RU2575926C1 - Способ получения изопрена - Google Patents

Способ получения изопрена Download PDF

Info

Publication number
RU2575926C1
RU2575926C1 RU2014146119/04A RU2014146119A RU2575926C1 RU 2575926 C1 RU2575926 C1 RU 2575926C1 RU 2014146119/04 A RU2014146119/04 A RU 2014146119/04A RU 2014146119 A RU2014146119 A RU 2014146119A RU 2575926 C1 RU2575926 C1 RU 2575926C1
Authority
RU
Russia
Prior art keywords
dioxane
isobutylene
dimethyl
isoprene
formaldehyde
Prior art date
Application number
RU2014146119/04A
Other languages
English (en)
Inventor
Михаил Борисович Барышников
Наталия Анатольевна Барышникова
Наталья Александровна Садова
Original Assignee
Публичное акционерное общество "СИБУР Холдинг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "СИБУР Холдинг" filed Critical Публичное акционерное общество "СИБУР Холдинг"
Priority to RU2014146119/04A priority Critical patent/RU2575926C1/ru
Application granted granted Critical
Publication of RU2575926C1 publication Critical patent/RU2575926C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения 4,4-диметил-1,3-диоксана конденсацией изобутилена с формальдегидом в присутствии кислотного катализатора. Способ характеризуется тем, что в качестве кислотного катализатора используют хлорную кислоту или смесь хлорной кислоты с органическими и/или неорганическими кислотами. Также изобретение относится к вариантам способа получения изопрена. Использование предлагаемого способа обеспечивает снижение расхода катализатора, повышение конверсии изобутилена при сохранении высокой селективности его превращения, снижение выхода побочных продуктов на стадии синтеза ДМД, а также повышение производительности оборудования. 3 н. и 36 з.п. ф-лы, 1 табл., 9 пр.

