RU2571564C2 - Способ и система для выполнения визуализации методом низкодозовой компьютерной томографии - Google Patents

Способ и система для выполнения визуализации методом низкодозовой компьютерной томографии Download PDF

Info

Publication number
RU2571564C2
RU2571564C2 RU2013102504/08A RU2013102504A RU2571564C2 RU 2571564 C2 RU2571564 C2 RU 2571564C2 RU 2013102504/08 A RU2013102504/08 A RU 2013102504/08A RU 2013102504 A RU2013102504 A RU 2013102504A RU 2571564 C2 RU2571564 C2 RU 2571564C2
Authority
RU
Russia
Prior art keywords
resolution
image data
low
data
projection data
Prior art date
Application number
RU2013102504/08A
Other languages
English (en)
Other versions
RU2013102504A (ru
Inventor
Раз КАРМИ
Амир ЛИВНЕ
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2013102504A publication Critical patent/RU2013102504A/ru
Application granted granted Critical
Publication of RU2571564C2 publication Critical patent/RU2571564C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/436Limited angle

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

Изобретение относится к системам сбора и реконструкции данных компьютерной томографии. Техническим результатом является снижение дозы радиации при сканировании методом компьютерной томографии. Предложен способ формирования данных изображения с высоким разрешением. Способ включает в себя этап, на котором управляют, посредством контроллера источника, источником излучения для модуляции потока испускаемого излучения между высоким потоком и низким потоком в течение разных периодов интегрирования при одном сканировании. А также согласно способу формируют изображения с высоким разрешением на основании данных проекций высокого разрешения, полученных с недостаточным шагом дискретизации, полученных в течение высокого потока, и неполных данных проекций низкого разрешения, полученных в течение низкого потока. 2 н. и 13 з.п. ф-лы, 12 ил.

Description

Настоящее изобретение относится, в общем, к сбору и реконструкции данных КТ (компьютерной томографии) и, в частности, к низкодозовой КТ с высокоразрешающей реконструкцией.
Компьютерно-томографические сканеры (КТ-сканеры) испускают ионизирующее излучение, которое может причинять повреждение живой ткани, что приводит к повышению риска ракового заболевания, опухолей и генетического поражения при характерных дозах и может вызывать ожоги кожи и выпадение волос при высоких дозах. По существу, для ослабления облучения пациента ионизирующим излучением (т.е. снижения дозы пациента) во время КТ-сканирования предложены различные подходы.
Один подход, предложенный в литературе, заключался в применении принципов сканирования со сжатием. При этом задачей является реконструкция томографического изображения, свободного от артефактов, по данным, полученным с существенно недостаточным шагом дискретизации, посредством компенсации недостающих проекций с помощью дополнительной информации, например, предварительного изображения, и введения общих ограничений разреженности. Однако в большинстве клинических случаев КТ-изображения не имеют заметно разреженных характеристик, так как полезная информация широко распределена как в области изображения, так и в области синограммы.
В результате для применения методов сканирования со сжатием требуется предварительное изображение, которое содержит признаки, аналогичные признакам заданного изображения. В данных случаях разность между двумя изображениями может иметь разреженные характеристики, которые можно использовать в дальнейшем в процессе специализированной реконструкции. Предварительное изображение получают, например, КТ-сканированием с небольшой разницей по времени до (или после) получения заданного сканированного изображения, например, при перфузионной КТ; или предварительное изображение может быть изображением с отсчетами, взятыми по полному углу, и низким временным разрешением в КТ сердца. Такие методы, как PICCS и HYPR основаны на упомянутых предварительных сканированных изображениях.
К сожалению, снижение дозы облучения неизбежно усиливает шум в изображении, в котором преобладает, главным образом, собственный пуассоновский (или «квантовый») шум рентгеновских фотонов, достигающих детекторов. Кроме того, стремление работать с очень низкой дозой в обычных КТ-системах создает значительный избыточный шум и артефакты в изображении. Это происходит, когда электронные сигналы, формируемые детекторными элементами, приближаются к уровню электронного шума.
