RU2573026C2 - Способ теплового расщепления высокоуглеродистых веществ в реакторе с подвижным слоем - Google Patents

Способ теплового расщепления высокоуглеродистых веществ в реакторе с подвижным слоем Download PDF

Info

Publication number
RU2573026C2
RU2573026C2 RU2013146366/05A RU2013146366A RU2573026C2 RU 2573026 C2 RU2573026 C2 RU 2573026C2 RU 2013146366/05 A RU2013146366/05 A RU 2013146366/05A RU 2013146366 A RU2013146366 A RU 2013146366A RU 2573026 C2 RU2573026 C2 RU 2573026C2
Authority
RU
Russia
Prior art keywords
bulk material
reactor
vertical column
bulk
cavity
Prior art date
Application number
RU2013146366/05A
Other languages
English (en)
Other versions
RU2013146366A (ru
Inventor
Томас ШТУМП
Леонхард БАУМАНН
Роланд МЁЛЛЕР
Гунтер УЛЬБРИХ
Томас ФОН-БЁЦИ
Original Assignee
Эколуп Гмбх.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эколуп Гмбх. filed Critical Эколуп Гмбх.
Publication of RU2013146366A publication Critical patent/RU2013146366A/ru
Application granted granted Critical
Publication of RU2573026C2 publication Critical patent/RU2573026C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/002Feeding of the particles in the reactor; Evacuation of the particles out of the reactor with a moving instrument
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/12Continuous processes using solid heat-carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0035Periodical feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/0045Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by means of a rotary device in the flow channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/30Fuel charging devices
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • C10J3/42Rotary grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • C10K1/024Dust removal by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00539Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/0061Controlling the level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • B01J2208/00778Kinetic energy reducing devices in the flow channel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime

Abstract

Изобретение относится к способу теплового расщепления высокоуглеродистых веществ в реакторе с подвижным слоем, выполненном с возможностью прохождения сверху вниз сыпучего материала. Вертикальная колонна для подачи сыпучего материала дополнена вертикальной колонной для отвода сыпучего материала. Ширина и высота колонн, а также свойства сыпучего материала выбраны таким образом, что вследствие внутреннего падения давления колонн сыпучего материала осуществляется герметизация внутренней части реактора от атмосферы. При этом обеспечивается непрерывный и порционный поток сыпучего материала. В верхней зоне реактора предусмотрена первая полость, а в нижней зоне реактора предусмотрена вторая полость, между которыми создается разность Δp давлений по меньшей мере в 50 мбар, которая стабилизирована за счет падения давления в столбе сыпучего материала внутри реактора с подвижным слоем. Изобретение обеспечивает безопасный производственный процесс с надежно герметизированной внутренней частью реактора. 14 з.п. ф-лы, 1 ил.