Description

Изобретение относится к нефтехимической промышленности, а именно к способу получения изопрена, а также к способу получения промежуточного продукта 4,4-диметил-1,3-диоксана для получения изопрена.
Изопрен является мономером для синтеза изопренового каучука, бутилкаучука, применяемых для производства шин и резинотехнических изделий, и может быть использован в нефтехимической промышленности.
Уровень техники
Известен способ получения изопрена взаимодействием изобутилена, содержащегося в изобутиленсодержащей фракции углеводородов С4, и формальдегида, содержащегося в водном растворе формальдегида, синтезируемого окислением метанола, включающий разделение реакционной массы на масляный и водный слой, выделение из масляного слоя 4,4-диметил-1,3-диоксана (ДМД), непрореагировавшей фракции углеводородов С4 и высококипящих органических побочных продуктов ректификацией, разделение водного слоя и возврат непрореагировавшего формальдегида на синтез ДМД, каталитическое расщепление ДМД на кальцийфосфатном катализаторе в изопрен, конденсацию контактного газа разложения ДМД и последующее выделение изопрена из углеводородного конденсата ректификацией и его очистку от примесей, включающий также переработку высококипящих побочных продуктов (ВПП) [Кирпичников П.А., Береснев В.В., Попова Л.М. Альбом технологических схем основных производств промышленности синтетического каучука. Л., Химия, 1986, с. 36-53]. В качестве катализатора на первой стадии используется водный раствор щавелевой кислоты, на второй стадии - твердый катализатор на основе солей фосфорной кислоты.
Недостатками способа являются высокий расход катализатора на первой стадии, низкая конверсия изобутилена и связанное с этим высокое содержание изобутилена в отработанной С4-фракции, низкая селективность превращения изобутилена и существенное количество образующихся высококипящих побочных продуктов (ВПП).
Известен способ получения изопрена путем жидкофазного взаимодействия изобутилена и формальдегида, осуществляемый в присутствии 4% масс. фосфорной кислоты в качестве катализатора в двух последовательно соединенных реакторах, в первом из которых при температуре 80°С получают предшественники изопрена, а во втором разлагают их в изопрен (Заявка Японии № 59-25337, кл. С07С 11/18, 1984 г.). Недостатками способа являются высокий расход катализатора и низкий выход изопрена.
Известен способ получения изопрена, включающий конденсацию изобутилена в виде изобутиленсодержащей фракции С4 с водным раствором формальдегида в присутствии кислотного катализатора при температуре 80-100°С и давлении 1,6-2,0 МПа, разделение реакционной массы на водный и масляный слои, выпаривание водного слоя, добавление к остатку после выпаривания исходного водного раствора формальдегида и рециркуляцию полученной смеси в зону конденсации, выделение ректификацией из масляного слоя ДМД и смеси ВПП, с последующим гетерогенно-каталитическим разложением полученного ДМД в изопрен на кальций-фосфатном катализаторе при температуре 290-380°С, давлении 0,12-0,16 МПа в присутствии водяного пара. Полученную смесь ВПП перегоняют на вакуумной ректификационной колонне и дистиллят в количестве 30-35% масс. от питания колонны направляют на гетерогенно-каталитическое разложение в изопрен на керамической насадке при температуре 400-450°С, давлении 0,12-0,16 МПа в присутствии водяного пара [RU 2255929 С1, опубл. 10.07.2005]. В качестве катализатора на стадии конденсации изобутилена с формальдегидом используют щавелевую кислоту, фосфорную кислоту или смесь этих кислот.
Недостатками такого способа также являются большой расход катализатора, низкая конверсия изобутилена и связанное с этим высокое содержание изобутилена в отработанной С4-фракции, низкая селективность превращения изобутилена и повышенное образование высококипящих побочных продуктов (ВПП), высокие энергозатраты, связанные с расходом водяного пара на гетерогенно-каталитическое разложение ДМД, ВПП и на выделение формальдегида из образующихся разбавленных водных растворов.
Наиболее близким к заявляемому является способ получения изопрена, включающий жидкофазную конденсацию изобутилена в виде изобутиленсодержащей фракции С4 с водным раствором формальдегида в присутствии кислотного катализатора при повышенных температуре и давлении с образованием 4,4-диметил-1,3-диоксана и смеси высококипящих побочных продуктов, с последующим жидкофазным разложением полученного 4,4-диметил-1,3-диоксана в изопрен, в котором в качестве кислотного катализатора используют фосфорную, щавелевую, смесь фосфорной и щавелевой кислот [Патент РФ 2458900, 2011 г.]. Способ позволяет повысить выработку изопрена из того же количества сырья за счет разложения части высококипящих побочных продуктов (ВПП) и получения при этом дополнительного количества изопрена.
Недостатками способа являются повышенный расход кислотного катализатора на стадии синтеза ДМД, недостаточно высокая конверсия изобутилена на этой стадии и высокий выход ВПП в расчете на превращенный изобутилен.
Задачей настоящего изобретения является разработка способа получения изопрена из изобутилена, позволяющего на стадии конденсации изобутилена и формальдегида снизить расход кислотного катализатора, повысить конверсию изобутилена при высокой селективности его превращения, снизить выход побочных продуктов и повысить выход изопрена.
Поставленная задача решается тем, что в качестве кислотного катализатора на указанной стадии используется хлорная кислота или смесь хлорной кислоты с другими неорганическими и/или органическими кислотами, в частности с фосфорной и/или щавелевой кислотой.