В современной клинической практике КТ-сканеры применяют для решения множества разных задач, которые могут значительно отличаться по требованиям. Например, сканирования сердца обычно нуждаются в высоких плотностях потока рентгеновского излучения в течение относительно короткого периода времени (обеспечиваемых большим током трубки), тогда как сканирования легких можно выполнять с очень малым током трубки. По приведенной причине важно, чтобы детекторы излучения предоставляли надежные данные как при очень низкой, так и при высокой плотностях потока рентгеновского излучения.
Обычные интегрирующие детекторы, которые выполнены на основе фотодиодов с интегрированием тока, связанных с пикселями сцинтиллятора, обладают ограниченной способностью регистрации слабых сигналов и при этом широким динамическим диапазоном. Как правило, в данном случае уровень шума, который вызывается как темновым током фотодиодов, так и электронным шумом, эквивалентен приблизительно 10-50 средним рентгеновским квантам. Точное число зависит от конкретной конструкции и от рабочего режима. Уровень шума определяет минимальный предел регистрации, так как надежную регистрацию можно выполнять, когда измеренное значение заметно больше, чем шум приблизительно больше, по меньшей мере, в два раза.
Обычные интегрирующие детекторы обеспечивают полный динамический диапазон с хорошей линейностью, который обычно является очень широким и может превышать 1:10000, но практическая проблема состоит, главным образом, в надежной регистрации небольшого числа рентгеновских квантов на одно считывание, т.е. порядка 1-100 рентгеновских квантов. Приведенный диапазон регистрации является ключевым для работы при очень низких дозах рентгеновского облучения, поскольку многие проекции, которые проходят через сильно ослабленный объект, могут достигать упомянутых низких значений. Проблема слабого сигнала может встречаться еще чаще, если предполагается применение детекторных матриц с особенно малыми пикселями для получения высокоразрешающих сканеров. Аналогичное ограничение может возникать в двухслойных детекторах, предназначенных для применения в двух энергетических диапазонах, в которых поток излучения делится между двумя каналами регистрации.
Аспекты настоящей заявки относятся к вышеупомянутым и другим проблемам.
В соответствии с одним аспектом способ включает в себя этап формирования данных изображения с высоким разрешением на основании данных проекций высокого разрешения, полученных с недостаточным шагом дискретизации, и неполных данных проекций низкого разрешения. Данные проекций высокого разрешения, полученные с недостаточным шагом дискретизации, и неполные данные проекций низкого разрешения собирают в течение разных интервалов сбора данных одного сканирования.
В соответствии с другим аспектом система включает в себя источник излучения, сконфигурированный с возможностью попеременного модулирования испускаемого потока излучения между высоким и низким потоками в течение разных периодов интегрирования при сканировании, детекторную матрицу, сконфигурированную с возможностью попеременного переключения мультиплексирования пикселей детектора между высоким и низким разрешениями скоординировано с модуляцией потоков, и блок реконструкции, сконфигурированный с возможностью реконструкции данных изображения с высоким разрешением на основании данных проекций, соответствующих данным проекций высокого разрешения, полученным с недостаточным шагом дискретизации, и неполных данных проекций низкого разрешения.
В соответствии с другим аспектом компьютерно-считываемый носитель информации, кодированный командами, которые при исполнении процессором компьютера, задают процессору: применить алгоритм реконструкции при сканировании со сжатием для реконструкции полных данных изображения с высоким разрешением на основании данных проекций высокого разрешения, полученных с недостаточным шагом дискретизации, и неполных данных проекций низкого разрешения, полученных в процессе того же сканирования.
Изобретение может принимать форму различных компонентов и компоновок компонентов и различных этапов и компоновок этапов. Чертежи предназначены только для иллюстрации предпочтительных вариантов осуществления и не подлежат истолкованию в смысле ограничения изобретения.
Фиг. 1 - примерная система визуализации.
Фиг. 2-6 - примерные уровни/группировки и шаблоны мультиплексирования пикселей детектора/модуляции потока излучения.
Фиг. 7 - примерный способ реконструкции полных данных изображения с высоким разрешением по данным проекций высокого разрешения, полученным с недостаточным шагом дискретизации, и неполным данным проекций низкого разрешения
Фиг. 8 - примерный способ реконструкции полных данных изображения с высоким разрешением, представленных на фиг. 7.