Description

Настоящее изобретение относится к способу теплового расщепления высокоуглеродистых вещества в реакторе с подвижным слоем, выполненном с возможностью прохождения сверху вниз сыпучего материала, включающему подачу потоков материала посредством вертикальной колонны сыпучего материала.
Подобный способ известен, например, из DE 102007062414 A1. При эксплуатации подобного устройства могут возникать трудности, когда внутри реактора должны задаваться определенные режимы давления, чтобы, с одной стороны, получить устойчивые химические реакции, а с другой стороны, при необходимости, способствовать противотоку газов в реакторе.
Термическая утилизация высокоуглеродистых веществ, прежде всего газификация полимерсодержащих отходов, загрязненных носителей углерода или даже биомассы, много лет вызывает большой интерес. Прежде всего, для осуществления газификации полимерсодержащих отходов в прошлом прилагались большие усилия. Многочисленные способы были реализованы в промышленном масштабе, причем применялись различные типы реакторов, как, например, вращающиеся трубчатые реакторы, реакторы с псевдоожиженным слоем или же реакторы с подвижным слоем.
Известные устройства и способы имели существенные недостатки, которые почти во всех случаях приводили к прекращению этих крупных проектов. Прежде всего, речь идет о проблемах на участке подачи полимеров в реактор, а также вывода отходов. Проблематичным было также протекание через реактор и поддержание непрерывного противотока газообразной рабочей среды.
Для подачи и отвода исходных продуктов и отходов в большинстве случаев применялись дорогостоящие шнековые, шлюзовые или же плунжерные устройства, которые обычно имеют сложные конструктивные признаки, такие как, например, вращающиеся части, механизмы с заслонками, а также статические или динамические герметизирующие системы. Один пример такого устройства без использования огнестойкого сыпучего материала известен из DE 102007017402 A1. Прежде всего, при использовании низкоплавких материалов, таких, как, например, полимеры, в этих устройствах возникали серьезные проблемы вследствие наплавлений, налипаний и закупорок. Вследствие этого происходил простой установки, т.к. нужно часто было очищать подающие и отводящие устройства, или же возникали неплотности относительно внутренней части реактора. Особенно неблагоприятны связанные с этим колебания режима давления или выброс неопределенных газовых смесей.
Задача данного изобретения состоит в том, чтобы усовершенствовать способ ранее описанного типа в том отношении, чтобы был возможен безопасный производственный процесс с надежно герметизированной внутренней частью реактора и установление предпочтительного режима давления.
Согласно изобретению задача решена посредством того, что потоки материала отводят из реактора с подвижным слоем посредством вертикальной колонны сыпучего материала, а ширину и высоту колонн сыпучего материала, а также свойства сыпучего материала выбирают таким образом, что колонны сыпучего материала, с одной стороны, вследствие их внутреннего падения давления осуществляют герметизацию внутренней части реактора от атмосферы, а с другой стороны, обеспечивают непрерывный или порционный поток сыпучего материала, причем в верхней зоне реактора предусматривают первую полость, а в нижней зоне реактора предусматривают вторую полость, между которыми создают разность Δp давлений по меньшей мере в 50 мбар, которую стабилизируют за счет падения давления в столбе сыпучего материала внутри реактора с подвижным слоем.
Оказалось, что с помощью подобного способа можно термически утилизировать высокоуглеродистые вещества, причем установка имеет высокую готовность и в области подачи и отвода обходится без легкоповреждаемой арматуры. Способ особенно пригоден, прежде всего, для получения синтез-газа, который может собираться в верхней полости реактора и отводиться с помощью подходящих устройств.
Вертикальные колонны сыпучего материала в сочетании с вертикальным подвижным слоем допускают движение сыпучего материала исключительно вследствие собственного веса сыпучего материала, причем не нужно предусматривать подвижных элементов для обеспечения потока сыпучего материала.
Предпочтительно, вертикальную колонну сыпучего материала для подачи потоков материала соединяют с возможностью коммуникации, т.е. сообщают, с сыпучей массой в реакторе с подвижным слоем. Этот вариант осуществления особо предпочтителен при непрерывных потоках материала, т.к. вследствие транспортировки сыпучего материала без зон свободного падения в пространство реактора исключаются прерывистые режимы движения.
В другом предпочтительном варианте осуществления изобретения вертикальную колонну сыпучего материала для отвода потоков материала отделяют посредством выполненной в нижней части реактора полости от сыпучего материала подвижного слоя самого реактора с подвижным слоем. Подобный прием оказался выгодным для предотвращения закупорок реактора и тем самым прерывания потоков материала из-за слипающихся частиц сыпучего материала.