Хлорная кислота является самой сильной неорганической кислотой и самой распространенной из кислот, которые относят к категории суперкислот, то есть кислот, у которых значение функции Гаммета (Н0) превышает ее значение для 100% серной кислоты (Н0 = минус 12). Это обстоятельство позволяет использовать ее в катализируемой кислотой реакции конденсации в очень малых количествах. Безводная хлорная кислота является сильнейшим окислителем (Н0 = минус 13) и взрывоопасна при высоких концентрациях, но при концентрации ниже 70% ее окислительные свойства падают и она может относительно безопасно использоваться для различных целей. К суперкислотам также относятся трифторметансульфокислота, хлор- и фторсульфоновая кислоты, гексафторсурьмянная кислота др., имеющие еще более высокие значения функции кислотности по Гаммету (хлорсульфоновая кислота - минус 12,8, фторсульфоновая кислота - минус 15,1). Однако эти суперкислоты чрезвычайно реакционноспособны и являются настолько агрессивными, что могут разъедать стекло. Кроме того, использование суперкислот в качестве катализаторов реакции конденсации создает трудности, поскольку они легко разлагаются при гидролизе. Авторами изобретения неожиданно обнаружено, что одна из суперкислот, а именно хлорная кислота, обладает высокой активностью в реакции конденсации изобутилена с формальдегидом. Применение ее или ее смесей с другими кислотами в качестве катализатора синтеза ДМД позволяет существенно снизить расход кислотного катализатора, повысить конверсию изобутилена при высокой селективности, снизить количество образующихся ВПП и повысить выход изопрена.
Краткое описание изобретения
Настоящее изобретение относится к способу получения изопрена, включающему конденсацию изобутилена c формальдегидом в присутствии кислотного катализатора с получением 4,4-диметил-1,3-диоксана, и превращение 4,4-диметил-1,3-диоксана в изопрен, где в качестве кислотного катализатора для получения 4,4-диметил-1,3-диоксана используют хлорную кислоту или смесь хлорной кислоты с органическими и/или неорганическими кислотами, предпочтительно выбранными из фосфорной и щавелевой кислоты, где концентрация кислотного катализатора составляет не менее 0,3% масс.
В предпочтительном варианте изобретения изобутилен используют в виде изобутан-изобутиленовой фракции с концентрацией изобутилена не менее 30% масс., и формальдегид используют в виде водного раствора с концентрацией не менее 20% масс.
Синтез 4,4-диметил-1,3-диоксана осуществляют при температуре 80-110°C и давлении 1,3-2,5 МПа.
Дополнительно способ включает разделение продукта реакции, содержащего 4,4-диметил-1,3-диоксан, на масляный и водный слои; ректификацию масляного слоя с выделением 4,4-диметил-1,3-диоксана, триметилкарбинола (ТМК), непрореагировавших С4 углеводородов и высококипящих органических побочных продуктов; концентрирование водного слоя который возвращают на синтез 4,4-диметил-1,3-диоксана и дальнейшую переработку высококипящих органических побочных продуктов с получением контактного газа, содержащего изопрен, изобутилен и формальдегид.
В предпочтительном варианте изобретения смесь высококипящих органических побочных продуктов, полученных на стадии синтеза 4,4-диметил-1,3-диоксана, перегоняют на ректификационной колонне и далее полученный дистиллят подвергают гетерогенно-каталитическому разложению при температуре 400-450°C и давлении 0,12-0,16 МПа в присутствии водяного пара с получением контактного газа, содержащего изопрен, изобутилен и формальдегид, который может быть направлен на переработку совместно с контактным газом, полученным после разложения 4,4-диметил-1,3-диоксана.
Превращение 4,4-диметил-1,3-диоксана в изопрен может быть осуществлено любым известным способом, например гетерогенно-каталитическим разложением на кальций-фосфатном катализаторе в присутствии водяного пара при температуре 290-380°C и давлении 0,12-0,16 МПа, или жидкофазным разложением в присутствии триметилкарбинола и/или изобутилена и водного раствора кислотного катализатора при повышенных температуре и давлении с получением контактного газа, содержащего изопрен.
В предпочтительном варианте изобретения контактный газ, полученный после разложения 4,4-диметил-1,3-диоксана, конденсируют, полученную смесь разделяют на водный и углеводородный слои, изопрен выделяют из углеводородного слоя ректификацией, с последующей его очисткой от примесей.
В предпочтительном варианте изобретения способ получения изопрена включает конденсацию изобутилена в виде изобутан-изобутиленовой фракции с водным раствором формальдегида в присутствии кислотного катализатора, выбранного из хлорной кислоты или смеси хлорной кислоты с органическими и/или неорганическими кислотами; разделение реакционной смеси на масляный и водный слои; выделение ректификацией из масляного слоя 4,4-диметил-1,3-диоксана, триметилкарбинола, непрореагировавших С4-углеводородов и высококипящих органических побочных продуктов; выпаривание водного слоя и его возврат на синтез 4,4-диметил-1,3-диоксана; переработку высококипящих побочных продуктов с получением контактного газа, содержащего изопрен, изобутилен и формальдегид; каталитическое расщепление 4,4-диметил-1,3-диоксана с получением контактного газа, содержащего изопрен; конденсацию контактного газа разложения 4,4-диметил-1,3-диоксана; выделение изопрена из углеводородного конденсата ректификацией и его очистку от примесей.
Настоящее изобретение также относится к новому способу получения промежуточного продукта 4,4-диметил-1,3-диоксана для синтеза изопрена, который включает конденсацию изобутилена c формальдегидом в присутствии кислотного катализатора, где кислотный катализатор представляет собой хлорную кислоту или смесь хлорной кислоты с органическими и/или неорганическими кислотами, предпочтительно выбранными из фосфорной и щавелевой кислот.
Подробное описание изобретения
Жидкофазную конденсацию изобутилена c формальдегидом осуществляют с получением 4,4-диметил-1,3-диоксана в присутствии кислотного катализатора при повышенной температуре и давлении.
В качестве источника изобутилена могут быть использованы изобутан-изобутиленовые фракции различного происхождения: продукты дегидрирования изобутана, пиролиза и крекинга нефтяных фракций и т.д. Содержание изобутилена в исходной фракции должно составлять не менее 30% масс., предпочтительно от 35 до 50% масс., наиболее предпочтительно от 48 до 50% масс.
Формальдегидная шихта, используемая в реакции конденсации, представляет собой водный раствор формальдегида, содержащий кислотный катализатор, с содержанием формальдегида не менее 20% масс., предпочтительно от 30 до 40% масс., наиболее предпочтительно от 34 до 36% масс.
В предпочтительном варианте изобретения конденсацию проводят при температуре 80-110°С, предпочтительно 85-100°С, наиболее предпочтительно 98-100°C и давлении 1,3-2,5 МПа, предпочтительно 1,6-2,0 МПа, наиболее предпочтительно 1,8-2,0 МПа.