На фиг. 1 изображена система 100 визуализации, например компьютерно-томографический (КТ) сканер. Система 100 визуализации включает в себя стационарный гентри 102 и поворотный гентри 104, который установлен с возможностью поворота на стационарном гентри 102. Поворотный гентри 104 поворачивается вокруг области 106 обследования относительно продольной z-оси. Опора 118, например, стол, поддерживает пациента в области 106 обследования. Опору 118 можно использовать для различного позиционирования пациента относительно x-, y- и/или z-осей до, во время и/или после сканирования.
Источник 108 излучения, например рентгеновская трубка, установлен на поворотном гентри 104 и поворачивается с поворотным гентри 104 и испускает излучение. Контроллер 110 источника управляет источником 108 излучения. Как подробно поясняется в дальнейшем, в одном варианте осуществления контроллер 110 источника может управлять источником 108 излучения для модуляции испускаемого потока излучения между, по меньшей мере, первым и вторым разными потоками в течение разных интервалов интегрирования/периодов сканирования. Когда первый (или второй) поток больше, чем второй (или первый) поток, модуляция между первым и вторым потоками в течение сканирования снижает дозу пациента в сравнении с таким же сканированием, при котором источник 108 испускает излучение, имеющее только высокий поток.
Детекторная матрица 112, чувствительная к излучению, содержащая, по меньшей мере, один ряд пикселей детектора, расположена напротив источника 108 и регистрирует излучение, которое пересекает область 106 обследования и формирует данные проекций, характеризующие упомянутую область. Контроллер 114 детектора управляет детекторной матрицей 112, чувствительной к излучению. Как подробно поясняется в дальнейшем, в одном варианте осуществления, контроллер 110 выборочно изменяет мультиплексирование пикселей детектора таким образом, что для регистрации проекций служат отдельные пиксели или более крупные группы пикселей. В общем, отдельные пиксели обеспечивают относительно более высокое разрешение в сравнении с более крупными группами пикселей.
Блок 124 реконструкции реконструирует данные проекций и формирует данные объемного изображения, характеризующие область 106 обследования. Блок 124 реконструкции может использовать различные алгоритмы реконструкции, например, алгоритмы из банка 116 алгоритмов реконструкции и/или другие алгоритмы. Как подробно поясняется в дальнейшем, блок 124 реконструкции может использовать алгоритм, по которому, чтобы реконструировать полные данные объемного изображения с высоким разрешением, используют данные проекций высокого разрешения, полученные с недостаточным шагом дискретизации, и реконструированные данные изображения низкого разрешения. Упомянутый алгоритм обеспечивает снижение дозы пациента и формирование полных данных изображения с высоким разрешением при одновременном смягчении ограничений регистрации, соответствующих слабому потоку излучения.
Универсальная компьютерная система выполняет функцию операторского пульта 120, который включает в себя удобочитаемые устройства вывода, например дисплей и/или принтер, и устройства ввода, например клавиатуру и/или мышь. Резидентное программное обеспечение пульта 120 позволяет оператору управлять работой системы 100, например позволяет пользователю выбирать метод сканирования, при котором модулируется испускаемый поток излучения, и скоординировано с ним изменяется мультиплексирование пикселей детектора (что дает в результате данные проекций высокого и низкого разрешения, зарегистрированные в пространстве и во времени), и выбирать алгоритм реконструкции для реконструкции полных данных изображения с высоким разрешением по полученным данным проекций.
Как кратко изложено выше, контроллер 110 источника может управлять источником 108 излучения для модуляции потока излучения, и контроллер 114 детектора может управлять детекторной матрицей 112 для изменения мультиплексирования пикселей. Следует понимать, что для описанной работы можно использовать различные подходы, и что подходы могут учитывать различные факторы, например, в частности, клиническое применение, оптимизацию, возможные снижения качества изображения (например, в зависимости от разрешения, шума, артефактов и т.п.), дозу облучения пациента, системные возможности и рабочие характеристики и/или другие факторы.
