RU2255929C1 - Способ получения изопрена - Google Patents

Способ получения изопрена Download PDF

Info

Publication number
RU2255929C1
RU2255929C1 RU2004105124/04A RU2004105124A RU2255929C1 RU 2255929 C1 RU2255929 C1 RU 2255929C1 RU 2004105124/04 A RU2004105124/04 A RU 2004105124/04A RU 2004105124 A RU2004105124 A RU 2004105124A RU 2255929 C1 RU2255929 C1 RU 2255929C1
Authority
RU
Russia
Prior art keywords
isoprene
decomposition
mpa
mixture
dimethyl
Prior art date
Application number
RU2004105124/04A
Other languages
English (en)
Inventor
О.Л. Воробьёв (RU)
О.Л. Воробьёв
А.В. Синицын (RU)
А.В. Синицын
Original Assignee
Воробьёв Олег Леонидович
Синицын Александр Васильевич
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Воробьёв Олег Леонидович, Синицын Александр Васильевич filed Critical Воробьёв Олег Леонидович
Priority to RU2004105124/04A priority Critical patent/RU2255929C1/ru
Application granted granted Critical
Publication of RU2255929C1 publication Critical patent/RU2255929C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Использование: нефтехимия. Сущность: на первой стадии синтезируют 4,4-диметил-1,3-диоксан (ДМД) конденсацией изобутилена с формальдегидом в присутствии кислотного катализатора при 80-100°С, давлении 1,6-2,0 МПа. Из масляного слоя реакционной массы выделяют ДМД и смесь высококипящих побочных продуктов (ВПП). На второй стадии ДМД разлагают на кальцийфосфатном катализаторе при 290-380°С, давлении 0,12-0,16 МПа в присутствии водяного пара. После последующей переработки контактного газа получают изопрен. Смесь ВПП перегоняют на вакуумной ректификационной колонне с получением дистиллята в количестве 30-35 мас.% от питания. Этот дистиллят направляют на гетерогенно-каталитическое разложение в изопрен на керамической насадке при 400-450°С, давлении 0,12-0,16 МПа в присутствии водяного пара, подаваемого в массовом соотношении к ВПП (2-5):1. Контактный газ после разложения ВПП перерабатывают совместно с контактным газом после разложения ДМД. Технический результат - снижение количества отходов процесса, повышение выработки изопрена без увеличения потребления исходного сырья. 2 з.п. ф-лы, 1 табл.

