RU2590745C2 - Способ осаждения системы прозрачных барьерных слоев - Google Patents
Способ осаждения системы прозрачных барьерных слоев Download PDFInfo
- Publication number
- RU2590745C2 RU2590745C2 RU2013136554/02A RU2013136554A RU2590745C2 RU 2590745 C2 RU2590745 C2 RU 2590745C2 RU 2013136554/02 A RU2013136554/02 A RU 2013136554/02A RU 2013136554 A RU2013136554 A RU 2013136554A RU 2590745 C2 RU2590745 C2 RU 2590745C2
- Authority
- RU
- Russia
- Prior art keywords
- barrier
- deposition
- layers
- layer
- transparent
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Laminated Bodies (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Изобретение относится к способу многослойного барьерного покрытия в виде системы прозрачных слоев. Проводят осаждение в вакуумной камере на прозрачной полимерной пленке по меньшей мере двух прозрачных барьерных слоев и одного расположенного между упомянутыми двумя барьерными слоями прозрачного промежуточного слоя. Осаждение барьерных слоев осуществляют испарением алюминия, причем одновременно в вакуумную камеру напускают по меньшей мере один первый реактивный газ. Осаждение промежуточного слоя осуществляют испарением алюминия, причем одновременно в вакуумную камеру напускают по меньшей мере один второй реактивный газ и один газообразный или парообразный органический компонент. Обеспечивается изготовление многослойного барьерного покрытия в виде системы прозрачных слоев покрытия, обладающего высоким запирающим действием по отношению к кислороду и водяному пару. 6 з.п. ф-лы, 1 пр.
Description
Изобретение касается способа осаждения системы прозрачных слоев с барьерным действием по отношению к водяному пару и кислороду.
Уровень техники
Электронно-активные материалы, которые применяются в самых разных электронных модулях, часто обладают высокой чувствительностью по отношению к влаге и кислороду воздуха. Для защиты этих материалов известна герметизация модулей такого рода. Это происходит, во-первых, путем непосредственного осаждения защитного слоя на подлежащих защите материалах или, соответственно, путем заключения этих модулей в корпус посредством дополнительных конструктивных элементов. Так, например, солнечные элементы часто посредством стекла защищаются от влаги и других внешних влияний. Для экономии веса, а также для достижения дополнительных степеней свободы в отношении дизайна, для герметизации применяются также полимерные пленки. Такие полимерные пленки должны снабжаться покрытием для достаточного защитного действия. Поэтому на них осаждается по меньшей мере один так называемый слой для защиты от проникновения (ниже также называемый барьерным слоем).
Барьерные слои в некоторых случаях оказывают очень хорошее сопротивление разным проникающим субстанциям. Для характеристики барьерных слоев часто используется проникновение кислорода (OTR, oxygen transfer rate, плотность потока кислорода) и водяного пара (WVTR, water vapour transmission rate, плотность потока водяного пара) через снабженные барьерным слоем субстраты в заданных условиях (WVTR по DIN 53122-2-A; OTR по DIN 53380-3).
Благодаря покрытию барьерным слоем проникновение через снабженный покрытием субстрат по сравнению с не снабженным покрытием субстратом уменьшается в количество раз, которое может лежать в однозначном диапазоне или составлять несколько порядков. Часто, наряду с заданными барьерными значениями, от барьерного слоя ожидаются также еще разные другие целевые параметры барьерного слоя. Примером этого являются оптические, механические, а также технолого-экономические требования. Так, часто барьерные слои должны быть в видимом спектральном диапазоне или, кроме того, практически полностью прозрачными. Когда барьерные слои применяются в системах слоев, часто предпочтительно, если шаги нанесения покрытия на отдельные части системы слоев могут комбинироваться друг с другом.