Например, мультиплексирование пикселей можно обеспечивать аналоговым мультиплексированием нескольких пикселей детектора в более крупный эффективный пиксель (обычно, применяют группу из двух или четырех пикселей). В данном случае более крупная группа пикселей будет характеризоваться абсолютным уровнем электронного шума, приблизительно таким же, как небольшой базовый пиксель, но при этом средний рентгеновский поток, падающий на более крупную группу пикселей, будет больше в число раз, равное отношению площадей. Поэтому отношение сигнал/шум повышается соответственно увеличению площади эффективного пикселя. При использовании более крупных пикселей пространственное разрешение снижается.
Модуляцию потока излучения можно обеспечить изменением температуры электронного эмиттера, например горячего катода; питанием рентгеновской трубки импульсным источником высокого напряжения для воздействия на электрическое поле между источником электронов и анодом рентгеновской трубки; изменением электрического поля непосредственно перед электронным эмиттером; применением электрического и/или магнитного отклонения электронного пучка, падающего на поверхность анода рентгеновской трубки; применением специальных геометрических конструкций вращающегося анода или изготовлением анода из разных материалов и т.п. Подход для обеспечения требуемого среднего потока излучения в течение временного интервала состоит в использовании очень быстрого циклического переключения излучения между состояниями включено и выключено.
На фиг. 2, 3, 4 и 5 представлены соответствующие неограничивающие примеры модулирования потока излучения и мультиплексирования пикселей детекторов, скоординированных между собой. На фиг. 2(a), 3(a), 4(a) и 5(a) по y-оси представлена относительная интенсивность или поток, и на всех фигурах x-ось представляет время.
На фиг. 2(a) поток поочередно изменяется между двумя уровнями 202 и 204, при этом низкий уровень 202 составляет одну четвертую от высокого уровня 204. Шаблон 206 модуляции модулирует поток таким образом, чтобы поток имел высокий уровень 204 в течение одного периода интегрирования (интервала сбора данных, проекции и т.п.) и низкий уровень 202 в течение следующих двух периодов интегрирования. Приведенный шаблон повторяется с течением времени. На фиг. 2(b) представлен соответствующий шаблон 208 мультиплексирования детектора, по которой одиночные небольшие пиксели 210 детектора регистрируют излучение в течение высоких уровней 204, и группировки 212 одиночных небольших пикселей детектора регистрируют излучение в течение низких уровней 202. В приведенном примере размер группировки составляет четыре пикселя детектора, и форма группировки представляет собой двумерный массив (или матрицу), охватывающий два пикселя детектора по x-оси (т.е. по углу сканера) и две строки пикселей детектора по z-оси.
На фиг. 3(a) и 3(b) показаны такие же уровни 202 и 204 модуляции потока и шаблон 206 модуляции, как на фиг. 2(a). Однако шаблон 302 мультиплексирования включает в себя использование одиночных пикселей 210 детектора для регистрации излучения для высокого уровня 204 потока и группировок 304 из четырех пикселей детектора вдоль направления z-оси для низкого уровня 202 потока. На фиг. 4(a) и 4(b) низкий уровень 402 потока равен одной второй высокого уровня 204 потока, при этом шаблон 404 модуляции модулирует поток при высоком уровне 204 в течение одного периода интегрирования и при низком уровне 402 в течение следующих пяти периодов интегрирования, и шаблон 406 мультиплексирования включает в себя использование одиночных пикселей 210 детектора для высокого уровня 204 потока и группировки 408 из двух пикселей вдоль направления z-оси для низкого уровня 402 потока.
На фиг. 5(a) и 5(b) показаны такие же уровни потока, как на фиг. 1(a) и 2(a), при этом шаблон модуляции потока является таким, как на фиг. 3(a), группировки пикселей являются такими, как на фиг. 2(b), и шаблон 406 мультиплексирования пикселей является таким, как на фиг. 4(b). На фигурах 2-5 суммарная доза облучения снижена соответственно до 50,0%, 50,0%, 58,33% и 37,5% в сравнении со 100% дозой при сканировании, когда большой поток и одиночные пиксели используют в течение каждого периода интегрирования.