Description

Изобретение относится к нефтехимической промышленности, точнее к области получения мономеров для синтеза полимеров. Более конкретно изобретение относится к области получения изопрена.
Изопрен является мономером при получении полиизопренового каучука, бутилкаучука, изопренсодержащих полимеров, которые применяют в шинной промышленности и в производстве резинотехнических изделий.
Известен способ получения изопрена, включающий стадию жидкофазного синтеза 4,4-диметил-1,3-диоксана (ДМД) конденсацией формальдегида в виде водного раствора с изобутиленом в виде изобутиленсодержащей фракции С4 в присутствии в качестве катализатора серной кислоты при температуре 85-95°С, давлении 1,8-2,0 МПа, с разделением реакционной массы на водный и масляный слои. Из масляного слоя ректификацией выделяют ДМД и смесь высококипящих побочных продуктов (ВПП). Водный слой, содержащий серную кислоту и ВПП, нейтрализуют щелочью, затем упаривают. Остаток после упарки, содержащий соли и ВПП, направляют в сточные воды производства. Полученный ДМД далее подвергают гетерогенно-каталитическому разложению в изопрен на кальций-фосфатном катализаторе при температуре 370-390°С в присутствии водяного пара. Контактный газ после разложения ДМД охлаждают, разделяют на водный и углеводородный слои, из углеводородного слоя ректификацией выделяют изопрен [Огородников С.К. и Идлис Г.С. Производство изопрена. - Л.: Химия, 1973, с.48-63].
Недостатками данного способа являются наличие сточных вод, загрязненных солями и ВПП, значительное количество отходов - ВПП, которые не используются в самом процессе.
Известен способ получения изопрена, включающий стадию жидкофазного синтеза ДМД конденсацией формальдегида в виде водного раствора с изобутиленом в виде изобутиленсодержащей фракции С4 в присутствии в качестве катализатора серной кислоты при температуре 65-75°С, давлении 1,0-1,2 МПа, с разделением реакционной массы на водный и масляный слои, с упаркой водного слоя, с добавлением к остатку после упарки исходного водного раствора формальдегида и рециркуляцией полученной смеси в зону конденсации формальдегида с изобутиленом, с выделением ректификацией из масляного слоя ДМД и смеси ВПП. Полученный ДМД далее подвергают гетерогенно-каталитическому разложению в изопрен на катализаторе фосфорная кислота на носителе при температуре 250-300°С в присутствии водяного пара. Контактный газ после разложения ДМД охлаждают, разделяют на водный и углеводородный слои, из углеводородного слоя ректификацией выделяют изопрен [Огородников С.К. и Идлис Г.С. Производство изопрена. - Л.: Химия, 1973, с.64-70].
Недостатками такого способа являются образование смол, вызванное серной кислотой при упарке водного слоя, коррозия аппаратуры в присутствии серной кислоты, сложность эксплуатации реактора разложения ДМД с применяемым катализатором, значительное количество отходов.
Наиболее близким к заявляемому является известный способ получения изопрена, включающий стадию жидкофазного синтеза ДМД конденсацией формальдегида в виде водного раствора с изобутиленом в виде изобутиленсодержащей фракции С4 в присутствии щавелевой кислоты в качестве катализатора при температуре 80-100°С, давлении 1,6-2,0 МПа, с разделением реакционной массы на водный и масляный слои, с упаркой водного слоя, с добавлением к остатку после упарки исходного водного раствора формальдегида и рециркуляцией полученной смеси в зону конденсации формальдегида с изобутиленом, с выделением ректификацией из масляного слоя ДМД и смеси ВПП, включающий последующую стадию гетерогенно-каталитического разложения ДМД в изопрен на кальций-фосфатном катализаторе при температуре 290-380°С, давлении 0,12-0,16 МПа в присутствии водяного пара, с охлаждением и разделением контактного газа после разложения ДМД на водный и углеводородный слои, с выделением изопрена ректификацией из углеводородного слоя [Кирпичников П.А., Береснев В.В., Попова Л.М. Альбом технологических схем основных производств промышленности синтетического каучука. - Л.:Химия, 1986, с.36-53].
Недостатками вышеуказанного способа являются образование значительного количества отходов, не используемых в самом процессе (количество ВПП составляет 440-460 кг в расчете на 1 т полученного изопрена), недостаточная выработка изопрена из исходного сырья - формальдегида и изобутилена.
Задачей заявляемого способа является снижение количества отходов процесса получения изопрена и повышение выработки изопрена из того же самого количества сырья.
Указанная задача решается способом получения изопрена, включающим стадию жидкофазного синтеза ДМД конденсацией формальдегида в виде водного раствора с изобутиленом в виде изобутиленсодержащей фракции С4 в присутствии кислотного катализатора при температуре 80-100°С, давлении 1,6-2,0 МПа, с разделением реакционной массы на водный и масляный слои, с упаркой водного слоя, с добавлением к остатку после упарки исходного водного раствора формальдегида и рециркуляцией полученной смеси в зону конденсации формальдегида с изобутиленом, с выделением ректификацией из масляного слоя ДМД и смеси ВПП, включающим последующую стадию гетерогенно-каталитического разложения ДМД в изопрен на кальций-фосфатном катализаторе при температуре 290-380°С, давлении 0,12-0,16 МПа в присутствии водяного пара, с охлаждением и разделением контактного газа после разложения ДМД на водный и углеводородный слои, с выделением изопрена ректификацией из углеводородного слоя, причем смесь ВПП, полученных на стадии синтеза ДМД, перегоняют на вакуумной ректификационной колонне с получением дистиллята в количестве 30-35 мас.% от питания, дистиллят направляют на гетерогенно-каталитическое разложение в изопрен на керамической насадке при температуре 400-450°С, давлении 0,12-0,16 МПа в присутствии водяного пара, подаваемого в массовом соотношении к ВПП (2-5): 1, контактный газ после разложения ВПП перерабатывают совместно с контактным газом после разложения ДМД.