Для изготовления барьерных слоев часто применяются так называемые способы ПХО (PECVD, plasma enhanced chemical vapor deposition, плазмохимическое осаждение). Они могут применяться при покрытии самых разных субстратов для различных материалов слоев. Например, известно осаждение на 13 мкм ПЭТ-субстратах слоев SiO2 и Si3N4 толщиной от 20 до 30 нм [A. S. da Silva Sobrinho et al., J. Vac. Sei. Technol. A 16(6), Nov/Dec 1998, p.3190-3198]. При рабочем давлении, равном 10 Па, могут таким образом достигаться значения проницаемости, равные WVTR=0,3 г/м2 в сутки и OTR=0,5 см3/м2 в сутки.
При осаждении SiOx для прозрачных барьерных слоев на ПЭТ-субстратах посредством ПХО может реализовываться барьер для кислорода, равный OTR=0,7 г/м2 в сутки [R. J. Nelson and H. Chatham, Society of Vacuum Coaters, 34th Annual Technical Conference Proceedings (1991) p. 113-117]. В другом источнике для этой технологии для прозрачных барьерных слоев на ПЭТ-субстратах указываются значения проницаемости порядка WVTR=0,3 г/м2 в сутки и OTR=0,5 см3/м2 в сутки [M. Izu, B. Dotter, S. R. Ovshinsky, Society of Vacuum Coaters, 36th Annual Technical Conference Proceedings (1993) p. 333-340].
Недостатки известных способов ПХО заключаются, прежде всего, в том, что достигаются только относительно небольшие барьерные действия. Это делает такие барьерные слои неинтересными, в частности, для герметизации электронных продуктов. Другой недостаток заключается в высоком рабочем давлении, которое требуется для выполнения такого способа. Если такого рода шаг по нанесению покрытия должен интегрироваться в комплексные производственные процессы в вакуумных установках, в определенных обстоятельствах требуются высокие затраты труда для мероприятий по отсоединению давления. Комбинация с другими процессами нанесения покрытия по этой причине чаще всего становится нерентабельной.
Известно, кроме того, нанесение барьерных слоев путем напыления. Напыленные отдельные слои часто проявляют лучшие барьерные свойства, чем слои ПХО. Для напыленного на ПЭТ AlNO в качестве значений проницаемости указываются, например, WVTR=0,2 г/м2 в сутки и OTR=1 см3/м2 в сутки [Thin Solid Films 388 (2001) 78-86]. Наряду с этим известны многочисленные другие материалы, которые, в частности, применяются для изготовления прозрачных барьерных слоев путем реактивного напыления. Изготовленные таким образом слои обладают, однако, тоже слишком низкими барьерными действиями. Другой недостаток такого рода слоев заключается в их низкой механической нагрузочной способности. Повреждения, которые возникают вследствие технологически неизбежных нагрузок во время дополнительной обработки или использования, чаще всего приводят к явному ухудшению барьерного действия. Это часто делает напыленные отдельные слои непригодными для барьерных целей применения. Другой недостаток напыленных слоев заключается в их высокой стоимости, которая обусловливается низкой производительностью процесса напыления.
Известно также нанесение отдельных слоев в качестве барьерных слоев осаждением пара. Посредством таких способов ФПО (PVD, physical vapor deposition, физическое парофазное осаждение) разные материалы тоже могут непосредственно или реактивно осаждаться на самых разных субстратах. Для барьерных целей применения, например, известно реактивное покрытие осаждением пара ПЭТ-субстратов Al2O3 [Surface and Coatings Technology 125 (2000) 354-360]. При этом достигаются значения проницаемости, равные WVTR=1 г/м2 в сутки и OTR=5 см3/м2 в сутки. Это барьерное действие тоже слишком низко, чтобы можно быть применять снабженные таким образом покрытием материалы в качестве барьерных слоев для электронных продуктов. Они часто обладают еще меньшей механической нагрузочной способностью, чем напыленные отдельные слои. Предпочтительны, впрочем, очень высокие скорости покрытия, которые достигаются процессами испарения. Они обычно в 100 раз превышают скорости, которые достигаются при напылении.