В качестве кислотного катализатора используют хлорную кислоту или смесь хлорной кислоты с органическими и/или неорганическими кислотами предпочтительно с фосфорной и/или щавелевой кислотой.
В качестве кислотного катализатора может быть использована смесь хлорной и фосфорной кислот или смесь хлорной и щавелевой кислот, или смесь хлорной, фосфорной и щавелевой кислот.
В случае использования смеси кислот массовое соотношение хлорной кислоты и фосфорной и/или щавелевой кислот составляет (99-60):(1-40), предпочтительно (90-70):(10-30), наиболее предпочтительно 80:20.
Концентрация кислотного катализатора, используемого на стадии конденсации, составляет не менее 0,3% масс., предпочтительно от 0,4-3,0% масс., наиболее предпочтительно от 1,0 до 1,2% масс. от массы формальдегидной шихты.
Реакция конденсации протекает с образованием 4,4-диметил-1,3-диоксана и ряда побочных продуктов, в том числе высококипящих побочных продуктов, таких как диоксаны, диолы, пирановые спирты, диоксановые спирты, эфиры и формали диоксановых спиртов и др., в частности 4-метил-4-оксиэтил-1,3-диоксан, 4,4-диметил-5-оксиметил-1,3-диоксан, 5-(2-окси-2-пропил)-1,3-диоксан, 3-метил-1,3-бутандиол, 1-трет-бутокси-3-метил-3-бутанол, 4-метил-4-(2-трет-бутоксиэтил)1,3-диоксан, 4-метил-4-окситетрагидропиран, 4-метил-4-окси-3-оксиметилтетрагидропиран и др.
Полученный продукт конденсации далее разделяют на масляный и водный слои.
Водный слой упаривают и возвращают на синтез 4,4-диметил-1,3-диоксана. К концентрированному водному слою необязательно может быть добавлен исходный водный раствор формальдегида с последующей рециркуляцией полученной смеси в зону конденсации формальдегида с изобутиленом.
Масляный слой, содержащий 4,4-диметил-1,3-диоксан, триметилкарбинол, непрореагировавшие С4-углеводороды и высококипящие органические побочные продукты, промывают водой и затем подвергают ректификации с выделением ДМД и ВПП любым известным способом, например любым способом из описанных в документах, указанных в разделе «Уровень техники» настоящего описания.
Например, на первой (по ходу потока масляного слоя) ректификационной колонне отгоняют отработанную изобутан-изобутиленовую фракцию, которую направляют в процесс дегидрирования изобутана, далее кубовую жидкость первой колонны подают во вторую ректификационную колонну, где отгоняют триметилкарбинольную фракцию, которую рециркулируют в реактор синтеза ДМД, далее кубовую жидкость второй колонны подают в третью ректификационную колонну, где отгоняют ДМД, который направляют на жидкофазное разложение в изопрен.
Полученный после отгонки ДМД остаток представляет собой смесь ВПП, которую подают в вакуумную ректификационную колонну, откуда отобранный дистиллят направляют на разложение в изопрен.
Превращение ДМД в изопрен осуществляют любым известным способом, например любым способом из описанных в документах, указанных в разделе «Уровень техники» настоящего описания.
Например, осуществляют гетерогенно-каталитическое разложение ДМД на кальций-фосфатном катализаторе в присутствии водяного пара при температуре 290-380°C и давлении 0,12-0,16 МПа с получением контактного газа, содержащего изопрен.
Образующийся после разложения ДМД контактный газ подают в систему охлаждения и конденсации, полученную жидкость разделяют на водный и углеводородный слои.
Водный слой упаривают и возвращают на синтез ДМД.
Углеводородный слой подают на установку выделения и очистки изопрена, где выделяют целевой продукт - изопрен. Изопрен далее используют для получения полиизопренового каучука.
Кроме изопрена из углеводородного слоя выделяют непрореагировавший изобутилен, который присоединяют к свежей изобутан-изобутиленовой фракции, триметилкарбинол, который рециркулируют на синтез ДМД, оставшийся ДМД, который вместе с основным потоком ДМД подают на разложение в изопрен, и ВПП, которые направляют на разложение в изопрен.
Смесь ВПП, полученных на стадии синтеза ДМД, перегоняют на вакуумной ректификационной колонне с получением дистиллята.
Часть дистиллята, содержащего ВПП, направляют на жидкофазное разложение в изопрен в присутствии ТМК и/или изобутилена и водного раствора кислотного катализатора при температуре 150-200°С, давлении 0,6-1,7 МПа совместно с ДМД и/или в отдельном реакторе с получением контактного газа, содержащего изопрен, изобутилен и формальдегид.
Ниже представлены примеры, предназначенные для иллюстрации заявленного изобретения, которые не должны быть рассмотрены как ограничивающие объем притязаний.
Для сравнения процессов использовались значения селективности превращения изобутилена в ДМД и выхода изопрена на пропущенный изобутилен, рассчитанные по приведенным ниже формулам:
Селективность превращения изобутилена в ДМД (Сиб):
C и б = А д м д * М и б А и б * К и б / 100 * М д м д ,
Figure 00000001
где Адмд - выработка ДМД, кг/час,
Аиб - расход изобутилена (100%), кг/час,
Афа - расход формальдегида (100%), кг/час,
Киб - конверсия изобутилена в ДМД,
Миб - молекулярная масса изобутилена,
Мдмд - молекулярная масса ДМД.
Выход изопрена на пропущенный изобутилен:
В и п = А и п * М и б А и б * М и п * 100
Figure 00000002
,
где Аиб - расход изобутилена (100%), кг/час,
Аип - расход изопрена (100%), кг/час,
Миб - молекулярная масса изобутилена,
Мип - молекулярная масса изопрена.
Пример 1 (Сравнительный)
В реакторный блок синтеза ДМД, состоящий из трех последовательно соединенных реакторов, подают изобутан-изобутиленовую фракцию, содержащую 41,3% масс. изобутилена, со скоростью 20200 кг/час, а также формальдегидную шихту, представляющую собой водный раствор, содержащий 26,5% масс. формальдегида, 1,2% масс. щавелевой кислоты и 1,8% масс. фосфорной кислоты, со скоростью 29600 кг/час. Синтез ДМД проводят в жидкофазных условиях, в реакторе поддерживают температуру 100°С, давление 2,0 МПа.
Конверсия формальдегида составляет 81,6%, конверсия изобутилена составляет 80,7%. Выход ВПП составляет 22,6% на полученный ДМД.
Выходящую из реактора реакционную массу разделяют на водный и масляный слои.
Водный слой упаривают, остаток после выпаривания смешивают с исходным водным раствором формальдегида, затем полученную смесь рециркулируют в реактор в качестве формальдегидной шихты.
