появление трещин. Для устранения несовпадения осей можно выполнить продольную модификацию зубьев шестерней, однако при различных нагрузках данное решение неэффективно или даже может привести к обратным результатам.
Соответственно, существует необходимость создания планетарной зубчатой передачи, позволяющей устранить вышеперечисленные недостатки.
Раскрытие изобретения
Основная цель настоящего изобретения заключается в создании планетарной зубчатой передачи, которая включает в себя водило планетарных шестерней с двумя стенками для обеспечения достаточной гибкости, необходимой для оптимальной компенсации неравномерности нагрузки, и которая перераспределяет несовпадение осей, возникающее под действием крутящего момента на опорные подшипники планетарных шестерней и на зубчатые венцы, за счет чего достигается возможность повышения эффективности планетарной системы.
Еще одной целью настоящего изобретения является создание планетарной зубчатой передачи, в которой водило планетарных шестерней с двумя стенками имеет регулируемую гибкость и обеспечивает максимальный предел безопасности.
Другой целью настоящего изобретения является создание планетарной зубчатой передачи, имеющей водило планетарных шестерней с двумя стенками, выполненной с возможностью регулировать величину несовпадения осей опорных штифтов планетарных шестерней, работать со стандартными роликовыми подшипниками, не требуя использовать специальные подшипники, и обеспечивать повышенную надежность стандартных подшипников по сравнению с существующими системами.
Таким образом, в соответствии с изобретением вышеуказанные цели достигаются с помощью планетарной зубчатой передачи, которая содержит заранее заданное количество планетарных шестерней с зубчатыми венцами; водило планетарных шестерней с двумя стенками, на которые установлены планетарные шестерни; опорные штифты, поддерживающие планетарные шестерни и образующие соответствующие продольные оси, причем каждый опорный штифт включает в себя:
- первый концевой участок, прикрепленный к первой из двух стенок,
- второй концевой участок, прикрепленный ко второй из двух стенок,
- третий центральный участок, диаметр которого превышает диаметр второго концевого участка, за счет чего между третьим центральным участком и вторым концевым участком образован кольцеобразный буртик,
в котором на кольцеобразном буртике выполнена кольцевая канавка, глубина которой вдоль продольной оси превышает протяженность зубчатого венца планетарной шестерни вдоль той же продольной оси, благодаря чему кольцевая концевая часть указанного центрального участка, проходящая вокруг кольцевой канавки, образует область деформации на опорном штифте; и
в котором кольцо, прочность которого превышает или совпадает с прочностью указанной кольцевой концевой части, по меньшей мере частично вставляется в кольцевую канавку, выполняя роль механического ограничителя области деформации, которая под действием нагрузки может деформироваться до достижения контакта с кольцом.
Настоящее изобретение предусматривает создание в водиле планетарных шестерней областей, деформирующихся под действием нагрузок и определяемых общей деформируемостью водила планетарных шестерней, в соответствии с возникающими нагрузками и вариантами реализации таким образом, чтобы минимизировать или исключить деформацию, возникающую из-за несовпадения осей штифтов под действием нагрузок или из-за незначительных ошибок монтажа в системе.
Настоящее изобретение предусматривает использование продольных опорных штифтов различного диаметра, расположенных на выходной стороне передачи движения, то есть на стороне, на которой сконцентрирована большая часть нагрузок, на которых выполнена канавка цилиндрической формы или в форме усеченного конуса, предпочтительно образуемая путем удаления материала, и который определяет границы области деформации штифта.