Как вариант предлагается способ, заключающийся в том, что в качестве кислотного катализатора синтеза ДМД используют щавелевую кислоту, фосфорную кислоту или смесь этих кислот.
Также как вариант предлагается способ, заключающийся в том, что перегонку ВПП проводят при следующих условиях:
температура верха,°С 155-170
температура куба,°С 190-200
давление, МПа 0,015-0,03
число тарелок 22-28
флегмовое число 1-1,5
Отличительными от прототипа признаками предлагаемого способа являются следующие:
смесь ВПП перегоняют на вакуумной ректификационной колонне с получением дистиллята в количестве 30-35 мас.% от питания;
ВПП, содержащиеся в дистилляте, направляют на гетерогенно-каталитическое разложение в изопрен на керамической насадке при температуре 400-450°С, давлении 0,12-0,16 МПа в присутствии водяного пара, подаваемого в массовом соотношении к ВПП (2-5):1; контактный газ после разложения ВПП перерабатывают совместно с контактным газом после разложения ДМД. В предлагаемом способе отходом процесса получения изопрена является кубовый остаток ректификационной колонны перегонки смеси ВПП. Отогнанную часть смеси ВПП (30-35 мас.%) используют в самом процессе для получения изопрена.
Проведение перегонки ВПП под вакуумом (при пониженном давлении) позволяет снизить рабочую температуру в колонне перегонки и избежать осмоления ВПП во время перегонки.
Увеличение доли дистиллята более 35 мас.% приводит к увеличению содержания в дистилляте наиболее высокомолекулярных и высококипящих компонентов смеси ВПП - производных диоксановых спиртов, полиолов, полимеров. Из этих соединений в указанных условиях гетерогенно-каталитического разложения образуются только кокс и смолы, которые приводят к быстрой дезактивации катализатора. Даже небольшие количества этих соединений снижают активность, увеличивает коксообразование и ухудшают работу катализатора разложения ВПП. В связи с этим разложение непосредственно всей массы ВПП трудно осуществить на практике, и в предлагаемом способе доля дистиллята составляет не более 35 мас.%.
При снижении доли дистиллята менее 30 мас.% отгоняются не все компоненты смеси ВПП, которые могут быть разложены с получением изопрена, что не позволяет в возможной мере уменьшить количество отходов процесса.
Используемая в качестве катализатора разложения керамическая насадка обеспечивает достаточную глубину превращения ВПП и достаточный выход изопрена. Водяной пар, подаваемый в зону разложения в массовом соотношении к ВПП (2-5):1, используется в качестве теплоносителя, для снижения коксообразования, поддержания стабильности каталитического действия и для улучшения работы катализатора. При снижении соотношения менее 2:1 снижается выход изопрена и увеличивается коксообразование. Увеличение соотношения более 5:1 нецелесообразно в связи с увеличением удельных энергозатрат.
При уменьшении температуры разложения менее 400°С снижается глубина превращения ВПП, уменьшается выход изопрена и снижается выработка изопрена.
При увеличении температуры более 450°С снижается выход изопрена и увеличивается коксообразование.
Объединение контактного газа после разложения ВПП с контактным газом после разложения ДМД облегчается проведением контактирования как при разложении ДМД, так и ВПП под одинаковым давлением. Объединенный контактный газ далее перерабатывают совместно, что упрощает процесс.
Предлагаемый способ по сравнению с прототипом позволяет снизить количество отходов процесса до 280-295 кг в расчете на 1 т изопрена, увеличить выработку изопрена на 6 мас.% без увеличения потребления исходного сырья.
Промышленное применение предлагаемого способа иллюстрируется примерами.
Пример 1.
В реакторный блок синтеза ДМД, состоящий из пяти трубчатых реакторов, подают изобутан-изобутиленовую фракцию с содержанием изобутилена 47,8 мас.% со скоростью 37,3 т/ч, а также формальдегидную шихту, представляющую собой водный раствор, содержащий 32,6 мас.% формальдегида, 1,3 мас.% щавелевой кислоты и 1,4 мас.% фосфорной кислоты, со скоростью 53,1 т/ч.
В реакторном блоке поддерживают температуру 98°С, давление 1,9 МПа. В этих условиях реакционная смесь находится в жидком состоянии. Конверсия формальдегида в реакторном блоке составляет 78,7 мас.%, конверсия изобутилена 79,3 мас.%.
Выходящую из реакторного блока реакционную массу разделяют на водный и масляный слои.
Водный слой упаривают, остаток после упарки смешивают с исходным водным раствором формальдегида, который представляет собой смесь свежего и возвратного раствора формальдегида, затем полученную смесь рециркулируют в реакторный блок в качестве формальдегидной шихты.
Масляный слой промывают водой, затем подвергают ректификационной переработке для выделения продуктов синтеза ДМД.
На первой (по ходу потока масляного слоя) ректификационной колонне отгоняют отработанную изобутан-изобутиленовую фракцию, которую отправляют на дальнейшую переработку известными методами.
Кубовую жидкость первой колонны подают во вторую ректификационную колонну, где отгоняют триметилкарбинольную фракцию, которую рециркулируют в реакторный блок синтеза ДМД.
Кубовую жидкость второй колонны подают в третью ректификационную колонну, где отгоняют ДМД в количестве 20,8 т/ч. Остаток после отгонки ДМД в количестве 4,68 т/ч представляет собой ВПП.