Известно также применение при осаждении барьерных слоев магнетронных плазм для плазменной полимеризации (EP 0815283 B1); [So Fujimaki, H. Kashiwase, Y. Kokaku, Vacuum 59 (2000) p. 657-664]. При этом речь идет о процессах ПХО, которые непосредственно поддерживаются плазмой магнетронного разряда. Примером этого является применение магнетронной плазмы для покрытия ПХО для осаждения слоев с углеродным скелетом, при этом прекурсором служит CH4. Такого рода слои, однако, тоже обладают лишь недостаточным для высоких требований барьерным действием.
Кроме того, известно нанесение барьерных слоев или, соответственно, систем барьерных слоев за несколько шагов нанесения покрытия. Одним из способов этого рода является так называемый процесс PML (Polymermultilayer, полимерная многослойная конструкция)(1999 Materials Research Society, p. 247-254); [J. D. Affinito, M. E. Gross, C. A. Coronado, G. L. Graff, E. N. Greenweil and P. M. Martin, Society of Vacuum Coaters, 39th Annual Technical Conference Proceedings (1996) p. 392-397]. При процессе PML посредством испарителя на субстрат наносится жидкая акрилатная пленка, которая отверждается посредством электронно-лучевой технологии или УФ-облучения. Эта пленка сама не обладает особенно высоким барьерным действием. Затем происходит покрытие отвержденной акрилатной пленки оксидным промежуточным слоем, на который снова наносится акрилатная пленка. Эта последовательность действий при необходимости повторяется несколько раз. Значения проницаемости созданной таким образом пачки слоев, то есть комбинации отдельных оксидных барьерных слоев с акрилатными слоями в качестве промежуточных слов, лежат ниже предела измерений традиционных приборов для измерения проницаемости. Недостатки заключаются при этом, прежде всего, в необходимом применении промышленной технологии. Кроме того, сначала на субстрате образуется жидкая пленка, которая должна отверждаться. Это приводит к усиленному загрязнению оборудования, что сокращает циклы технического обслуживания. При такого рода процессах нанесения покрытия выполняющий функцию барьерного слоя промежуточный слой чаще всего изготавливается посредством магнетронного напыления. При этом недостатком является также, что при применении технологии напыления прибегают к сравнительно медленному процессу. Из-за этого получается очень высокая стоимость продукции, которая проистекает из низкой производительности применяемых технологий.
Известно, что механическая стойкость неорганических осажденных паром слоев может улучшаться, если во время осаждения паром предпринимается органическая модификация. При этом происходит встраивание органических составляющих в образовавшуюся во время роста слоя неорганическую матрицу. Очевидно, при встраивании этих дополнительных составляющих в неорганическую матрицу происходит повышение эластичности всего слоя, что значительно сокращает опасность разрушений в слое. Вместо этого, в качестве пригодного по меньшей мере для применения в барьерных целях, в этой связи можно назвать процесс комбинирования, который комбинирует электроннолучевое испарение SiOx с впуском HMDSO (гексаметилдисилоксан) (DE 19548160 C1). Впрочем, необходимые для электронных компонентов низкие скорости проницаемости с помощью изготовленных таким образом слоев достигаться не могут.
Постановка задачи
Поэтому в основе изобретения лежит техническая проблема создания способа, с помощью которого преодолеваются недостатки уровня техники. В частности, с помощью этого способа должна обеспечиваться возможность изготовления системы прозрачных барьерных слоев с высоким запирающим действием по отношению к кислороду и водяному пару, а также высокой скоростью покрытия.
Решение этой технической проблемы обеспечивается предметами с признаками п.1 формулы изобретения. Другие предпочтительные варианты осуществления изобретения следуют из зависимых пунктов формулы изобретения.