Масляный слой промывают водой, затем подвергают ректификационной переработке для выделения из продуктов синтеза ДМД. На первой (по ходу потока масляного слоя) ректификационной колонне отгоняют отработанную изобутан-изобутиленовую фракцию, которую направляют в процесс дегидрирования изобутана. Кубовую жидкость первой колонны подают во вторую ректификационную колонну, где отгоняют триметилкарбинольную фракцию, которую рециркулируют в реактор синтеза ДМД. Кубовую жидкость второй колонны подают в третью ректификационную колонну, где отгоняют 9720 кг/час ДМД, который направляют на жидкофазное разложение в изопрен.
Селективность превращения изобутилена в ДМД составляет 69,7% масс.
Полученный после отгонки ДМД остаток в количестве 2200 кг/час представляет собой смесь ВПП, которую подают в вакуумную ректификационную колонну, откуда отобранный дистиллят направляют на жидкофазное разложение в изопрен.
В реактор разложения ДМД, представляющий собой обогреваемый паром кожухотрубчатый теплообменный аппарат, подают 9720 кг/ч ДМД, а также 29000 кг/час ТМК и 30400 кг/ч водного раствора, содержащего 5,8% масс. фосфорной кислоты. В реакторе поддерживают температуру 160°С, давление 0,9 МПа. С верха реактора выводят парожидкостной поток продуктов реакции (контактный газ), содержащий изопрен и часть воды. Этот поток охлаждают, конденсируют и выделяют изопрен. После переработки продуктов реакции получают 7760 кг/час изопрена.
Выход изопрена на пропущенный изобутилен был рассчитан исходя из равенства выходов стадий разложения ДМД на твердофазном и жидкофазном катализаторах и составляет 56,2 % масс.
2200 кг/час смеси ВПП подают в вакуумную ректификационную колонну. С верха этой колонны отбирают 220 кг/час дистиллята, с нижней части выводят 1980 кг/час кубового остатка. 220 кг/час дистиллята колонны перегонки ВПП направляют на жидкофазное разложение в изопрен в отдельный обогреваемый паром кожухотрубчатый реактор, куда также подают 620 кг/час ТМК и 640 кг/час водного раствора, содержащего 5,8% масс. фосфорной кислоты. В реакторе поддерживают температуру 150°С, давление 0,6 МПа. С верха реактора выводят парожидкостной поток продуктов реакции (контактный газ), содержащий изопрен и часть воды. Этот поток охлаждают, конденсируют и выделяют изопрен. После переработки продуктов реакции получают 100 кг/час изопрена, который объединяют с основным потоком изопрена, полученного разложением ДМД, и далее используют для производства полиизопренового каучука.
Пример 2
В реакторный блок синтеза ДМД, состоящий из трех последовательно соединенных реакторов, подают изобутан-изобутиленовую фракцию, содержащую 49,4% масс. изобутилена, со скоростью 18500 кг/час, а также формальдегидную шихту, представляющую собой водный раствор, содержащий 32,3% масс. формальдегида и 0,9-1,0% масс. хлорной кислоты, со скоростью 30000 кг/час. Массовое соотношение изобутилен/формальдегид поддерживают равным 0,93-0,96.
Синтез ДМД проводят в жидкофазных условиях, в реакторах поддерживают температуру 96-98°С, давление 1,9-2,0 МПа.
Конверсия изобутилена составляет 95%, конверсия формальдегида составляет 83%. Выход ВПП составляет 19,29% на полученный ДМД.
Выходящую из третьего реактора реакционную массу разделяют на водный и масляный слои. Водный слой, содержащий формальдегид, упаривают, полученный остаток смешивают с исходным водным раствором формальдегида, затем полученную смесь рециркулируют в реакторный блок в качестве формальдегидной шихты. Масляный слой, содержащий 16-17% ВПП, промывают водой, затем подвергают ректификационной переработке для выделения продуктов синтеза ДМД. На первой (по ходу потока масляного слоя) ректификационной колонне отгоняют отработанную изобутан-изобутиленовую фракцию, содержащую 5-7% изобутилена, которую направляют в процесс дегидрирования изобутана. Кубовую жидкость первой колонны подают во вторую ректификационную колонну, где отгоняют триметилкарбинольную фракцию, которую рециркулируют в реакторный блок синтеза ДМД. Кубовую жидкость второй колонны подают в третью ректификационную колонну, где отгоняют 14747 кг/час ДМД, который направляют на разложение в изопрен. Полученный после отгонки ДМД остаток в количестве 2846 кг/час представляет собой смесь ВПП, которую подают в вакуумную ректификационную колонну, откуда отобранный дистиллят направляют на разложение в изопрен. Селективность превращения изобутилена в ДМД составляет 82,7%.
Выход изопрена на пропущенный изобутилен составляет 78,6 % масс.
Пример 3
Процесс проводят по методике, описанной в примере 2, со следующими изменениями.
Формальдегидная шихта содержит 0,6% масс. хлорной кислоты и 0,4% масс. ортофосфорной кислоты. Конверсия формальдегида в реакторе составляет 82%, конверсия изобутилена составляет 94%. Выход ВПП составляет 19,30% на полученный ДМД. Содержание изобутилена в отработанной изобутан-изобутиленовой фракции 5-7%.
На третьей ректификационной отгоняют 14590 кг/час ДМД. ВПП, полученный после отгонки ДМД, - остаток в количестве 2816 кг/час. Селективность процесса составляет 82,7% масс. %.
Выход изопрена на пропущенный изобутилен составляет 77,7% масс.
Пример 4
Процесс проводят по методике, описанной в примере 2, со следующими изменениями.
Формальдегидная шихта содержит 0,4% масс. хлорной кислоты. Конверсия изобутилена в процессе синтеза 88%, конверсия формальдегида составляет 82%. Выход ВПП составляет 19,30% на полученный ДМД.
Содержание изобутилена в отработанной изобутан-изобутиленовой фракции 8-11%, что ниже, чем в примере 2.
На третьей ректификационной колонне отгоняют 13660 кг/час ДМД. ВПП, полученный после отгонки ДМД , - остаток в количестве 2636 кг/час.
Селективность превращения изобутилена в ДМД составляет 82,7% масс.
Выход изопрена на пропущенный изобутилен составляет 72,7% масс.
Пример 5
Процесс проводят по методике, описанной в примере 2, со следующими изменениями.
Формальдегидная шихта содержит 1,6% масс. хлорной кислоты. В реакторах синтеза ДМД поддерживают температуру 85-90°С.
Конверсия изобутилена составляет 96%, конверсия формальдегида составляет 83%. Выход ВПП составляет 19,33% на полученный ДМД.
Содержание изобутилена в отработанной изобутан-изобутиленовой фракции составляет 4-6%.
На третьей ректификационной колонне отгоняют 14900 кг/час ДМД. ВПП, полученный после отгонки ДМД, - остаток в количестве 2880 кг/час.
Селективность превращения изобутилена в ДМД составляет 82,7% масс.