Полость в нижней части реактора может быть создана, например, посредством дозатора сыпучего материала, который непрерывно или порциями дозирует сыпучий материал из реактора с подвижным слоем в образованную полость. В качестве дозаторов сыпучего материала могут применяться, например, устройства с дисковым питателем или подвижным столом, которые известны, например, в строительстве шахтных обжиговых печей.
В другом предпочтительном варианте осуществления изобретения сыпучий материал ниже полости в нижней части реактора соединяют с возможностью коммуникации, т.е. сообщают, с вертикальной колонной сыпучего материала для отвода потоков материала.
В еще одном предпочтительном варианте осуществления изобретения выше входного отверстия для сыпучего материала в вертикальной колонне сыпучего материала для подачи потоков материала предусмотрено транспортное устройство, посредством которого сыпучий материал перемешивают с высокоуглеродистыми веществами, таким образом используя сыпучий материал в качестве транспортирующей среды для подачи высокоуглеродистых веществ в реактор с подвижным слоем.
Таким образом, путем целенаправленной настройки содержания углерода в благоприятных условиях может достигаться эксплуатация реактора без дополнительной подачи топлива.
В особо предпочтительном варианте осуществления изобретения посредством охлаждающего устройства с помощью охлаждающей среды опосредованно охлаждают, полностью или частично, трубчатый кожух вертикальной колонны сыпучего материала для подачи. Охлаждающей средой в простейшем случае может быть вода, причем возможны также варианты осуществления, в которых вода подается не в замкнутом цикле, а течет во внутреннюю часть реактора.
Охлаждение трубчатого кожуха препятствует тому, чтобы вследствие, возможно, преобладающих в этой области довольно высоких температур легкоплавкие полимеры в колонне сыпучего материала могли спекаться между собой.
Трубчатый кожух колонны сыпучего материала для подачи можно также полностью или частично погружать в верхнюю часть подвижного слоя реактора, тем самым создавая верхнюю полость в верхней части реактора с подвижным слоем.
Среднее рабочее давление в реакторе с подвижным слоем предпочтительно устанавливать меньшим 3 бар (избыточное давление), предпочтительно меньшим 1 бар (избыточное давление) и, особо предпочтительно, в области менее 0,1 бар (избыточное давление).
В примере геометрической формы колонн сыпучего материала, оказавшейся эффективной в эксплуатации, вертикальную колонну сыпучего материала для подачи выполняют таким образом, что она имеет коэффициент >10, полученный из ее высоты сыпучего материала (в метрах), деленной на максимальную разность между рабочим давлением (в бар) в головке реактора и существующим атмосферным давлением (в бар), а вертикальную колонну для сыпучего материала для отвода выполняют таким образом, чтобы она имела коэффициент >5, полученный из ее высоты сыпучего материала (в метрах), деленной на максимальную разность между рабочим давлением (в бар) на дне реактора и существующим атмосферным давлением (в бар). Различные коэффициенты получаются потому, что свойства сыпучего материала изменяются вследствие окисленных компонентов с углеродом.
Вышеупомянутая заданная разность давлений по меньшей мере в 50 мбар предпочтительно составляет максимально 1 бар, т.е. не более 1 бар, т.к. более высокие разности давления для безопасного производственного процесса, как правило, нецелесообразны.
Выгодно вести процесс с сыпучими массами из оксида кальция, карбоната кальция и/или гидроксида кальция как компонентами, особенно когда они в случае галогенсодержащих полимеров, обладающих положительными свойствами, связывают галогены и выводят их из процесса. Особо выгодно при этом каталитическое действие соединений кальция, прежде всего, оксида кальция при тепловом расщеплении. Способ может объединяться с получением негашеной извести, так что устройство можно эксплуатировать экономично. Относительно самого процесса расщепления оказалось выгодно, если общая Δ процессов окисления в реакторе с подвижным слоем на всех ступенях составляет менее 0,5. В целом окисление происходит также при отрицательном кислородном балансе, причем значение Δ можно снижать далее, и хорошие результаты достигнуты даже в области Δ порядка 0,3.