Отогнанный ДМД вместе с возвратным ДМД направляют на гетерогенно-каталитическое разложение в изопрен на кальций-фосфатном катализаторе. Для разложения ДМД используют два попеременно работающих секционных реактора. В реакторах поддерживают температуру 360°С, давление 0,12 МПа. В реакторы подают водяной пар в массовом соотношении к ДМД 1,8:1. Конверсия ДМД составляет 83,3 мас.%.
Образующийся контактный газ после разложения ДМД подают в систему охлаждения и конденсации, полученную жидкость разделяют на водный и углеводородный слои.
Из водного слоя ректификацией выделяют раствор возвратного формальдегида, который направляют в реакторный блок синтеза ДМД.
Углеводородный слой подают на установку выделения и очистки изопрена, где ректификацией выделяют целевой продукт - изопрен. Изопрен далее используют для получения полиизопренового каучука.
Кроме изопрена, из углеводородного слоя выделяют возвратный изобутилен, который присоединяют к свежей изобутан-изобутиленовой фракции, возвратный ДМД, который вместе с основным потоком ДМД подают на разложение в изопрен, и побочные продукты, образующиеся при разложении ДМД, которые направляют на утилизацию.
Смесь ВПП, полученных на стадии синтеза ДМД, подают для перегонки в ректификационную колонну, где поддерживают следующий режим работы:
температура верха,°С 155-170
температура куба,°С 190-200
давление, МПа 0,015-0,03
число тарелок 22-28
флегмовое число 1-1,5
С верха этой колонны отбирают дистиллят в количестве 1,41 т/ч. Доля дистиллята от питания составляет 30 мас.%. С нижней части колонны выводят кубовый остаток в количестве 3,27 т/ч. Этот кубовый остаток является отходом процесса получения изопрена. Кубовый остаток далее утилизируют известными способами.
Дистиллят колонны перегонки ВПП направляют на гетерогенно-каталитическое разложение в изопрен. Для разложения ВПП используют два попеременно работающих секционных реактора. Разложение проводят на керамической насадке, размещенной на полках реакторов. В реакторах поддерживают температуру 400°С, давление 0,12 МПа. В реакторы подают водяной пар в массовом соотношении к ВПП 2:1.
Образующийся контактный газ после разложения ВПП объединяют с контактным газом после разложения ДМД и далее перерабатывают совместно вышеуказанным способом.
Количество изопрена, вырабатываемого в процессе, составляет 11,1 т/ч, количество кубового остатка после перегонки ВПП (отходы процесса) в расчете на 1 т полученного изопрена составляет 295 кг.
Пример 2.
Процесс проводят аналогично примеру 1, однако имеются следующие отличия.
Конверсия формальдегида в реакторном блоке синтеза ДМД составляет 80,8 мас.%, конверсия изобутилена 81,2 мас.%.
Выработка ДМД составляет 21,3 т/ч, выработка ВПП на стадии синтеза ДМД составляет 4,83 т/ч.
В реакторах разложения ДМД поддерживают давление 0,13 МПа. Конверсия ДМД составляет 82,8 мас.%.
Отбор дистиллята на колонне перегонки ВПП составляет 1,55 т/ч, доля дистиллята 32 мас.% от питания, вывод кубового остатка 3,28 т/ч.
В реакторах разложения ВПП поддерживают температуру 415°С, давление 0,13 МПа. Водяной пар подают в массовом соотношении к ВПП 3:1.
Количество изопрена, вырабатываемого в процессе, составляет 11,4 т/ч, количество кубового остатка после перегонки ВПП в расчете на 1 т полученного изопрена составляет 288 кг.
Пример 3.
Процесс проводят аналогично примеру 1, однако имеются следующие отличия.
Конверсия формальдегида в реакторном блоке синтеза ДМД составляет 79,3 мас.%, конверсия изобутилена 79,7 мас.%.
Выработка ДМД составляет 20,9 т/ч, выработка ВПП на стадии синтеза ДМД составляет 4,74 т/ч.
В реакторах разложения ДМД поддерживают давление 0,14 МПа. Конверсия ДМД составляет 84,2 мас.%.
Отбор дистиллята на колонне перегонки ВПП составляет 1,62 т/ч, доля дистиллята 34 мас.% от питания, вывод кубового остатка 3,12 т/ч.
В реакторах разложения ВПП поддерживают температуру 430°С, давление 0,14 МПа. Водяной пар подают в массовом соотношении к ВПП 4:1.
Количество изопрена, вырабатываемого в процессе, составляет 11,2 т/ч, количество кубового остатка после перегонки ВПП в расчете на 1 т полученного изопрена составляет 279 кг.
Пример 4.
Процесс проводят аналогично примеру 1, однако имеются следующие отличия.
Конверсия формальдегида в реакторном блоке синтеза ДМД составляет 81,4 мас.%, конверсия изобутилена 81,6 мас.%.
Выработка ДМД составляет 21,4 т/ч, выработка ВПП на стадии синтеза ДМД составляет 4,92 т/ч.
В реакторах разложения ДМД поддерживают давление 0,16 МПа. Конверсия ДМД составляет 83,7 мас.%.
Отбор дистиллята на колонне перегонки ВПП составляет 1,72 т/ч, доля дистиллята 35 мас.% от питания, вывод кубового остатка 3,2 т/ч.
В реакторах разложения ВПП поддерживают температуру 450°С, давление 0,16 МПа. Водяной пар подают в массовом соотношении к ВПП 5:1.
Количество изопрена, вырабатываемого в процессе, составляет 11,5 т/ч, количество кубового остатка после перегонки ВПП в расчете на 1 т полученного изопрена составляет 278 кг.
Данные примеров осуществления способа сведены в таблицу.
Как следует из приведенных в таблице данных, предлагаемый способ позволяет снизить количество ВПП - отходов процесса получения изопрена до 280-295 кг в расчете на 1 т полученного изопрена. Кроме того, по сравнению с известным способом, предлагаемый способ позволяет повысить выработку изопрена на 6 мас.% без увеличения потребления исходного сырья.
Таблица
Показатели процесса получения изопрена Пример 1 Пример 2 Пример 3 Пример 4
1. Подача формальдегидной шихты на синтез ДМД, т/ч 53,1 53,1 53,1 53,1
2. Концентрация в формальдегидной шихте, мас.%:        
формальдегида 32,6 32,6 32,6 32,6
щавелевой кислоты 1,3 1,3 1,3 1,3
фосфорной кислоты 1,4 1,4 1,4 1,4
3. Подача изобутан-изобутиленовой фракции
на синтез ДМД, т/ч
       