Выход изопрена на пропущенный изобутилен составляет 79,4% масс.
Пример 6
Процесс проводят по методике, описанной в примере 2, со следующими изменениями.
В реакторах синтеза ДМД поддерживают температуру 90-95°С. Конверсия изобутилена составляет 93%, конверсия формальдегида составляет 83%. Выход ВПП составляет 19,29% на полученный ДМД.
Содержание изобутилена в отработанной изобутан-изобутиленовой фракции составляет 5-7%.
На третьей ректификационной колонне отгоняют 14440 кг/час ДМД. ВПП, полученные после отгонки ДМД, - остаток в количестве 2786 кг/час.
Селективность превращения изобутилена в ДМД составляет 79,4% масс.
Выход изопрена на пропущенный изобутилен составляет 76,9% масс.
Пример 7
Процесс проводят по методике, описанной в примере 2, со следующими изменениями.
Формальдегидная шихта содержит 0,8% масс. хлорной кислоты и 0,4% масс. ортофосфорной кислоты. Конверсия формальдегида в реакторе составляет 83%, конверсия изобутилена составляет 95%. Выход ВПП составляет 19,29% на полученный ДМД.
Содержание изобутилена в отработанной изобутан-изобутиленовой фракции 5-7%.
На третьей ректификационной отгоняют 14750 кг/час ДМД. ВПП, полученный после отгонки ДМД, - остаток в количестве 2846 кг/час. Селективность превращения изобутилена в ДМД составляет 82,7% масс.
Выход изопрена на пропущенный изобутилен составляет 78,6% масс.
Пример 8
Процесс проводят по методике, описанной в примере 2, со следующими изменениями.
В реакторный блок подают изобутан-изобутиленовую фракцию, содержащую 38% масс. изобутилена, со скоростью 24050 кг/час. Формальдегидная шихта содержит 3,0% масс. хлорной кислоты. Конверсия изобутилена в процессе синтеза составляет 95%, конверсия формальдегида составляет 83%. Выход ВПП составляет 19,30% на полученный ДМД.
Содержание изобутилена в отработанной изобутан-изобутиленовой фракции составляет 5-7%.
На третьей ректификационной колонне отгоняют 14590 кг/час ДМД. ВПП, полученные после отгонки ДМД, - остаток в количестве 2816 кг/час.
Селективность превращения изобутилена в ДМД составляет 81,1% масс.
Выход изопрена на пропущенный изобутилен составляет 77,1% масс.
Пример 9
Процесс проводят по методике, описанной в примере 2, со следующими изменениями.
В реакторный блок подают изобутан-изобутиленовую фракцию, содержащую 44% масс. изобутилена, со скоростью 20600 кг/час. Формальдегидная шихта содержит 1,6% масс. хлорной кислоты. Конверсия изобутилена составляет 96%, конверсия формальдегида составляет 83%. Выход ВПП составляет 19,33 на полученный ДМД.
Содержание изобутилена в отработанной изобутан-изобутиленовой фракции составляет 5-7%.
На третьей ректификационной колонне отгоняют 14900 кг/час ДМД. ВПП, полученные после отгонки ДМД, - остаток в количестве 2880 кг/час.
Селективность превращения изобутилена в ДМД составляет 82,7% масс.
Выход изопрена на пропущенный изобутилен составляет 79,4% масс.
Характеристики процессов по Примерам 1-9, а также показатели степени превращения исходных продуктов представлены в Таблице 1.
Полученные показатели подтверждают, что заявленный способ позволяет существенно повысить конверсию изобутилена и формальдегида в ДМД при сохранении высокой селективности, значительно снизить расход катализатора, образование высококипящих побочных продуктов, а также повысить выход изопрена.
А именно при проведении синтеза ДМД с использованием в качестве катализатора хлорной кислоты полученное количество диметилдиоксана из одного и того же количества исходного сырья существенно выше, при этом количество нежелательных продуктов, в том числе ВПП, снижено, смолообразования и забивки аппаратуры смолами не происходит. Использование в качестве катализатора хлорной кислоты позволяет повысить производительность установки получения ДМД на 20-25%.
При проведении синтеза ДМД с использованием в качестве катализатора смеси хлорной и фосфорной кислот при их концентрации в формальдегидной шихте 1% масс. и соотношении 1,5:1 основные показатели процесса синтеза диметилдиоксана остаются на том же уровне, как и с использованием хлорной кислоты при ее концентрации в формальдегидной шихте, 0,9-1,0%. Таким образом, замена части хлорной кислоты на другую кислоту не влияет на показатели процесса.
При проведении синтеза ДМД с использованием в качестве катализатора хлорной кислоты при концентрации в формальдегидной шихте 0,4% масс. все показатели процесса выше, чем в способе, описанном в сравнительном примере.
Таким образом, заявленный способ изобретения позволяет существенно снизить расход кислотного катализатора, повысить конверсию изобутилена и формальдегида при высокой селективности превращения изобутилена, снизить выход побочных продуктов, особенно высококипящих побочных продуктов и повысить выход изопрена.
Таблица 1
Показатели процесса получения изопрена
Показатели процесса Пример 1 (сравнительный) Пример 2 Пример 3 Пример 4 Пример 5 Пример 6 Пример 7 Пример 8 Пример 9
1. Подача фракции С4 в реактор синтеза ДМД, кг/ч 20200 18500 18500 18500 18500 18500 18500 24050 20600
2. Концентрация изобутилена в фракции С4, % масс. 41,3 49 49 49 49 49 49 38 44
3. Подача формальдегидной шихты в реактор синтеза ДМД, кг/ч 29600 30000 30000 30000 30000 30000 30000 30000 30000
4. Содержание в формальдегидной шихте, % масс.:
- формальдегида 26,5 32,3 32,3 32,3 32,3 32,3 32,3 32,3 32,3
- хлорной кислоты - 0,9-1,0 0,6 0,4 1,6 0,9-1,0 0,8 3,0 1,6
- щавелевой кислоты 1,2 - - - - - - -
- фосфорной кислоты 1,8 - 0,4 - - - 0,4 - -
5. Показатели по синтезу ДМД:
- температура в реакторе, °С 100 96-98 96-98 96-98 85-90 90-95 96-98 96-98 96-98
- давление в реакторе, МПа 2,0 1,9-2,0 1,9-2,0 1,9-2,0 1,8-1,9 1,8-1,9 1,9-2,0 1,9-2,0 1,9-2,0
- конверсия формальдегида, % 81,6 83 82 82 83 83 83 83 83
- конверсия изобутилена, % масс. 80,7 95 94 88 96 93 95 95 96
- селективность превращения изобутилена в ДМД, % масс. 69,7 82,7 82,7 82,7 82,7 82,7 82,7 81,1 82,7
- выработка ДМД, кг/ч 9720 14750 14590 13660 14900 14440 14750 14590 14900
- выработка ВПП, кг/ч 2200 2846 2816 2636 2880 2786 2846 2816 2880
- выход ВПП на ДМД, % масс. 22,63 19,29 19,30 19,30 19,33 19,29 19,29 19,30 19,33
6. Выработка изопрена, кг/ч 5686*) 8626 8532 7988 8713 8444 8626 8532 8713
7. Выход изопрена на пропущенный изобутилен, % масс. 56,1 78,4 77,5 72,6 79,2 76,7 78,4 76,9 79,2
*) расчетное количество