Вариант осуществления данного изобретения показан на прилагаемом рисунке. В варианте осуществления показана шахтная обжиговая печь, например, применяемая в процессах обжига или спекания в промышленных масштабах, в модифицированном варианте осуществления, которая применяется как реактор 1 с подвижным слоем. В реактор 1 с подвижным слоем непрерывно загружается смесь из высокоуглеродистых веществ 2 и огнестойкого сыпучего материала 3. Подача происходит посредством транспортного устройства 4 и вертикальной колонны 5 сыпучего материала, сыпучая масса которой соединена с возможностью коммуникации с сыпучей массой 6 в реакторе с подвижным слоем. Течение сыпучего материала 6 в реакторе 1 с подвижным слоем происходит под действием силы тяжести сверху вниз, причем дозатор 7 сыпучего материала передает сыпучую массу из реактора 1 с подвижным слоем непрерывно или порциями в полость 8, расположенную на нижнем конце реактора 1 с подвижным слоем. Из-за такого отбора сыпучая масса непрерывно сыпется вниз, вследствие чего смесь из высокоуглеродистых веществ 2 и огнестойкого сыпучего материала 3 через колонну 5 сыпучего материала также может дополнительно сыпаться в реактор с подвижным слоем.
Реактор с подвижным слоем эксплуатируется как так называемый противоточный газогенератор, в котором газ 9 подается снизу возле дна реактора. Вследствие процесса газификации при этом образуются по меньшей мере три следующие рабочие зоны: в верхней части сыпучей массы 6 зона A пиролиза, в которой углеродсодержащие вещества уже частично реагируют или коксуются, дальше по ходу вниз более горячая зона B обжига, в которой остальные углеродные соединения преобразуются в синтез-газы, а в нижней части находится зона C охлаждения. Образующийся в рабочих зонах A и B синтез-газ выходит из реактора с подвижным слоем в головке в позиции 10.
Колонна 5 сыпучего материала для подачи сыпучего материала в данном случае выполнена в виде погружной трубы, опущенной в верхнюю часть реактора с подвижным слоем. С помощью выбора глубины погружения погружной трубы можно целенаправленно влиять на высоту сыпучего материала 6 в реакторе и, прежде всего, на объем возникающей вследствие этого газовой камеры 11.
Поскольку в газовой камере 11 в верхней области реактора могут возникать температуры выше 300°C, в показанном примере осуществления погруженный в реактор участок трубчатого кожуха колонны 5 сыпучего материала охлаждается водой при помощи выполненной двойной стенки 12 или системы охлаждающих змеевиков. Таким образом возможно даже при низких температурах беспроблемно перерабатывать в системе плавкие высокоуглеродистые вещества, например полимеры, без возникновения налипаний. От применения дорогостоящей арматуры или шлюзовых систем для подачи в реактор 1 с подвижным слоем 1 можно отказаться.
Имеющаяся в полости 8 смесь из огнестойкого сыпучего материала 3 и термически не утилизируемых отходов, например золы, соединена с возможностью коммуникации с колонной 13 сыпучего материала для отвода материала из реакторной системы.
Колонна 13 сыпучего материала стоит с возможностью коммуникации нижним выпускным отверстием непосредственно на отводящем устройстве 14, состоящем, например, из вибрационного лотка или отводного транспортера. Посредством этого отводящего устройства 14 колонна 13 сыпучего материала непрерывно или порциями разгружается из реакторной системы.
Управление реактором происходит посредством расхода окисляющейся смеси и доли высокоуглеродистых веществ. Такое управление может, с одной стороны, осуществляться в области перемешивающего устройства 4, а с другой стороны, посредством одного только расхода через дозатор 7 выше полости 8, регулирующий скорость прохождения сыпучего материала в реакторе. Чтобы иметь возможность надежно вести процесс термической утилизации, постоянно должна быть обеспечена надежная герметизация внутренней полости реактора относительно атмосферы. С одной стороны, это необходимо, чтобы воспрепятствовать выходу синтез-газа, а с другой стороны, чтобы в случае разрежения исключить проникновение кислорода воздуха и образование взрывоопасной смеси во внутренней полости реактора. Такая герметизация происходит за счет падения давления в обеих колоннах сыпучего материала для подачи и отвода. Поэтому нужно обеспечить, чтобы обе колонны сыпучего материала постоянно и в каждом режиме работы имели минимальный уровень заполнения. Поэтому, колонна 5 сыпучего материала для подачи материала оснащена уровнемером 15, действующим как на регулируемый параметр на частоту вращения транспортного устройства 4 для подачи материала в колонну 5 сыпучего материала и постоянно обеспечивающим минимальный уровень заполнения.
Обеспечение минимального уровня заполнения в колонне 13 сыпучего материала для отвода материала также происходит посредством уровнемера 16. Он может по выбору посредством регулятора 17 воздействовать как на регулируемый параметр D на скорость выгрузки дозатора 7 или в качестве альтернативы как на регулируемый параметр E на частоту вращения отводящего устройства 14. Раздельные контуры управления для колонн сыпучего материала обеспечивают, что даже при нестабильности потока сыпучего материала внутри реактора всегда остается достаточная высота в колонне сыпучего материала в зоне подачи и в зоне отвода.