37,3 37,3 37,3 37,3
4. Концентрация изобутилена в изобутан-изобутиленовой фракции, мас.% 47,8 47,8 47,8 47,8
5. Температура в реакторах синтеза ДМД, °С 98 98 98 98
6. Давление в реакторах синтеза ДМД, МПа 1,9 1,9 1,9 1,9
7. Конверсия формальдегида, мас.% 78,7 80,8 79,3 81,4
8. Конверсия изобутилена, мас.% 79,3 81,2 79,7 81,6
9. Выработка ДМД, т/ч 20,8 21,3 20,9 21,4
10. Выработка ВПП на стадии синтеза ДМД, т/ч 4,68 4,83 4,74 4,92
11. Температура в реакторах разложения ДМД,°С 360 360 360 360
12. Давление в реакторах разложения ДМД, МПа 0,12 0,13 0,14 0,16
продолжение таблицы
13. Конверсия ДМД, мас.% 83,3 82,8 84,2 83,7
14. Отбор дистиллята на колонне перегонки ВПП для разложения, т/ч 1,41 1,55 1,62 1,72
15. Доля дистиллята от питания на колонне перегонки ВПП, мас.% 30 32 34 35
16. Вывод кубового остатка на колонне перегонки ВПП, т/ч 3,27 3,28 3,12 3,2
17. Температура в реакторах разложения ВПП,°С 400 415 430 450
18. Давление в реакторах разложения ВПП, МПа 0,12 0,13 0,14 0,16
19. Массовое соотношение водяного пара к ВПП на входе в реактора разложения ВПП 2:1 3:1 4:1 5:1
20. Выработка изопрена, т/ч 11,1 11,4 11,2 11,5
21. Количество кубового остатка после перегонки ВПП (отходы процесса) в расчете на 1 т полученного изопрена, кг 295 288 279 278