Следует отметить, что в вышеприведенных примерах отношение сигнал/шум при регистрации равно данному отношению во время стандартного сканирования, при котором используют одиночные пиксели для всех процедур получения проекций/периодов интегрирования, и относительный уровень излучения является одним для всех процедур получения проекций/периодов интегрирования. В других вариантах осуществления мультиплексирование можно выполнять так, чтобы отношение сигнал/шум было разным в течение, по меньшей мере, двух периодов интегрирования. Кроме того, можно применять отличающиеся и/или более крупные группировки пикселей (например, 6, 8, 10, 16 и т.п.). Кроме того, можно использовать, по меньшей мере, три разных уровня интенсивности излучения и/или, по меньшей мере, три разных группировки пикселей.
Кроме того, разность по времени между двумя проекциями высокого разрешения можно изменять на протяжении сканирования. В дополнение, в течение сканирования можно изменять или не изменять спектр рентгеновского излучения. Более того, можно регулировать по времени фазу модуляции излучения (или сдвиг всей последовательности относительно опорного момента времени). Следует также отметить, что, на приведенных фигурах модуляция интенсивности рентгеновского излучения в период интегрирования является ступенчатой функцией и что в настоящем изобретении предусмотрена также возможность несколько замедленного изменения характеристик (кривая 602 на фиг. 6), например, в пределах порядка 10-50 микросекунд.
В двухслойном детекторе, выполненном для двухэнергетического применения, длительности мультиплексирования можно использовать для объединения верхних и нижних пикселей в эффективный обычный однослойный пиксель детектора со сниженным шумом. При реконструкции разных спектральных изображений будут использоваться двухэнергетические проекции с недостаточным шагом дискретизации и неполные проекции в пределах всего спектра излучения.
В одном примере мультиплексирование пикселей может быть основано на обычных переключателях с КМОП структурой, выполненных на комплементарных КМОП транзисторах с каналом n-типа и каналом p-типа. Посредством приложения необходимого +Vc (управляющего напряжения) к затвору n-канала, и -Vc к затвору p-канала, переключатель можно переключать в состояния с замкнутым или разомкнутым контактом. Применение конфигурации транзисторов n-типа и p-типа позволяет уменьшить инжекцию избыточного заряда, которая вызывается в течение последовательности переключения. Если два транзистора в паре хорошо согласованы, то в течение последовательности переключения можно обеспечить инжекцию заряда намного ниже 1 фКл. В некоторых конфигурациях детекторов заряд, инжектированный при переключении, может быть пренебрежимо малым.
В других конфигурациях инжектированным зарядом нельзя пренебречь, и, следовательно, необходимо применить специальную схему для немедленного сброса данного заряда после переключения и перед тем, как начнется новое считывание. Упомянутый сброс можно производить, например, стандартными методами, которые уже применяются в электронных устройствах КТ-детекторов. Длительность переключения может составлять всего несколько наносекунд. Однако общее время переключения, включающее в себя любой дополнительный механизм сброса, может быть установлено в соответствии с периодом интегрирования. Например, когда система 100 сконфигурирована с периодом интегрирования порядка 100-300 микросекунд, длительность переключения можно установить до нескольких микросекунд. Следует понимать, что термины «период интегрирования» и другие термины служат для описания любого обычного метода сбора данных, соответствующего определению отдельных длительностей множества процедур получения проекций для визуализации.
Как отмечено выше, модуляция потока и мультиплексирование пикселей синхронизированы. В одном примере данной синхронизацией можно управлять посредством регулирования (например, в течение процедуры калибровки системы) временной фазы сигнала управления либо модуляцией излучения, либо мультиплексированием пикселей. Калибровку можно выполнять один раз перед клиническими сканированиями или иначе. Например, в течение процедуры калибровки выполняется сканирование в запланированной конфигурации (в воздухе или с фантомом), и данные записываются. Затем фазу взаимного чередования немного изменяют, и измерение повторяют. Для обнаружения установки фазы, при которой данные мелких пикселей достигают наиболее высоких сигналов среди всех проверок, и данные группы мультиплексированных пикселей достигают самые слабые сигналы, можно выполнить итеративную последовательность.