В одном из предлагаемых изобретением способов изготовления системы прозрачных барьерных слоев внутри вакуумной камеры на прозрачной полимерной пленке осаждаются по меньшей мере два прозрачных барьерных слоя, между которыми введен еще один прозрачный промежуточный слой. Для осаждения барьерных слоев внутри вакуумной камеры в реактивном процессе испаряется алюминий, причем во время испарения алюминия одновременно также еще по меньшей мере один реактивный газ, такой как, например, кислород или азот, впускается в вакуумную камеру. Промежуточный слой тоже осаждается, при этом внутри вакуумной камеры реактивно испаряется алюминий при одновременном впуске по меньшей мере одного реактивного газа, такого как, например, кислород или азот. Дополнительно при осаждении промежуточного слоя во время испарения алюминия одновременно также еще один газообразный или парообразный органический компонент впускается в вакуумную камеру. Таким образом, при образовании промежуточного слоя наряду с основной составляющей алюминием во время построения слоя внедряются также еще органические составляющие. Промежуточный слой, таким образом, представляет собой содержащий алюминий слой с органическими составляющими, или, выражаясь другими словами, органически модифицированный содержащий алюминий слой. В качестве органического компонента, который впускается в вакуумную камеру в газообразном или парообразном состоянии, подходят, например, прекурсоры и, в частности, содержащие кремний прекурсоры, такие как HMDSO (гексаметилдисилоксан), HMDSN (гексаметилдисилацан) или TEOS (тетраэтоксисилан).
Осажденная с помощью предлагаемого изобретением способа система прозрачных барьерных слоев отличается высоким запирающим действием по отношению к водяному пару и кислороду, а также высокой нагрузочной способностью при изгибной и растягивающей нагрузке, причем эта система слоев также еще может осаждаться с известными для испарения высокими скоростями покрытия. Вследствие этих свойств осажденные в соответствии с изобретением системы барьерных слоев пригодны, например, для герметизации конструктивных элементов при изготовлении солнечных элементов, OLEDs (Organic Light Emitting Diode, органических светоизлучающих диодов) или электронно-активных материалов.
Высокое запирающее действие осажденной в соответствии с изобретением системы слоев по отношению к водяному пару и кислороду обосновывается, главным образом, тем, что органически модифицированный содержащий алюминий слой способствует остановке роста дефектов барьерного слоя, осажденного под ним путем реактивного испарения алюминия. Известно, что однажды возникшие дефекты слоя, которые возникают при реактивном испарении алюминия, часто прорастают одновременно с ростом слоя по остальной толщине слоя. Осажденный при предлагаемом изобретением способе между барьерными слоями органически модифицированный содержащий алюминий промежуточный слой может закрывать дефекты расположенного под ним барьерного слоя, так чтобы они не продолжались при росте второго барьерного слоя, находящегося над промежуточным слоем. Благодаря этому с помощью осажденной в соответствии с изобретением системы слоев может достигаться высокое барьерное или, соответственно, запирающее действие по отношению к водяному пару и кислороду. Это запирающее действие по отношению к водяному пару и кислороду может еще дополнительно повышаться до определенной степени, если барьерный слой и промежуточный слой осаждаются, чередуясь, несколько раз подряд.
Для испарения алюминия во время осаждения барьерного слоя или промежуточного слоя могут применяться известные для испарения лодочковые испарители или же электронно-лучевые испарители. Осаждение барьерного слоя и/или промежуточного слоя может также стимулироваться плазмой, которая пронизывает пространство между испарителем алюминия и подлежащим покрытию субстрату из полимерной пленки. Это, в частности, предпочтительно при осаждении промежуточного слоя, потому что воздействие плазмы на газообразный или парообразный органический компонент ускоряет расщепление этого компонента и таким образом способствует внедрению органических составляющих в промежуточный слой. В качестве плазм при этом, в частности, пригодны плазмы полого катода или же микроволновые плазмы.
Пример осуществления
Ниже изобретение поясняется подробнее на одном из примеров осуществления. У полимерной пленки шириной 650 мм и толщиной 75 мкм из материала ПЭТ должно повышаться запирающее действие по отношению к водяному пару. Для этого полимерная пленка за три ряда опытов покрывается в вакуумной камере различными содержащими алюминий слоями или, соответственно, системами слоев.