Claims (3)

1. Способ получения изопрена, включающий стадию жидкофазного синтеза 4,4-диметил-1,3-диоксана конденсацией формальдегида в виде водного раствора с изобутиленом в виде изобутиленсодержащей фракции C4 в присутствии кислотного катализатора при температуре 80-100°С, давлении 1,6-2,0 МПа с разделением реакционной массы на водный и масляный слои, с упаркой водного слоя, с добавлением к остатку после упарки исходного водного раствора формальдегида и рециркуляцией полученной смеси в зону конденсации формальдегида с изобутиленом, с выделением ректификацией из масляного слоя 4,4-диметил-1,3-диоксана и смеси высококипящих побочных продуктов, включающий последующую стадию гетерогенно-каталитического разложения 4,4-диметил-1,3-диоксана в изопрен на кальций-фосфатном катализаторе при температуре 290-380°С, давлении 0,12-0,16 МПа в присутствии водяного пара, с охлаждением и разделением контактного газа после разложения 4,4-диметил-1,3-диоксана на водный и углеводородный слои, с выделением изопрена ректификацией из углеводородного слоя, отличающийся тем, что смесь высококипящих побочных продуктов, полученных на стадии синтеза 4,4-диметил-1,3-диоксана, перегоняют на вакуумной ректификационной колонне с получением дистиллята в количестве 30-35 мас.% от питания, дистиллят направляют на гетерогенно-каталитическое разложение в изопрен на керамической насадке при температуре 400-450°С, давлении 0,12-0,16 МПа в присутствии водяного пара, подаваемого в массовом соотношении с высококипящими побочными продуктами (2-5):1, контактный газ после разложения высококипящих побочных продуктов перерабатывают совместно с контактным газом после разложения 4,4-диметил-1,3-диоксана.
2. Способ по п.1, отличающийся тем, что в качестве кислотного катализатора синтеза 4,4-диметил-1,3-диоксана используют щавелевую кислоту, фосфорную кислоту или смесь этих кислот.
3. Способ по п.1, отличающийся тем, что перегонку высококипящих побочных продуктов проводят при следующих условиях:
Температура верха, °С 155-170
Температура куба, °С 190-200
Давление, МПа 0,015-0,03
Число тарелок 22-28
Флегмовое число 1-1,5
RU2004105124/04A 2004-02-25 2004-02-25 Способ получения изопрена RU2255929C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004105124/04A RU2255929C1 (ru) 2004-02-25 2004-02-25 Способ получения изопрена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004105124/04A RU2255929C1 (ru) 2004-02-25 2004-02-25 Способ получения изопрена