Как отмечено выше, блок 124 реконструкции может реконструировать полные данные изображения с высоким разрешением на основании данных проекций высокого разрешения, полученных с недостаточным шагом дискретизации, и реконструированных данных изображения с низким разрешением, которое сформировано по данным проекций высокого разрешения, полученным с недостаточным шагом дискретизации, и неполным данным проекций низкого разрешения. В одном варианте осуществления алгоритм реконструкции формирует данные изображения с высоким разрешением посредством одновременного решения УРАВНЕНИЙ 1 и 2:
УРАВНЕНИЕ: 1
min ψ ( B X X R ) ,
Figure 00000001
и
УРАВНЕНИЕ: 2
min M X Y ,
Figure 00000002
где УРАВНЕНИЕ 1 относится к учету разреженности сканирования со сжатием, УРАВНЕНИЕ 2 относится к реконструкции томографического изображения, Ψ представляет преобразование разреживания, X представляет данные изображения с высоким разрешением, B означает преобразование размытия, которое снижает 3-мерное пространственное разрешение данных X до разрешения данных XR, при этом XR представляет опорные, правильно реконструированные данные изображения с низким разрешением, M означает преобразование, выполняемое системой, которое включает в себя все свойственные сканеру характеристики, Y означает данные проекций высокого разрешения, полученные с недостаточным шагом дискретизации.
В одном примере УРАВНЕНИЕ 1 можно решать посредством минимизации нормы с использованием метода полной вариации, и УРАВНЕНИЕ 2 можно решать методом итеративной реконструкции (например, ART, MLEM) в смысле решения методом наименьших квадратов или оптимизации на основе модели пуассоновского шума. Однако в альтернативном варианте применимы и настоящим изобретением предусмотрены другие подходящие математические методы. Преобразование B может быть пространственным фильтром изображения, работающим в пространстве вокселей изображения или в области Фурье-преобразования, при этом характеристики фильтра вычисляют по известным модуляционно-передаточным функциям (МПФ) в режимах высокого разрешения и низкого разрешения. Подходящее преобразование размытия может быть сглаживающим низкочастотным фильтром. Преобразование B размытия заложено в итеративное решение уравнения 1. Подходящая схема упомянутого процесса показана УРАВНЕНИЕМ 3:
УРАВНЕНИЕ: 3
I t + 1 = I t + α ( T V ( B I t I R t ) )
Figure 00000003
, и
где t обозначает итерационную последовательность, I представляет скорректированное изображение с высоким разрешением, IR представляет опорное изображение, B представляет преобразование размытия, α представляет предварительно установленный параметр, TV представляет оператор полной вариации, и оператор «дельта» (∇) дает (для каждого вокселя) относительный градиент полной вариации на изменение данного вокселя.
Преобразование B размытия можно вычислить однократно как калибровку системы или установить предварительно. Поскольку все необходимые параметры известны, то упомянутое преобразование можно вычислить аналитически или можно смоделировать с помощью компьютерной модели сканера. Возможна также разработка измерительной калибровочной процедуры на фантомах, которые можно сканировать в режимах высокого разрешения и низкого разрешения. Характеристики изображения можно использовать для поиска подходящего преобразования, которое будет видоизменять изображение с высоким разрешением до изображения с низким разрешением.
На фиг. 7 представлен способ реконструкции данных изображения с высоким разрешением по данным проекций высокого разрешения, полученным с недостаточным шагом дискретизации, и неполным данным проекций низкого разрешения.
На этапе 702 выполняют сканирование, в ходе которого модулируют поток излучения и скоординировано мультиплексируют пиксели детектора. В качестве неограничивающего примера модуляция потока и мультиплексирование пикселей детектора можно выполнять, как поясняется в связи с фиг. 2-5, их комбинации и/или иным способом.
На этапе 704 данные проекций высокого разрешения, полученные с недостаточным шагом дискретизации, и данные проекций низкого разрешения объединяют, чтобы сформировать полный набор данных проекций низкого разрешения. В одном варианте можно объединять данные нескольких пространственно смежных проекций высокого разрешения, чтобы формировать эффективные данные проекций низкого разрешения.
На этапе 706 реконструируют полный набор данных проекций низкого разрешения, чтобы сформировать опорные данные изображения с низким разрешением.
На этапе 708 данные проекций высокого разрешения, полученные с недостаточным шагом дискретизации, и опорные данные изображения с низким разрешением используют, чтобы реконструировать полные данные изображения с высоким разрешением. Как поясняется в настоящем описании, реконструкцию при сканировании со сжатием можно применить для реконструкции полных данных изображения с высоким разрешением, как поясняется на фиг. 8 или иначе.