Для испарения алюминия применяются восемь известных лодочковых испарителей, которые расположены, будучи распределены под подлежащей покрытию полимерной пленкой на равном расстоянии по ширине полимерной пленки. Испарение алюминия происходит при всех трех опытах со скоростью испарения, равной 2 г/мин для каждого лодочкового испарителя, при этом полимерная пленка в каждом случае движется через лодочковые испарители со скоростью ленты, равной 50 м/мин. Все слои осаждаются с плазменным стимулированием. Четыре полых катода, которые тоже расположены, будучи распределены на равных расстояниях по ширине полимерной пленки, создают плазму, которая пронизывает пространство между лодочковыми испарителями с одной стороны и подлежащей покрытию полимерной пленкой с другой стороны. Эти четыре полых катода при этом питаются электрическим током, равным в каждом случае 300 А.
В первом опыте должно осуществляться осаждение на полимерном субстрате только одного барьерного слоя путем реактивного испарения алюминия. В качестве реактивного газа применяется кислород, который при этом, а также в последующих опытах втекает в каждом случае со скоростью 12,3 ст.л/мин в вакуумную камеру. При названных параметрах на полимерной пленке осаждается слой оксида алюминия с толщиной слоя 70 нм. Для этой многослойной конструкции из полимерной пленки и слоя оксида алюминия измеренное барьерное действие по отношению к водяному пару (WVTR в [г/м2 в сутки]) составляет 0,85.
Во втором опыте сначала известный из первого опыта барьерный слой толщиной 70 нм из оксида алюминия наносится на полимерную пленку. Затем снабженная барьерным слоем полимерная пленка еще раз направляется через вакуумную камеру, и осаждается органически модифицированный слой оксида алюминия. При этом параметры процесса испарения алюминия такие же, что и при осаждении барьерного слоя. Дополнительно во время испарения наряду с реактивным газом кислородом в вакуумную камеру впускается также еще органический компонент HMDCO (гексаметилдисилоксан) со скоростью 950 ст.см3/мин. При воздействии плазмы на HMDCO она расщепляется на составляющие, которые внедряются во второй слой оксида алюминия. Таким образом, над барьерным слоем из оксида алюминия возникает теперь слой оксида алюминия толщиной 85 нм с органическими составляющими, или, выражаясь другими словами, органически модифицированный слой оксида алюминия. Для этой многослойной конструкции из полимерной пленки, слоя оксида алюминия и органически модифицированного слоя оксида алюминия измеренное барьерное действие по отношению к водяному пару (WVTR в [г/м2 в сутки]) тоже составляло 0,85.
Барьерное действие, таким образом, по сравнению с первым опытом не улучшилось. Однако по сравнению с первым опытом на покрытую полимерную пленку могла оказываться более высокая растягивающая нагрузка, до тех пор, пока не стали видны трещины в системе слоев.
В третьем опыте, в отличие от второго опыта, в соответствии с изобретением наносился еще один второй барьерный слой на органически модифицированный слой оксида алюминия, который осаждался с теми же параметрами, что и первый барьерный слой из первого и второго опыта. Результат третьего опыта включал в себя, соответственно, ПЭТ-пленку толщиной 5 мкм, два барьерных слоя толщиной 70 нм из оксида алюминия, между которыми находится органически модифицированный слой оксида алюминия толщиной 85 нм. Для этой многослойной конструкции измеренное барьерное действие по отношению к водяному пару (WVTR в [г/м2 в сутки]) составляло 0,45. В отличие от первого и второго опыта эта полученная из третьего опыта система слоев обладает улучшенным запирающим действием по отношению к водяному пару. Нагрузочная способность при растягивающей нагрузке была сравнима с нагрузочной способностью из первого опыта. Осажденная в третьем опыте предлагаемым изобретением способом система барьерных слоев обладает, таким образом, высоким запирающим действием по отношению к водяному пару, а также еще хорошей нагрузочной способностью с точки зрения растягивающей нагрузки.