Publications (1)

Publication Number Publication Date
RU2255929C1 true RU2255929C1 (ru) 2005-07-10

Family

ID=35838345

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004105124/04A RU2255929C1 (ru) 2004-02-25 2004-02-25 Способ получения изопрена

Country Status (1)

Country Link
RU (1) RU2255929C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458900C1 (ru) * 2011-04-07 2012-08-20 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Способ получения изопрена
RU2575926C1 (ru) * 2014-11-17 2016-02-27 Публичное акционерное общество "СИБУР Холдинг" Способ получения изопрена

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
П.А. КИРПИЧНИКОВ и др. Альбом технологических схем основных производств промышленности синтетического каучука, Л., Химия, 1986, с. 36-53. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458900C1 (ru) * 2011-04-07 2012-08-20 Общество с ограниченной ответственностью "Научно-производственное объединение ЕВРОХИМ" Способ получения изопрена
RU2575926C1 (ru) * 2014-11-17 2016-02-27 Публичное акционерное общество "СИБУР Холдинг" Способ получения изопрена

Similar Documents

Publication Publication Date Title
CN106687437B (zh) 制备甲基丙烯醛的优化方法
US9695142B2 (en) Method for producing 2-substituted 4-hydroxy-4-methyl-tetrahydropyrans, said method using recycling
EP0018159B1 (en) Process for the production of phenol, acetone and alpha methylstyrene
CA2354741C (en) Process and apparatus for isolating organic substances from a gas mixture in which these substances are present
US3972955A (en) Process for preparation of isoprene
SK6612003A3 (en) Process and apparatus for the work-up by distillation of cleavage product mixtures produced in the cleavage of alkylaryl hydroperoxides
US7671239B2 (en) Method and apparatus for producing purified methyl isobutyl ketone
RU2255929C1 (ru) Способ получения изопрена
US9969661B2 (en) Method of preparing conjugated diene and device therefor
RU2255936C1 (ru) Способ получения 4,4-диметил-1,3-диоксана
RU2458900C1 (ru) Способ получения изопрена
RU2255928C1 (ru) Способ получения изопрена
RU2458922C2 (ru) Способ получения 4,4-диметил-1,3-диоксана
CN100408537C (zh) 制备丙烯酸的方法
RU2458923C1 (ru) Способ получения 4,4-диметил-1,3-диоксана
RU2330007C1 (ru) Способ получения изопрена
RU2099319C1 (ru) Способ получения изопрена
RU2202530C2 (ru) Способ получения изопрена
RU2248961C1 (ru) Способ получения изопрена
RU2248960C2 (ru) Способ получения изопрена
SU1133257A1 (ru) Способ выделени и очистки циклододеканона
RU2459790C1 (ru) Способ получения изопрена
RU2575926C1 (ru) Способ получения изопрена
RU2553823C1 (ru) Способ получения изопрена
RU2156234C1 (ru) Способ получения изопрена

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080226