Канавка на штифте придает штифту определенную гибкость, соответствующую осевой глубине и высоте канавки: наличие области деформации на одном конце штифта с выходной стороны передачи движения от планетарной системы позволяет перенести часть нагрузок, которые обычно сконцентрированы в данной точке, в наиболее прочную область штифта, за счет чего достигают уменьшение величины несовпадения осей стенок и смещение распределяемых нагрузок к середине зубчатого венца.
В данном случае канавка выполняет функцию гибкого элемента, выполненного с возможностью изменять распределение нагрузок на подшипники и шестерни; при этом осевая глубина, конусность и заранее заданные значения толщины позволяют обеспечить соответствие между деформируемостью штифта, общей прочностью водила планетарных шестерней и прилагаемыми внешними нагрузками. Таким образом, различные конфигурации канавки и области деформации позволяют выполнять калибровку диапазона крутящего момента за счет адаптации различных штифтов к различным вариантам реализации, в которых они могут быть использованы.
В соответствии с первым вариантом изобретения опорный штифт каждой планетарной шестерни является монолитным, то есть он изготовлен в виде одной детали, и имеет кольцевую канавку, создаваемую путем удаления части материала.
В соответствии со вторым вариантом изобретения опорный штифт каждой планетарной шестерни состоит из двух частей: первой гладкой части и второй части в форме втулки, устанавливаемой коаксиально указанной первой части таким образом, чтобы канавка располагалась вдоль первой части. Данный второй вариант реализации является более простым, особенно с учетом увеличивающихся размеров зубчатых передач.
Для повышения эффективности гибкого элемента и обеспечения его защиты от перегрузок в обоих вариантах может быть предусмотрена вставка элемента защиты от внешних перегрузок, который будет ограничивать деформацию канавки при превышении заданного значения крутящего момента. Благодаря наличию такого элемента защиты, вставляемого в канавку и ограничивающего механическую деформацию, увеличение области деформации штифта происходит только до максимального заранее заданного значения, что позволяет предотвратить его повреждение под действием чрезмерных нагрузок. В частности, это позволяет исключить возникновение остаточной деформации штифта или даже разрушения деформируемой части.
Ограничение деформации деформируемой части штифта достигают за счет по меньшей мере частичной вставки металлического защитного кольца в канавку штифта, причем данное защитное кольцо имеет примерно такой же профиль в форме усеченного конуса или цилиндра, что и канавка.
Предпочтительно после вставки защитного кольца в канавку, между наружной поверхностью кольца и соответствующей внутренней поверхностью канавки, то есть внутренней поверхностью кольцевой концевой части центрального участка опорного штифта, остается зазор, который позволяет регулировать максимальную гибкость опорного штифта в случае возникновения перегрузок.
Размеры указанного зазора рассчитаны для ограничения деформации деформируемой концевой области штифта до заранее заданного значения. Фактически зазор между канавкой и механическим ограничителем создает определенный диапазон для изгибания штифта, при этом данный зазор определяет степень деформации штифта и его рабочий диапазон. При достижении под действием нагрузок контакта между областью деформации и механическим ограничителем остается расстояние, соответствующее рабочему диапазону штифта, после чего штифт перестает быть гибким и начинает работать как стандартный штифт, то есть на всей его длине прочность будет постоянной.
Форма профиля наружной поверхности защитного кольца соответствует форме профиля соответствующей внутренней поверхности кольцевой концевой части центрального участка штифта.
Предпочтительно внутреннее кольцо по меньшей мере одного подшипника, расположенное между каждым опорным штифтом и соответствующей планетарной шестерней, является элементом, отдельным от опорного штифта.
Предпочтительно гибкий опорный штифт планетарных шестерней в зубчатой передаче, соответствующей изобретению, может быть заменен стандартным штифтом или другими гибкими штифтами с другими признаками.