Claims (39)

1. Способ получения изопрена, включающий конденсацию изобутилена с формальдегидом в присутствии кислотного катализатора с получением 4,4-диметил-1,3-диоксана, и превращение 4,4-диметил-1,3-диоксана в изопрен, отличающийся тем, что в качестве кислотного катализатора используют хлорную кислоту или смесь хлорной кислоты с органическими и/или неорганическими кислотами.
2. Способ по п. 1, в котором в качестве кислотного катализатора используют смесь хлорной и фосфорной кислот или смесь хлорной и щавелевой кислот, или смесь хлорной, фосфорной и щавелевой кислот.
3. Способ по п. 2, в котором массовое соотношение хлорной кислоты и фосфорной и/или щавелевой кислот составляет (99-60):(1-40), предпочтительно (90-70):(10-30), наиболее предпочтительно 80:20.
4. Способ по п. 1, в котором концентрация кислотного катализатора составляет не менее 0,3% масс., предпочтительно от 0,4-3,0% масс., наиболее предпочтительно от 1,0 до 1,2% масс.
5. Способ по п. 1, в котором изобутилен используют в виде изобутан-изобутиленовой фракции.
6. Способ по п. 5, в котором концентрация изобутилена в изобутан-изобутиленовой фракции составляет не менее 30% масс., предпочтительно от 35 до 50% масс., наиболее предпочтительно от 48 до 50% масс.
7. Способ по п. 1, в котором синтез 4,4-диметил-1,3-диоксана осуществляется при температуре 80-110°С, предпочтительно 85-100°С, наиболее предпочтительно 98-100°С.
8. Способ по п. 1, в котором синтез 4,4-диметил-1,3-диоксана осуществляется при давлении 1,3-2,5 МПа, предпочтительно 1,6-2,0 МПа, наиболее предпочтительно 1,8-2,0 МПа.
9. Способ по п. 1, в котором формальдегид используют в виде водного раствора.
10. Способ по п. 9, в котором концентрация формальдегида в водном растворе составляет не менее 20% масс., предпочтительно от 30 до 40% масс., наиболее предпочтительно от 34 до 36% масс.
11. Способ по любому из пп. 1-10, в котором
- продукт реакции, содержащий 4,4-диметил-1,3-диоксан, разделяют на масляный и водный слои;
- ректификацией выделяют из масляного слоя триметилкарбинол, 4,4-диметил-1,3-диоксан, непрореагировавшие С4 углеводороды и высококипящие органические побочные продукты;
- водный слой концентрируют и возвращают на синтез 4,4,-диметил-1,3-диоксана.
12. Способ по п. 11, в котором высококипящие органические побочные продукты подвергают дальнейшей переработке с получением контактного газа, содержащего изопрен, изобутилен и формальдегид.
13. Способ по п. 12, в котором смесь высококипящих органических побочных продуктов, полученных на стадии синтеза 4,4-диметил-1,3-диоксана, перегоняют на ректификационной колонне и далее полученный дистиллят подвергают гетерогенно-каталитическому разложению при температуре 400-450°С и давлении 0,12-0,16 МПа в присутствии водяного пара с получением контактного газа, содержащего изопрен, изобутилен и формальдегид.
14. Способ по п. 13, в котором контактный газ, полученный после разложения высококипящих органических побочных продуктов, перерабатывают совместно с контактным газом после разложения 4,4-диметил-1,3-диоксана.
15. Способ по любому из пп. 1-10, в котором превращение 4,4-диметил-1,3-диоксана в изопрен осуществляют гетерогенно-каталитическим разложением на кальцийфосфатном катализаторе в присутствии водяного пара с получением контактного газа, содержащего изопрен.
16. Способ по п. 15, в котором разложение 4,4-диметил-1,3-диоксана проводят при температуре 290-380°С и давлении 0,12-0,16 МПа.
17. Способ по любому из пп. 1-10, в котором контактный газ, содержащий изопрен, полученный после разложения 4,4-диметил-1,3-диоксана, конденсируют, полученную смесь разделяют на водный и углеводородный слои, изопрен выделяют из углеводородного слоя ректификацией, с последующей его очисткой от примесей.
18. Способ получения изопрена, включающий:
- конденсацию изобутилена в виде изобутан-изобутиленовой фракции с водным раствором формальдегида в присутствии кислотного катализатора, выбранного из хлорной кислоты или смеси хлорной кислоты с органическими и/или неорганическими кислотами;
- разделение реакционной смеси на масляный и водный слои;
- выделение ректификацией из масляного слоя 4,4-диметил-1,3-диоксана, триметилкарбинола, непрореагировавших С4-углеводородов и высококипящих органических побочных продуктов;
- выпаривание водного слоя и его возврат на синтез 4,4-диметил-1,3-диоксана;
- переработку высококипящих побочных продуктов с получением контактного газа, содержащего изопрен, изобутилен и формальдегид;
- каталитическое расщепление 4,4-диметил-1,3-диоксана с получением контактного газа, содержащего изопрен;
- конденсацию контактного газа разложения 4,4-диметил-1,3-диоксана;
- выделение изопрена из углеводородного конденсата ректификацией и его очистку от примесей.
19. Способ по п. 18, в котором соотношение хлорной кислоты и фосфорной и/или щавелевой кислот составляет (99-60):(1-40), предпочтительно (90-70):(10-30), наиболее предпочтительно 80:20.
20. Способ по п. 18, в котором концентрация кислотного катализатора составляет не менее 0,3% масс., предпочтительно от 0,4-3,0% масс., наиболее предпочтительно от 1,0 до 1,2% масс.
21. Способ по п. 18, в котором концентрация изобутилена в изобутан-изобутиленовой фракции составляет не менее 30% масс., предпочтительно от 35 до 50% масс., наиболее предпочтительно от 48 до 50% масс.
22. Способ по п. 18, в котором синтез 4,4-диметил-1,3-диоксана осуществляется при температуре 80-110°С, предпочтительно 85-100°С, наиболее предпочтительно 98-100°С.
23. Способ по п. 18, в котором синтез 4,4-диметил-1,3-диоксана осуществляется при давлении 1,6-2,0 МПа, предпочтительно 1,6-2,0 МПа, наиболее предпочтительно 1,8-2,0 МПа.
24. Способ по п. 21, в котором концентрация формальдегида в водном растворе составляет не менее 20% масс., предпочтительно от 30 до 40% масс., наиболее предпочтительно от 34 до 36% масс.
25. Способ по любому из пп. 18-24, в котором смесь высококипящих органических побочных продуктов, полученных на стадии синтеза 4,4-диметил-1,3-диоксана, перегоняют на ректификационной колонне и далее полученный дистиллят подвергают гетерогенно-каталитическому разложению на керамической насадке при температуре 400-450°С и давлении 0,12-0,16 МПа в присутствии водяного пара с получением контактного газа, содержащего изопрен, изобутилен и формальдегид.
26. Способ по п. 25, в котором контактный газ, полученный после разложения высококипящих органических побочных продуктов, перерабатывают совместно с контактным газом, полученным после разложения 4,4-диметил-1,3-диоксана.
27. Способ по любому из пп. 18-24, в котором превращение 4,4-диметил-1,3-диоксана в изопрен осуществляют гетерогенно-каталитическим разложением на кальцийфосфатном катализаторе в присутствии водяного пара с получением контактного газа, содержащего изопрен.
28. Способ по п. 27, в котором разложение 4,4-диметил-1,3-диоксана проводят при температуре 290-380°С и давлении 0,12-0,16 МПа.
29. Способ получения 4,4-диметил-1,3-диоксана конденсацией изобутилена с формальдегидом в присутствии кислотного катализатора, отличающийся тем, что в качестве кислотного катализатора используют хлорную кислоту или смесь хлорной кислоты с органическими и/или неорганическими кислотами.
30. Способ по п. 29, в котором в качестве кислотного катализатора используют смесь хлорной и фосфорной кислот или смесь хлорной и щавелевой кислот, или смесь хлорной, фосфорной и щавелевой кислот.
31. Способ по п. 30, в котором массовое соотношение хлорной кислоты и фосфорной и/или щавелевой кислот составляет (99-60):(1-40), предпочтительно (90-70):(10-30), наиболее предпочтительно 80:20.
32. Способ по п. 29, в котором концентрация кислотного катализатора составляет не менее 0,3% масс., предпочтительно от 0,4-3,0% масс, наиболее предпочтительно от 1,0 до 1,2% масс.
33. Способ по п. 29, в котором изобутилен используют в виде изобутан-изобутиленовой фракции.
34. Способ по п. 33, отличающийся тем, что концентрация изобутилена в изобутан-изобутиленовой фракции составляет не менее 30% масс., предпочтительно от 35 до 50% масс, наиболее предпочтительно от 48 до 50% масс.
35. Способ по п. 33, в котором синтез 4,4-диметил-1,3-диоксана осуществляется при температуре 80-110°С, предпочтительно 85-100°С, наиболее предпочтительно 98-100°С.
36. Способ по п. 29, в котором синтез 4,4-диметил-1,3-диоксана осуществляется при давлении 1,3-2,5 МПа, предпочтительно1,6-2,0 МПа, наиболее предпочтительно 1,8-2,0 МПа.
37. Способ по п. 29, в котором формальдегид используют в виде водного раствора.
38. Способ по п. 37, в котором концентрация формальдегида в водном растворе составляет не менее 20% масс., предпочтительно от 30 до 40% масс., наиболее предпочтительно от 34 до 36% масс.
39. Способ по любому из пп. 29-38, в котором
- продукт реакции, содержащий 4,4-диметил-1,3-диоксан, разделяют на масляный и водный слои;
- ректификацией выделяют из масляного слоя 4,4-диметил-1,3-диоксан, триметилкарбинол, непрореагировавшие С4 углеводороды и высококипящие органические побочные продукты;
- водный слой концентрируют и возвращают на синтез 4,4,-диметил-1,3-диоксана.
RU2014146119/04A 2014-11-17 2014-11-17 Способ получения изопрена RU2575926C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014146119/04A RU2575926C1 (ru) 2014-11-17 2014-11-17 Способ получения изопрена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014146119/04A RU2575926C1 (ru) 2014-11-17 2014-11-17 Способ получения изопрена