Claims (15)

1. Способ теплового расщепления высокоуглеродистых веществ в реакторе (1) с подвижным слоем, выполненном с возможностью прохождения сверху вниз сыпучего материала, включающий подачу потоков материала посредством вертикальной колонны (5) сыпучего материала, отличающийся тем, что потоки материала отводят из реактора (1) с подвижным слоем посредством вертикальной колонны (13) сыпучего материала, а ширину и высоту колонн (5, 13) сыпучего материала, а также свойства сыпучего материала выбирают таким образом, что колонны (5, 13) сыпучего материала, с одной стороны, вследствие их внутреннего падения давления осуществляют герметизацию внутренней части реактора от атмосферы, а с другой стороны, обеспечивают непрерывный или порционный поток сыпучего материала, причем в верхней зоне реактора предусматривают первую полость (11), а в нижней зоне реактора предусматривают вторую полость (9), между которыми создают разность Δρ давлений по меньшей мере в 50 мбар, которую стабилизируют за счет падения давления в столбе сыпучего материала (6) внутри реактора (1) с подвижным слоем.
2. Способ по п. 1, отличающийся тем, что вертикальную колонну (5) сыпучего материала для подачи потоков материала соединяют с возможностью коммуникации с сыпучей массой (6) в реакторе (1) с подвижным слоем.
3. Способ по п. 1, отличающийся тем, что вертикальную колонну (13) сыпучего материала для отвода потоков материала отделяют посредством выполненной в нижней части реактора полости (9) от сыпучего материала (6) подвижного слоя самого реактора (1) с подвижным слоем.
4. Способ по п. 3, отличающийся тем, что полость (9) в нижней части реактора (1) создают посредством дозатора (7) сыпучего материала, который непрерывно или порциями дозирует сыпучий материал (6) из реактора (1) с подвижным слоем в образованную полость.
5. Способ по п. 4, отличающийся тем, что для дозирования сыпучего материала используют устройство с дисковым питателем или подвижным столом.
6. Способ по п. 3, отличающийся тем, что сыпучий материал ниже полости (9) в нижней части реактора (1) соединяют с возможностью коммуникации с вертикальной колонной (13) сыпучего материала для отвода потоков материала.
7. Способ по п. 1, отличающийся тем, что выше входного отверстия для сыпучего материала в вертикальной колонне (5) сыпучего материала для подачи потоков материала предусмотрено транспортное устройство (4), посредством которого сыпучий материал перемешивают с высокоуглеродистыми веществами, таким образом используя сыпучий материал в качестве транспортирующей среды для подачи высокоуглеродистых веществ в реактор (1) с подвижным слоем.
8. Способ по п. 1, отличающийся тем, что посредством охлаждающего устройства (12) с помощью охлаждающей среды опосредованно охлаждают, полностью или частично, трубчатый кожух вертикальной колонны (5) сыпучего материала для подачи.
9. Способ по п. 8, отличающийся тем, что трубчатый кожух вертикальной колонны (5) сыпучего материала для подачи полностью или частично погружают в верхнюю часть реактора (1) с подвижным слоем, тем самым создавая верхнюю полость (11) в верхней части реактора (1) с подвижным слоем.
10. Способ по п. 1, отличающийся тем, что среднее рабочее давление в реакторе с подвижным слоем устанавливают меньшим 3 бар (избыточное давление), предпочтительно меньшим 1 бар (избыточное давление) и, особо предпочтительно, в области менее 0,1 бар (избыточное давление).
11. Способ по п. 1 , отличающийся тем, что вертикальную колонну (5) сыпучего материала для подачи выполняют таким образом, чтобы она имела коэффициент >10, полученный из ее высоты сыпучего материала (в метрах), деленной на максимальную разность между рабочим давлением (в бар) в головке реактора и существующим атмосферным давлением (в бар), а вертикальную колонну (13) для сыпучего материала для отвода выполняют таким образом, чтобы она имела коэффициент >5, полученный из ее высоты сыпучего материала (в метрах), деленной на максимальную разность между рабочим давлением (в бар) на дне реактора и существующим атмосферным давлением (в бар).
12. Способ по п. 1, отличающийся тем, что Δρ составляет максимально 1 бар.
13. Способ по п. 1, отличающийся тем, что сыпучая масса содержит доли оксида кальция, карбоната кальция и/или гидроксида кальция.
14. Способ по п. 1, отличающийся тем, что общую Δ процесса окисления в реакторе (1) с подвижным слоем устанавливают на всех ступенях меньшей 0,5.
15. Способ по одному из предшествующих пунктов, отличающийся тем, что процессом теплового расщепления управляют посредством изменения расхода сыпучего материала (6) и высокоуглеродистых веществ и/или долей добавляемых высокоуглеродистых веществ.
RU2013146366/05A 2011-03-18 2012-03-16 Способ теплового расщепления высокоуглеродистых веществ в реакторе с подвижным слоем RU2573026C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011014349A DE102011014349A1 (de) 2011-03-18 2011-03-18 Wanderbettreaktor
DE102011014349.1 2011-03-18
PCT/EP2012/001181 WO2012126595A1 (de) 2011-03-18 2012-03-16 Wanderbettreaktor