Планетарная зубчатая передача, соответствующая изобретению, может быть использована как ведущая зубчатая передача для правильных машин при изготовлении листопрокатной продукции, ведущая зубчатая передача для шпинделя намоточного устройства или в усилителях систем преобразования ветровой энергии.
В зависимых пунктах формулы изобретения описаны предпочтительные варианты изобретения.
Краткое описание чертежей
Другие отличительные особенности и преимущества изобретения будут понятны из описания предпочтительного, но не исключительного варианта реализации планетарной зубчатой передачи, со ссылкой на сопроводительные чертежи, на которых:
на фиг. 1 показан перспективный вид планетарной зубчатой передачи в соответствии с изобретением;
на фиг. 2а показан первый частичный разрез на перспективном виде части зубчатой передачи в соответствии с изобретением;
на фиг. 2b показан второй частичный разрез на перспективном виде части с фиг. 2а;
на фиг. 3 показан частичный разрез первого варианта зубчатой передачи в соответствии с изобретением;
на фиг. 4а показан вид сбоку компонента указанного первого варианта;
на фиг. 4b показан вид в разрезе компонента с фиг. 4а;
на фиг. 5 показан частичный разрез второго варианта зубчатой передачи в соответствии с изобретением;
на фиг. 6а показан вид сбоку компонента указанного второго варианта;
на фиг. 6b показан разрез компонента с фиг. 6а.
Осуществление изобретения
На фиг. 1 показана планетарная зубчатая передача в соответствии с изобретением, которая обозначена ссылочной позицией 1 и содержит:
- центральное колесо или ведущую шестерню 2, также называемую солнечной шестерней или солнечным зубчатым колесом, с помощью которого движение передают на зубчатую передачу;
- заранее заданное количество планетарных шестерней 3 (планетарных зубчатых колес), например четыре планетарные шестерни, которые расположены вокруг солнечного зубчатого колеса 2 и входят в зацепление с ним;
- шестерню 4 с внутренним зацеплением, которая расположена вокруг планетарных шестерней 3 и входит в зацепление с ними.
В дополнение к вращению вокруг собственной оси планетарные шестерни 3 вращаются вместе с водилом планетарных шестерней или водилом 5 зубчатой передачи, на котором они установлены с помощью специальных штифтов 6, определяющих продольную ось X, и подшипников 7, например роликовых подшипников, расположенных на указанных штифтах 6. Оси вращения водила 5 планетарных шестерней и солнечной шестерни 2 совпадают.
Водило 5 планетарных шестерен имеет две стенки, при этом опорные штифты 6 зафиксированы перпендикулярно стенкам 8 и 9 водила планетарных шестерней.
На фиг. 2а и 4b показан первый вариант реализации планетарной зубчатой передачи в соответствии с изобретением, в которой каждый опорный штифт 6 изготовлен в виде единой детали и включает в себя:
- первый концевой участок 10, прикрепленный к первой стенке 8 водила 5 планетарных шестерней,
- второй концевой участок 11, прикрепленный ко второй стенке 9 водила 5 планетарных шестерней,
- третий центральный участок 20, диаметр которого превышает диаметр второго концевого участка 11, за счет чего между третьим центральным участком 20 и вторым концевым участком 11 образован кольцеобразный буртик 21.
При этом диаметр первого концевого участка 10 больше диаметра третьего центрального участка 20, за счет чего образован дополнительный буртик 22, на который опирается внутреннее кольцо подшипника 7, установленное в центральном участке 20. В соответствии с примером по фиг. 2 и 3 в центральном участке 20 штифта 6 установлено два подшипника 7, например два двухрядных цилиндрических роликовых подшипника, разделенных прокладкой 23. Может быть использовано другое количество подшипников, даже один, и другие типы роликовых подшипников.
Также первый концевой участок 10 и третий центральный участок 20 могут иметь одинаковые диаметры.
В отличие от решений, известных из уровня техники, внутреннее кольцо по меньшей мере одного подшипника 7, расположенное между опорным штифтом 6 и соответствующей планетарной шестерней 3, представляет собой элемент, отдельный от опорного штифта. Используемые подшипники являются стандартными, что позволяет избежать увеличения стоимости.