Publications (1)

Publication Number Publication Date
RU2575926C1 true RU2575926C1 (ru) 2016-02-27

Family

ID=55435555

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014146119/04A RU2575926C1 (ru) 2014-11-17 2014-11-17 Способ получения изопрена

Country Status (1)

Country Link
RU (1) RU2575926C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2255929C1 (ru) * 2004-02-25 2005-07-10 Воробьёв Олег Леонидович Способ получения изопрена
RU2458900C1 (ru) * 2011-04-07 2012-08-20 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Способ получения изопрена

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2255929C1 (ru) * 2004-02-25 2005-07-10 Воробьёв Олег Леонидович Способ получения изопрена
RU2458900C1 (ru) * 2011-04-07 2012-08-20 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Способ получения изопрена

Similar Documents

Publication Publication Date Title
EP0569248B1 (en) Improved process for the co-production of propylene oxide and styrene monomer
TWI447094B (zh) 將含有mtbe之混合物分裂以製備異丁烯之方法
JP6120830B2 (ja) 後処理部における廃水塔内での少なくとも1つの脱泡剤の存在下でのイソホロンの製造方法
WO2009116890A1 (ru) Способ переработки побочных продуктов жидкофазного синтеза изопрена из изобутилена и формальдегида
RU2624678C1 (ru) Способ получения 4,4-диметил-1,3-диоксана
RU2663292C1 (ru) Способ получения 4,4-диметил-1,3-диоксана
WO2016114687A1 (ru) Способ получения карбонильных соединений с2-с4
RU2575926C1 (ru) Способ получения изопрена
JP6456231B2 (ja) ジエン化合物の製造方法
RU2280022C1 (ru) Способ получения изопрена из изобутена и формальдегида
RU2458900C1 (ru) Способ получения изопрена
RU2446138C1 (ru) Способ получения изопрена
EP0030109B1 (en) Process for producing isoprene
RU2330008C1 (ru) Способ переработки метилдигидропирана и/или побочных продуктов синтеза изопрена из изобутилена и формальдегида
JP7380161B2 (ja) パラアルドールの製造方法
RU2412148C1 (ru) Одностадийный способ получения изопрена
US2082105A (en) Production of aliphatic amines
RU2330009C1 (ru) Способ получения изопрена
RU2459790C1 (ru) Способ получения изопрена
JP7380181B2 (ja) パラアルドールの製造方法
KR101161845B1 (ko) 알켄 화합물의 제조 방법
RU2255936C1 (ru) Способ получения 4,4-диметил-1,3-диоксана
JP3285439B2 (ja) 反応粗液の製造法および1,3−ブチレングリコ−ルの製造法
RU2312850C1 (ru) Способ получения 2-этилгексанола
US8088963B2 (en) Dehydration of 1-phenyl ethanol