Publications (2)

Publication Number Publication Date
RU2013146366A RU2013146366A (ru) 2015-04-27
RU2573026C2 true RU2573026C2 (ru) 2016-01-20

Family

ID=45953058

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013146366/05A RU2573026C2 (ru) 2011-03-18 2012-03-16 Способ теплового расщепления высокоуглеродистых веществ в реакторе с подвижным слоем

Country Status (12)

Country Link
US (2) US20140127090A1 (ru)
EP (1) EP2686406A1 (ru)
JP (1) JP2014511903A (ru)
KR (1) KR20140017601A (ru)
CN (1) CN103534339B (ru)
AU (1) AU2012231048B2 (ru)
CA (1) CA2835611A1 (ru)
DE (1) DE102011014349A1 (ru)
RU (1) RU2573026C2 (ru)
UA (1) UA108026C2 (ru)
WO (1) WO2012126595A1 (ru)
ZA (1) ZA201306991B (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012009265B4 (de) * 2012-05-11 2013-12-05 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Gekühlter Ringgassammler
DE102014000471A1 (de) * 2014-01-16 2015-07-16 Ecoloop Gmbh Verfahren zur thermischen Spaltung von organischen Abfallstoffen
DE102014012432A1 (de) * 2014-08-26 2016-03-03 Ecoloop Gmbh Verfahren zur Spaltung von kohlen- und wasserstoffhaltigen Substanzen
CN105013289B (zh) * 2015-07-04 2017-03-29 上海煜工环保科技有限公司 均压移动床式活性焦吸附塔
FR3055889A1 (fr) * 2016-09-14 2018-03-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme de dosage et d'injection par gravite de poudres en phase dense
CN116688874A (zh) * 2023-08-07 2023-09-05 北京拓川科研设备股份有限公司 一种基于进出料精准控制的移动床反应器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2164660A (en) * 1984-09-21 1986-03-26 English Electric Co Ltd Gasification apparatus
RU2062284C1 (ru) * 1994-06-23 1996-06-20 Институт химической физики в Черноголовке РАН Способ переработки горючих отходов типа изношенных шин или подобных резиновых отходов
RU2073558C1 (ru) * 1993-07-30 1997-02-20 Товарищество с ограниченной ответственностью Научно-производственное объединение "Ленар" Устройство для регулирования расхода твердого сыпучего материала
WO2006087310A1 (fr) * 2005-02-15 2006-08-24 Thales Installation de production d'hydrogene ou de gaz de synthese par gazeification
DE102007017402A1 (de) * 2007-04-13 2008-10-16 Lurgi Gmbh Verfahren und Vorrichtung zum Umwandeln fester Brennstoffe in brennbares Produktgas