Предпочтительно кольцевая канавка 12, получаемая путем удаления материала на кольцеобразном буртике 21, имеет глубину вдоль продольной оси X, меньшую по сравнению с шириной зубчатого венца 13 планетарной шестерни 3 вдоль указанной продольной оси X.
Зубчатый венец или венец соответствует продольному размеру вдоль оси X боковых поверхностей контактирующих зубьев шестерней, то есть ширине сцепленных друг с другом зубчатых колес (см. фиг. 3 и 5).
Кольцевая канавка 12 предпочтительно выполнена на концевом участке 11, соответствующем выходной стороне передачи движения от зубчатой передачи, то есть на стороне, на которой обычно концентрируются нагрузки. Канавка 12 определяет границы области деформации опорного штифта 6, что позволяет перенести часть нагрузок на недеформируемую, то есть более прочную, область штифта и отрегулировать величину несовпадения осей двух стенок 8, 9, которое возникает из-за передаваемого крутящего момента. Указанная область деформации представляет собой кольцевую концевую часть 12′ центрального участка 20 штифта 6, причем данная кольцевая часть 12′ проходит снаружи вокруг кольцевой канавки 12.
Хорошие результаты с этой точки зрения были получены за счет выполнения кольцевой канавки 12 вдоль продольной оси X, глубина которого не превышает 50% от продольного размера зубчатого венца 13 вдоль той же оси X.
Отличные результаты были получены за счет выполнения кольцевой канавки 12 вдоль продольной оси X, глубина которого составляет от 20% до 50% от размера зубчатого венца 13.
Дополнительное преимущество может быть достигнуто за счет установки жесткого кольца 14, предпочтительно из металла, по меньшей мере частично вставляемого в кольцевую канавку 12 и имеющего соответствующий профиль, практически совпадающий с профилем части канавки 12, в который оно вставляется. Такое кольцо 14 имеет прочность, равную или превышающую прочность кольцевой концевой части 12′, и используется в качестве механического ограничителя для области деформации штифта 6, которая деформируется под действием заранее заданной нагрузки до достижения контакта с кольцом 14, то есть оно действует как механический ограничитель кольцевой концевой части 12′.
Кольцо 14 имеет первую часть, вставляемую в кольцевую канавку 12, и вторую часть, располагаемую вокруг кольцевой канавки 12 вплотную к кольцеобразному буртику 21 и фиксирующую внутреннее кольцо по меньшей мере одного подшипника 7 на месте. Фактически вторая часть напрямую контактирует с внутренним кольцом подшипника 7. Наличие второй наружной части кольца 14 упрощает извлечение кольца 14 из кольцевой канавки 12 и делает возможной фиксацию подшипника 7 по оси.
В соответствии с предпочтительным вариантом реализации, показанным на сопроводительных чертежах, защитное кольцо 14 представляет собой сплошное кольцо, то есть кольцо, не имеющее полостей.
Предпочтительно размер первой части кольца 14 вдоль оси X внутри кольцевой канавки 12 меньше размера данной канавки 12 вдоль этой же оси X. Предпочтительно продольный размер первой части не превышает 80% от размера канавки 12 вдоль оси X. И более предпочтительно продольный размер каждой первой части составляет от 20% до 80% от размера кольцевой канавки 12.
Защитное кольцо 14 может быть установлено в области с максимальной деформацией при нагрузке, то есть на наружной области канавки 12, что позволяет упростить контроль даже небольших деформаций.
Кроме того, форма профиля наружной поверхности первой части кольца 14 относительно продольной оси X совпадает с формой профиля смежной внутренней поверхности кольцевой канавки 12. Такой профиль может представлять собой поверхность со стенками в форме цилиндра (фиг. 5) или в форме усеченного конуса (фиг. 3).