В этом месте следует упомянуть, что вышеназванные значения физических величин в отношении реактивного испарения алюминия приведены только в качестве примера и не ограничивают предлагаемый изобретением способ. Для реактивного испарения алюминия предлагаемым изобретением способом могут также применяться все другие значения физических нагрузок, которые известны из уровня техники для реактивного испарения алюминия.
Claims (7)
1. Способ осаждения многослойного барьерного покрытия в виде системы прозрачных слоев, включающий осаждение в вакуумной камере на прозрачной полимерной пленке по меньшей мере двух прозрачных барьерных слоев и одного расположенного между упомянутыми двумя барьерными слоями прозрачного промежуточного слоя, отличающийся тем, что осаждение барьерных слоев осуществляют испарением алюминия, причем одновременно в вакуумную камеру напускают по меньшей мере один первый реактивный газ, а осаждение промежуточного слоя осуществляют испарением алюминия, причем одновременно в вакуумную камеру напускают по меньшей мере один второй реактивный газ и один газообразный или парообразный органический компонент.
2. Способ по п. 1, отличающийся тем, что барьерный слой и промежуточный слой осаждают по очереди несколько раз.
3. Способ по п. 1, отличающийся тем, что в качестве первого и/или второго реактивного газа используют кислород и/или азот.
4. Способ по п. 1, отличающийся тем, что осаждение барьерного слоя и/или осаждение промежуточного слоя проводят в присутствии плазмы в вакуумной камере.
5. Способ по п. 4, отличающийся тем, что в качестве плазмы используют плазму полого катода или микроволновую плазму.
6. Способ по п. 1, отличающийся тем, что в качестве газообразного или парообразного органического компонента в вакуумную камеру напускают кремнийсодержащий прекурсор.
7. Способ по п. 6, отличающийся тем, что в качестве прекурсора используют гексаметилдисилоксан (HMDSO), гексаметилдисилазан (HMDSN) или тетраэтоксисилан (TEOS).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011017404A DE102011017404A1 (de) | 2011-04-18 | 2011-04-18 | Verfahren zum Abscheiden eines transparenten Barriereschichtsystems |
DE102011017404.4 | 2011-04-18 | ||
PCT/EP2012/052537 WO2012143149A1 (de) | 2011-04-18 | 2012-02-15 | Verfahren zum abscheiden eines transparenten barriereschichtsystems |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013136554A RU2013136554A (ru) | 2015-02-10 |
RU2590745C2 true RU2590745C2 (ru) | 2016-07-10 |
Family
ID=45774166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013136554/02A RU2590745C2 (ru) | 2011-04-18 | 2012-02-15 | Способ осаждения системы прозрачных барьерных слоев |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130302536A1 (ru) |
EP (1) | EP2699705B1 (ru) |
JP (1) | JP5930340B2 (ru) |
DE (1) | DE102011017404A1 (ru) |
MX (1) | MX2013008814A (ru) |
RU (1) | RU2590745C2 (ru) |
WO (1) | WO2012143149A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2751017C1 (ru) * | 2017-07-26 | 2021-07-07 | Сэн-Гобэн Гласс Франс | Нанесение покрытия с алмазоподобным углеродом магнетронным методом pecvd |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011017403A1 (de) * | 2011-04-18 | 2012-10-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Abscheiden eines transparenten Barriereschichtsystems |
JP6349812B2 (ja) * | 2014-03-17 | 2018-07-04 | 凸版印刷株式会社 | セラミック層蒸着フィルムの製造方法、及びセラミック層蒸着フィルム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005073427A2 (de) * | 2004-02-02 | 2005-08-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Verfahren zur herstellung eines ultrabarriere-schichtsystems |