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE618502C (de) * 1933-02-14 1935-09-10 Metallgesellschaft Akt Ges Vorrichtung zum kontinuierlichen Trocknen und Kuehlen im Vakuum
FR1175273A (fr) * 1957-05-16 1959-03-23 Pechiney Four pour la production continue de nitrure d'aluminium
US3936131A (en) * 1973-03-21 1976-02-03 Chrysler Corporation Snap-in assembly and contact terminal for wedge base lamps
US4286775A (en) * 1979-07-16 1981-09-01 Midrex Corporation Apparatus for producing molten iron from iron oxide with coal and oxygen
DE3005205C2 (de) * 1980-02-12 1983-11-24 Deutsche Kommunal-Anlagen Miete GmbH, 8000 München Austragsvorrichtung für eine Abfall-Pyrolyseanlage
FR2587713B1 (fr) * 1985-09-26 1987-12-18 Usinor Procede de fabrication de coke moule par chauffage electrique dans un four a cuve et four a cuve pour la fabrication d'un tel coke
US5628261A (en) * 1995-03-20 1997-05-13 Chemical Lime Company Method and furnace for decomposing solid waste materials
JPH10324880A (ja) * 1997-05-23 1998-12-08 Mitsui Eng & Shipbuild Co Ltd 廃棄物処理装置における熱分解残留物排出装置のブリッジ検出装置及びブリッジ破壊装置
CN2322967Y (zh) * 1998-05-06 1999-06-09 太原重机煤气设备工程公司 两段式混合煤气发生炉
AU2002251474A1 (en) * 2001-04-19 2002-11-05 Ebara Corporation Gasification apparatus and method of operating the same
JP2004143296A (ja) * 2002-10-24 2004-05-20 Setec:Kk 部分燃焼式バイオマスガス化装置
JP4687873B2 (ja) * 2005-02-02 2011-05-25 サントリーホールディングス株式会社 炭化装置
DE102007062414B4 (de) 2007-12-20 2009-12-24 Ecoloop Gmbh Autothermes Verfahren zur kontinuierlichen Vergasung von kohlenstoffreichen Substanzen
CN101942344B (zh) * 2010-09-20 2013-10-30 中国科学院山西煤炭化学研究所 多段分级转化流化床煤气化的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2164660A (en) * 1984-09-21 1986-03-26 English Electric Co Ltd Gasification apparatus
RU2073558C1 (ru) * 1993-07-30 1997-02-20 Товарищество с ограниченной ответственностью Научно-производственное объединение "Ленар" Устройство для регулирования расхода твердого сыпучего материала
RU2062284C1 (ru) * 1994-06-23 1996-06-20 Институт химической физики в Черноголовке РАН Способ переработки горючих отходов типа изношенных шин или подобных резиновых отходов
WO2006087310A1 (fr) * 2005-02-15 2006-08-24 Thales Installation de production d'hydrogene ou de gaz de synthese par gazeification
DE102007017402A1 (de) * 2007-04-13 2008-10-16 Lurgi Gmbh Verfahren und Vorrichtung zum Umwandeln fester Brennstoffe in brennbares Produktgas

Also Published As

Publication number Publication date
DE102011014349A1 (de) 2012-09-20
AU2012231048B2 (en) 2015-09-03
ZA201306991B (en) 2014-07-30
WO2012126595A1 (de) 2012-09-27
US20140127090A1 (en) 2014-05-08
AU2012231048A1 (en) 2013-10-31
RU2013146366A (ru) 2015-04-27
CN103534339A (zh) 2014-01-22
KR20140017601A (ko) 2014-02-11
EP2686406A1 (de) 2014-01-22
UA108026C2 (ru) 2015-03-10
CN103534339B (zh) 2016-04-06
CA2835611A1 (en) 2012-09-27
US20150376001A1 (en) 2015-12-31
JP2014511903A (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
RU2573026C2 (ru) Способ теплового расщепления высокоуглеродистых веществ в реакторе с подвижным слоем
EP2526176B1 (en) Downdraft gasifier with improved stability
US9568189B2 (en) Thermal gasification reactor for producing heat energy from waste
JP5627711B2 (ja) ガス発生器
JP6402419B2 (ja) 供給原料をガス化するための方法およびデバイス
TWI427140B (zh) 具水平方向汽化器之低溫汽化系統
CA2793104C (en) Method and apparatus for processing of carbon-containing feed stock into gasification gas
KR20090019891A (ko) 수직으로 연속적인 공정 영역을 포함하는 가스화기
WO2013036281A2 (en) Plasma gasification reactors with modified carbon beds and reduced coke requirements
CN101495808A (zh) 带有横向传送系统的水平取向气化器
AU2011223466A1 (en) Carbon Conversion System with integrated processing zones
JP2007084389A (ja) 流体有機化合物の改質処理方法
RU2607662C2 (ru) Способ и устройство для газификации твердых горючих материалов под давлением в стационарном слое
CN103214049A (zh) 用于闪蒸器中的脱气的系统
US20180304220A1 (en) Fluidized bed reaction system and method of producing titanium tetrachloride
US9926500B2 (en) Gasifier for solid carbon fuel with active transfer means
KR20220129197A (ko) 폐플라스틱 재활용을 위한 나선형 가스화로를 포함하는 이중 유동층 반응기
JP6914118B2 (ja) 廃棄物溶融炉及びその運転方法
KR20170044095A (ko) 가스화기
EP2719747A1 (en) Gasification method of coal-bearing raw materials, char and coal, and the equipment arrangement for conducting this process
JPH0425993B2 (ru)

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160317