Предпочтительно между наружной поверхностью первой части кольца 14 и смежной внутренней поверхностью кольцевой канавки 12 имеется зазор, причем наличие данного зазора позволяет регулировать максимальную гибкость опорного штифта 6 под действием перегрузок. В частности, данный зазор определяет максимальную гибкость штифта, то есть его рабочий диапазон. После создания плотного контакта между внутренней поверхностью канавки и наружной поверхностью первой части кольца 14, которая выполняет функцию механического ограничителя, область деформации штифта 6 не сможет более деформироваться, то есть начнет работать как стандартный штифт и не будет иметь областей деформации и гибкости.
Отличные результаты были достигнуты за счет создания зазора, размер которого при остановленной зубчатой передаче находится в пределах примерно от 5/1000 до 15/1000 от максимальной высоты канавки, то есть от максимальной ширины канавки вдоль направления, перпендикулярного продольной оси X.
Если профиль канавки 12 представляет собой профиль поверхности со стенками в форме цилиндра, то высота канавки, которая остается постоянной вдоль оси X, предпочтительно составляет от 20% до 40% от продольного размера зубчатого венца 13 вдоль оси X.
Если профиль канавки 12 представляет собой профиль поверхности со стенками в форме усеченного конуса, то максимальная высота канавки рядом с буртиком 21 предпочтительно составляет от 20% до 50% от продольного размера зубчатого венца 13 вдоль оси X, а ее наклонная поверхность 25 проходит под углом около 3-7°, например 5°, к оси X.
На фиг. 5-6b показан второй вариант реализации планетарной зубчатой передачи в соответствии с изобретением, для которого применимо описание первого варианта реализации за исключением того, что в данном случае каждый опорный штифт 6 состоит не из одной части, а из двух частей. Первая часть опорного штифта 6 включает в себя первый концевой участок 10, второй концевой участок 11 и центральный корпус 30, диаметр которых примерно равен диаметру второго концевого участка 11. В данном случае первая часть представляет собой гладкий штифт, единичное изменение диаметра которого возможно между первым концевым участком 10 и центральным корпусом 30.
Вторая часть опорного штифта 6 представляет собой втулку 31, установленную снаружи центрального корпуса 30 и имеющего форму внутренней поверхности, образующую совместно с центральным корпусом 30 кольцевую канавку 12 на кольцеобразном буртике 21.
Таким образом, как и в первом варианте реализации, область деформации опорного штифта 6 образуют за счет канавки 12 между гладким штифтом и втулкой.
Во втором варианте осуществления также может быть использовано кольцо 14, предпочтительно из металла, которое частично вставляется в кольцевую канавку 12 и имеет профиль, совпадающий с профилем части канавки 12, в которую оно вставляется. Такое кольцо 14 используют в качестве механического ограничителя для деформируемой части штифта 6, которая деформируется под действием заранее заданной нагрузки до достижения непосредственного контакта с кольцом 14, то есть оно выполняет роль механического ограничителя для кольцевой концевой части 12′ центрального участка 20 опорного штифта 6. Кольцо 14 может иметь первую часть, вставляемую в кольцевую канавку 12, и вторую часть, располагаемую вокруг кольцевой канавки 12 вплотную к кольцеобразному буртику 21 и фиксирующую внутреннее кольцо по меньшей мере одного подшипника 7 на месте. Кроме того, все технические отличительные признаки, описанные выше со ссылкой на первый вариант реализации, применимы ко второму варианту реализации, например, это касается размера первой части кольца 14 вдоль оси X внутри кольцевой канавки 12, профиля первой части кольца 14, зазора между наружной поверхностью первой части кольца 14 и смежной внутренней поверхностью рядом с кольцевой канавкой 12, высоты канавки.
В отличие от решений, известных из уровня техники, внутреннее кольцо по меньшей мере одного подшипника 7, расположенного между каждым опорным штифтом 6 и соответствующей планетарной шестерней 3, является частью, отдельной от втулки 31, на которой расположен по меньшей мере один подшипник 7. Используемые подшипники являются стандартными, что позволяет избежать увеличения стоимости.