WO2007072120A1 (en) * | 2005-06-16 | 2007-06-28 | Innovative Systems & Technologies | Polymer article having a thin coating formed on at least one of its side by plasma and method for producing such article |
RU2352683C2 (ru) * | 2002-11-29 | 2009-04-20 | Фраунхофер-Гезельшафт Цур Фердерунг дер Ангевандтен Форшунг Е.Ф. | Способ напыления на ленточные подложки прозрачного барьерного покрытия из оксида алюминия |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2106258C (en) * | 1992-09-18 | 2003-11-04 | Gautam P. Shah | Moisture barrier film |
DE59609370D1 (de) | 1995-03-14 | 2002-07-25 | Empa | Abscheiden von diffusionssperrschichten in einer niederdruckplasmakammer |
DE19548160C1 (de) * | 1995-12-22 | 1997-05-07 | Fraunhofer Ges Forschung | Verfahren zur Herstellung organisch modifizierter Oxid-, Oxinitrid- oder Nitridschichten durch Vakuumbeschichtung und danach beschichtetes Substrat |
US5916685A (en) * | 1996-07-09 | 1999-06-29 | Tetra Laval Holdings & Finance, Sa | Transparent high barrier multilayer structure |
DE19849205A1 (de) * | 1998-10-26 | 2000-04-27 | Leybold Systems Gmbh | Transparentes Barriereschichtensystem |
WO2001055489A2 (de) * | 2000-01-27 | 2001-08-02 | Incoat Gmbh | Schutz- und/oder diffusionssperrschicht |
US7074640B2 (en) * | 2000-06-06 | 2006-07-11 | Simon Fraser University | Method of making barrier layers |
CN1222408C (zh) * | 2000-06-23 | 2005-10-12 | 霍尼韦尔国际公司 | 高防湿膜 |
WO2002091064A2 (en) * | 2001-05-04 | 2002-11-14 | General Atomics | O2 and h2o barrier material |
JP2004276294A (ja) * | 2003-03-13 | 2004-10-07 | Toppan Printing Co Ltd | 高ガスバリア性を有する粘着性フィルム |
CA2525622C (en) * | 2003-05-16 | 2010-10-26 | Toppan Printing Co., Ltd. | Transparent gas barrier laminated film, and electroluminescent light-emiiting element, electroluminescent display device, and electrophoretic display panel using the same |
WO2006033233A1 (ja) * | 2004-09-21 | 2006-03-30 | Konica Minolta Holdings, Inc. | 透明ガスバリア性フィルム |
EP1811056A4 (en) * | 2004-10-19 | 2013-11-27 | Toray Industries | METHOD OF FORMING A FILM, AND FILM |
JP2006272589A (ja) * | 2005-03-28 | 2006-10-12 | Toray Ind Inc | ガスバリア性フィルムおよびその製造方法 |
JP2006297730A (ja) * | 2005-04-20 | 2006-11-02 | Dainippon Printing Co Ltd | ガスバリア性積層体 |
JP5278639B2 (ja) * | 2006-12-14 | 2013-09-04 | 凸版印刷株式会社 | プラズマアシスト蒸着装置 |
DE102007019994A1 (de) * | 2007-04-27 | 2008-10-30 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Transparente Barrierefolie und Verfahren zum Herstellen derselben |
US8105660B2 (en) * | 2007-06-28 | 2012-01-31 | Andrew W Tudhope | Method for producing diamond-like carbon coatings using PECVD and diamondoid precursors on internal surfaces of a hollow component |
DE102008019665A1 (de) * | 2008-04-18 | 2009-10-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Transparentes Barriereschichtsystem |
TW201040299A (en) * | 2009-05-05 | 2010-11-16 | Fraunhofer Ges Forschung | Layer system having barrier properties and a structured conductive layer, method for producing the same, and use of such a layer system |
DE102011017403A1 (de) * | 2011-04-18 | 2012-10-18 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Abscheiden eines transparenten Barriereschichtsystems |
-
2011
- 2011-04-18 DE DE102011017404A patent/DE102011017404A1/de not_active Withdrawn
-
2012
- 2012-02-15 WO PCT/EP2012/052537 patent/WO2012143149A1/de active Application Filing