Claims (20)

1. Планетарная зубчатая передача, которая содержит:
заранее заданное количество планетарных шестерней (3), имеющих зубчатый венец (13),
водило (5) планетарных шестерней с двумя стенками (8, 9), на которые установлены планетарные шестерни (3), и опорные штифты (6), которые поддерживают планетарные шестерни (3) и определяют продольную ось (X),
причем каждый опорный штифт (6) содержит:
- первый концевой участок (10), прикрепленный к первой стенке (8) из двух стенок,
- второй концевой участок (11), прикрепленный ко второй стенке (9) из двух стенок,
- третий центральный участок (20; 30, 31), диаметр которого превышает диаметр второго концевого участка (11), за счет чего между третьим центральным участком (20; 30, 31) и вторым концевым участком (11) образован кольцеобразный буртик (21),
в котором на указанном кольцеобразном буртике (21) выполнена кольцевая канавка (12), глубина которой вдоль продольной оси (X) превышает ширину зубчатого венца (13) планетарной шестерни (3) вдоль продольной оси (X), благодаря чему кольцевая концевая часть (12′) указанного центрального участка, проходящая вокруг кольцевой канавки (12), образует область деформации на опорном штифте (6);
и в котором кольцо (14), прочность которого превышает или совпадает с прочностью кольцевой концевой части (12′), по меньшей мере частично вставлено в кольцевую канавку (12), выполняя роль механического ограничителя области деформации, которая под действием нагрузки может деформироваться до достижения контакта с кольцом (14).
2. Планетарная зубчатая передача по п. 1, в которой между наружной поверхностью кольца (14) и соответствующей внутренней поверхностью кольцевой концевой части (12′) имеется зазор, причем наличие данного зазора позволяет регулировать максимальную гибкость опорного штифта (6) в случае перегрузок.
3. Планетарная зубчатая передача по п. 2, в которой форма профиля наружной поверхности кольца (14) соответствует форме профиля соответствующей внутренней поверхности кольцевой концевой части (12′).
4. Планетарная зубчатая передача по п. 1, в которой внутреннее кольцо по меньшей мере одного подшипника (7), расположенное между каждым опорным штифтом (6) и соответствующей планетарной шестерней (3), представляет собой элемент, отдельный от опорного штифта (6).
5. Планетарная зубчатая передача по п. 1, в которой размер кольцевой канавки (12) вдоль продольной оси (X) не превышает 50% от размера зубчатого венца (13).
6. Планетарная зубчатая передача по п. 5, в которой размер кольцевой канавки (12) вдоль продольной оси (X) составляет от 20 до 50% от размера зубчатого венца (13).
7. Планетарная зубчатая передача по п. 1, в которой кольцо (14) имеет первую часть, вставляемую в кольцевую канавку (12), и вторую часть, располагаемую снаружи кольцевой канавки (12) вплотную к кольцеобразному буртику (21).
8. Планетарная зубчатая передача по п. 7, в которой внутреннее кольцо по меньшей мере одного подшипника (7), расположенное между каждым опорным штифтом (6) и соответствующей планетарной шестерней (3), представляет собой элемент, отдельный от опорного штифта (6), и зафиксировано на месте с помощью указанной второй части кольца (14), которая напрямую контактирует с внутренним кольцом.
9. Планетарная зубчатая передача по п. 7, в которой продольный размер указанной первой части кольца (14) внутри кольцевой канавки (12) меньше размера канавки (12) вдоль продольной оси (X).
10. Планетарная зубчатая передача по п. 7, в которой форма профиля наружной поверхности первой части кольца (14) относительно продольной оси (X) совпадает с формой профиля смежной внутренней поверхности кольцевой канавки (12).
11. Планетарная зубчатая передача по п. 10, в которой указанный профиль представляет собой поверхность цилиндрической формы или в форме усеченного конуса.
12. Планетарная зубчатая передача по п. 10, в которой между наружной поверхностью первой части кольца (14) и смежной внутренней поверхностью кольцевой канавки (12) имеется зазор, причем наличие данного зазора позволяет регулировать максимальную гибкость опорного штифта (6) в случае перегрузок.
13. Планетарная зубчатая передача по п. 2 или 12, в которой указанный зазор находится в пределах от 5/1000 до 15/1000 от максимальной высоты кольцевой канавки (12).
14. Планетарная зубчатая передача по п. 9, в которой продольный размер первой части равен или не превышает 80% от размера кольцевой канавки (12).
15. Планетарная зубчатая передача по п. 14, в которой продольный размер указанной первой части составляет от 20 до 80% от размера кольцевой канавки (12).
16. Планетарная зубчатая передача по п. 1, в которой каждый опорный штифт (6) выполнен в виде единой части.
17. Планетарная зубчатая передача по п. 1, в которой каждый опорный штифт (6) состоит из двух частей; причем первая часть включает в себя первый концевой участок (10), второй концевой участок (11) и центральный корпус (30), диаметр которого примерно равен диаметру второго концевого участка (11); и вторая часть представляет собой втулку (31), установленную снаружи на центральном корпусе (30) и имеющую форму внутренней поверхности, образующую совместно с центральным корпусом кольцевую канавку (12).
18. Планетарная зубчатая передача по п. 16, в которой внутреннее кольцо по меньшей мере одного подшипника (7) расположено между опорным штифтом (6) и соответствующей планетарной шестерней (3) и представляет собой элемент, отдельный от указанной единой части.
19. Планетарная зубчатая передача по п. 17, в которой внутреннее кольцо по меньшей мере одного подшипника (7) расположено между опорным штифтом (6) и соответствующей планетарной шестерней (3) и представляет собой элемент, отдельный от втулки (31).
20. Планетарная зубчатая передача по п. 1, в которой установлены центральная шестерня (2), вокруг которой расположено и с которой входят в зацепление заранее заданное количество планетарных шестерней (3), и шестерня (4) с внутренним зацеплением, которая расположена вокруг планетарных шестерней (3) и входит в зацепление с ними.
RU2015116676/11A 2012-10-11 2013-10-11 Планетарная зубчатая передача RU2600173C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2012A001712 2012-10-11
IT001712A ITMI20121712A1 (it) 2012-10-11 2012-10-11 Riduttore epicicloidale
PCT/IB2013/059307 WO2014057468A1 (en) 2012-10-11 2013-10-11 Planetary gearing

Publications (1)

Publication Number Publication Date
RU2600173C1 true RU2600173C1 (ru) 2016-10-20

Family

ID=47226269

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015116676/11A RU2600173C1 (ru) 2012-10-11 2013-10-11 Планетарная зубчатая передача

Country Status (7)

Country Link
US (1) US9657812B2 (ru)
EP (1) EP2906855B1 (ru)
JP (1) JP6355637B2 (ru)
CN (1) CN104769314B (ru)
IT (1) ITMI20121712A1 (ru)
RU (1) RU2600173C1 (ru)
WO (1) WO2014057468A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514167B (en) * 2013-05-16 2016-10-26 David Brown Gear Systems Ltd Planetary gear assembly
DE102014215967A1 (de) * 2014-08-12 2016-02-18 Robert Bosch Gmbh Handwerkzeugmaschinengetriebeeinheit
US9945447B2 (en) * 2015-01-26 2018-04-17 Borgwarner Inc. Gear drive and actuator arrangement
FR3052213B1 (fr) * 2016-06-07 2018-05-18 Safran Transmission Systems Procede d'assemblage d'un porte-satellites
US10054216B2 (en) * 2016-07-26 2018-08-21 Caterpillar Inc. Assembly guide for sleeved planetary carriers
FR3071026B1 (fr) * 2017-09-12 2020-02-28 Safran Transmission Systems Pivot pour palier lisse et train d'engrenages
DE102017219614A1 (de) * 2017-11-06 2019-05-09 Zf Friedrichshafen Ag Planetenträger mit flexiblen Bolzen
FR3074871B1 (fr) * 2017-12-07 2019-12-13 Safran Transmission Systems Train planetaire
RU2688407C1 (ru) * 2018-06-22 2019-05-21 Александр Григорьевич Шаньшеров Способ изготовления эпицикла для плавного перехода к зацеплению зубьев планетарного редуктора
CN114198493A (zh) * 2021-12-24 2022-03-18 银川威力传动技术股份有限公司 减速器行星轮限位结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080002166A (ko) * 2006-06-30 2008-01-04 주식회사 효성 유성기어시스템용 유성기어조립체
EP2270361A2 (en) * 2009-06-26 2011-01-05 United Technologies Corporation Epicyclic gear system with load share reduction
CN201714821U (zh) * 2010-07-09 2011-01-19 重庆望江工业有限公司 一种行星齿轮柔性轴总成
CN201714918U (zh) * 2010-07-09 2011-01-19 重庆望江工业有限公司 一种用于风电齿轮增速箱的行星齿轮柔性传动机构
RU2529255C2 (ru) * 2010-05-12 2014-09-27 Имс Гиар Гмбх Планетарная передача с защитой от проворота