- 2012-02-15 RU RU2013136554/02A patent/RU2590745C2/ru not_active IP Right Cessation
- 2012-02-15 MX MX2013008814A patent/MX2013008814A/es not_active Application Discontinuation
- 2012-02-15 JP JP2014505545A patent/JP5930340B2/ja not_active Expired - Fee Related
- 2012-02-15 US US13/980,257 patent/US20130302536A1/en not_active Abandoned
- 2012-02-15 EP EP12706510.0A patent/EP2699705B1/de active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2352683C2 (ru) * | 2002-11-29 | 2009-04-20 | Фраунхофер-Гезельшафт Цур Фердерунг дер Ангевандтен Форшунг Е.Ф. | Способ напыления на ленточные подложки прозрачного барьерного покрытия из оксида алюминия |
WO2005073427A2 (de) * | 2004-02-02 | 2005-08-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. | Verfahren zur herstellung eines ultrabarriere-schichtsystems |
WO2007072120A1 (en) * | 2005-06-16 | 2007-06-28 | Innovative Systems & Technologies | Polymer article having a thin coating formed on at least one of its side by plasma and method for producing such article |
Non-Patent Citations (2)
Title |
---|
Fahland М. et. al. Permeation barrier properties of thin oxide films on flexible polymer substrates, Thin solid films, 01.01.2007, с.3076, 3077. * |
Schiller S. et. al. PVD coating of plastic webs and sheets with high rates on large areas, Surface and coatings technology, 01.03.2000, с. 354-355. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2751017C1 (ru) * | 2017-07-26 | 2021-07-07 | Сэн-Гобэн Гласс Франс | Нанесение покрытия с алмазоподобным углеродом магнетронным методом pecvd |
Also Published As
Publication number | Publication date |
---|---|
JP5930340B2 (ja) | 2016-06-08 |
EP2699705B1 (de) | 2019-04-10 |
WO2012143149A1 (de) | 2012-10-26 |
JP2014515787A (ja) | 2014-07-03 |
US20130302536A1 (en) | 2013-11-14 |
DE102011017404A1 (de) | 2012-10-18 |
MX2013008814A (es) | 2013-11-01 |
EP2699705A1 (de) | 2014-02-26 |
RU2013136554A (ru) | 2015-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101053340B1 (ko) | 울트라 장벽 층 시스템의 제조 방법 | |
EP1868256B1 (en) | Encapsulation for organic device | |
JP5473946B2 (ja) | Wvtrバリア性を改善した多層スタック構造体の製造方法 | |
CA2457791A1 (en) | Coatings with low permeation of gases and vapors | |
KR20100015821A (ko) | 투명한 차단 필름 및 이의 제조 방법 | |
JP5538361B2 (ja) | 透明バリア層システム | |
US10961622B2 (en) | Gas barrier film and method of manufacturing the same | |
Lee et al. | Defect-sealing of Al2O3/ZrO2 multilayer for barrier coating by plasma-enhanced atomic layer deposition process | |
RU2590745C2 (ru) | Способ осаждения системы прозрачных барьерных слоев | |
RU2583196C2 (ru) | Способ осаждения прозрачной барьерной многослойной системы | |
EP2136423B1 (en) | Multilayer coating for protecting organic optic devices and manufacturing process thereof | |
KR20170137855A (ko) | 적층체 및 그 제조 방법 | |
US20230077923A1 (en) | Barrier layer system and method for producing a barrier layer system | |
US20100080929A1 (en) | System and method for applying a conformal barrier coating | |
US8033885B2 (en) | System and method for applying a conformal barrier coating with pretreating | |
Fahlteich et al. | Permeation barrier properties of oxide layers on polymer film deposited by pulsed magnetron sputtering | |
Neubert et al. | Organic materials for the use in optical layer systems | |
Liang et al. | Flexible Amorphous Hybrid Barrier Films Deposited by RF Magnetron Sputtering | |
KR20170067190A (ko) | 배리어 필름 및 그 제조 방법 | |
CN105206764A (zh) | 一种oled显示器件的密封工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180216 |