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3635103A (en) * 1968-12-24 1972-01-18 Siai Marchetti Spa Planetary reduction gearing
DE3736540A1 (de) * 1987-10-28 1989-05-24 Gerhard Dr Huber Ausgleichsanordnung fuer umlaufgetriebe
US5102379A (en) * 1991-03-25 1992-04-07 United Technologies Corporation Journal bearing arrangement
US5433674A (en) * 1994-04-12 1995-07-18 United Technologies Corporation Coupling system for a planetary gear train
CN1069389C (zh) * 1996-12-30 2001-08-08 麻德克斯株式会社 非对称行星齿轮装置
US6117041A (en) * 1999-06-11 2000-09-12 Caterpillar Inc. Self-aligning cantilever carrier
GB2413836B (en) 2005-07-08 2006-04-12 Orbital 2 Ltd A gear mounting
GB0518026D0 (en) 2005-09-06 2005-10-12 Orbital 2 Ltd A gear
US7662059B2 (en) * 2006-10-18 2010-02-16 United Technologies Corporation Lubrication of windmilling journal bearings
KR20110021882A (ko) * 2008-06-13 2011-03-04 팀켄 컴퍼니 플렉스핀 및 헬리컬 기어 장치를 포함하는 유성 기어 시스템
EP2446169A1 (en) * 2009-06-25 2012-05-02 Clipper Windpower, Inc. Damping of planetary gears with flex-pins for wind turbines
CN101865279A (zh) * 2010-06-02 2010-10-20 重庆齿轮箱有限责任公司 一种行星轮柔性销轴均载机构
US8506446B2 (en) * 2011-08-16 2013-08-13 General Electric Company Pin for planetary gear system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080002166A (ko) * 2006-06-30 2008-01-04 주식회사 효성 유성기어시스템용 유성기어조립체
EP2270361A2 (en) * 2009-06-26 2011-01-05 United Technologies Corporation Epicyclic gear system with load share reduction
RU2529255C2 (ru) * 2010-05-12 2014-09-27 Имс Гиар Гмбх Планетарная передача с защитой от проворота
CN201714821U (zh) * 2010-07-09 2011-01-19 重庆望江工业有限公司 一种行星齿轮柔性轴总成
CN201714918U (zh) * 2010-07-09 2011-01-19 重庆望江工业有限公司 一种用于风电齿轮增速箱的行星齿轮柔性传动机构

Also Published As

Publication number Publication date
JP6355637B2 (ja) 2018-07-11
EP2906855A1 (en) 2015-08-19
WO2014057468A1 (en) 2014-04-17
CN104769314B (zh) 2017-12-01
US20150240915A1 (en) 2015-08-27
ITMI20121712A1 (it) 2014-04-12
EP2906855B1 (en) 2016-12-07
US9657812B2 (en) 2017-05-23
CN104769314A (zh) 2015-07-08
JP2015531466A (ja) 2015-11-02

Similar Documents

Publication Publication Date Title
RU2600173C1 (ru) Планетарная зубчатая передача
CN102308124B (zh) 带有锥形柔性销的齿轮组件
US8313412B2 (en) Gear assembly with asymmetric flex pin
US8256327B2 (en) Coaxial gear set
TWI611984B (zh) 用於腳踏車變速齒輪的後脫軌裝置的導鏈滾輪和具有此種導鏈滾輪的後脫軌裝置
CN106545622A (zh) 摆线针轮减速器
RU2655578C1 (ru) Сдвоенная волновая зубчатая передача
US20140216190A1 (en) Gear for a spur gear stage without play
US20170219050A1 (en) Flat strain wave gearing
JP2015531466A5 (ru)
RU2659276C1 (ru) Сдвоенная волновая зубчатая передача
KR20170008824A (ko) 듀얼타입의 파동기어장치
EP2784350B1 (en) Roller screw
US9964180B2 (en) Gearing having a pinion and a wheel
US5871415A (en) Helically cut planetary gear
US20200361754A1 (en) Drum/ring gear assembly for winches with geared transmission
US20130239724A1 (en) Gear mechanism having helical toothing
CN103244656A (zh) 太阳轮轴向固定结构
US10330140B2 (en) Device for securing a tension element against unintentional release
JP6507265B2 (ja) 伝動装置
JPH0262461A (ja) 撓み噛み合い式歯車装置のスプラインの歯形
WO2011104289A1 (de) Kraftmess-hülse sowie kraftmess-einrichtung
WO2020062122A1 (zh) 针齿摆线减速器、传动滚柱和轴承
RU2463501C1 (ru) Самоблокирующийся дифференциал
JP6351645B2 (ja) 回転軸構造

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181012