На фигуре 8 представлена подходящая блок-схема последовательности операций способа сканирования со сжатием, который можно применить на этапе 708 способа, представленного на фиг. 7.
На этапе 802 получают данные проекций высокого разрешения, получаемые с недостаточным шагом дискретизации, и реконструированные опорные данные изображения с низким разрешением.
На этапе 804 повышают четкость реконструированных опорных данных изображения с низким разрешением. Например, в одном варианте осуществления четкость реконструированных опорных данных изображения с низким разрешением повышают методом обратной свертки, который обеспечивает первоначальную оценку реконструкции изображения.
На этапе 806 данные проекций высокого разрешения, полученные с недостаточным шагом дискретизации, и реконструированные опорные данные изображения с низким разрешением, подвергнутые повышению четкости, используют, чтобы реконструировать промежуточные данные изображения с высоким разрешением. Метод реконструкции может быть итерационной томографической реконструкцией.
На этапе 808 фильтруют реконструированные промежуточные данные изображения с высоким разрешением. Например, в одном варианте осуществления реконструированные данные изображения с низким разрешением размывают, например, с использованием преобразования B размытия, описанного выше в связи с УРАВНЕНИЯМИ 1-3.
На этапе 810 формируют разностные данные изображения посредством получения разности между отфильтрованными реконструированными промежуточными данными изображения с высоким разрешением и реконструированными данными изображения с низким разрешением.
На этапе 812 выполняют определение, удовлетворяют ли разностные данные изображения предварительно заданным критериям.
Если разностные данные изображения не удовлетворяют предварительно заданным критериям, то на этапе 814 промежуточные данные изображения высокого разрешения оптимизируют, и этапы 808-812 повторяют для формирования нового промежуточного изображения высокого разрешения, которое после фильтрации на этапе 808 становится более сходным с реконструированным изображением низкого разрешения. Оптимизация может учитывать параметр реконструкции, разреженность, полную вариацию, регуляризацию и/или другие факторы. Предварительно заданные критерии могут быть также предварительно заданным числом итераций.
Если разностные данные изображения удовлетворяют предварительно заданным критериям, то на этапе 816 выполняется определение, выполняются ли критерии останова. Критерии могут содержать, по меньшей мере, какой-то один из предварительно заданного числа итераций, предварительно заданной пороговой погрешности, разности между результатами итерации и/или другие критерии.
Если критерии останова не выполняются, то этапы 806-816 повторяют с использованием промежуточных данных изображения с высоким разрешением, которые заменяют опорные реконструированные данные изображения с низким разрешением, подвергнутые повышению четкости, использованные в первый раз на этапе 806. В общем, итерационную процедуру продолжают, когда на каждом этапе данные изображения с высоким разрешением становятся ближе к предварительно заданному решению.
Если критерии останова выполняются, то на этапе 818 выводят данные изображения с высоким разрешением.
Вышеописанные этапы могут быть реализованы с помощью компьютерно-считываемых команд, которые при исполнении компьютерным(и) процессором(ами) задают процессору(ам) выполнять вышеописанные этапы. При этом команды хранятся на компьютерно-считываемом носителе информации, например в памяти, связанной с соответствующим компьютером и/или иначе доступной для упомянутого компьютера.
Следует отметить, что термины «высокий», «более высокий», «низкий» и «ниже» служат в настоящем заявке для определения относительных уровней, и что термин «высокое разрешение» означает заданную разрешающую способность в конкретном случае применения, и термин «низкое разрешение» означает результаты с разрешающей способностью ниже заданной при данном применении.
Описание изложено выше со ссылкой на предпочтительные варианты осуществления. После прочтения и изучения вышеприведенного подробного описания специалистами могут быть созданы модификации и изменения. Предполагается, что настоящее изобретение подлежит истолкованию, как содержащее все упомянутые модификации и изменения в той степени, насколько они не выходят за пределы объема притязаний прилагаемой формулы изобретения или ее эквивалентов.

Claims (15)

1. Способ формирования данных изображения с высоким разрешением, содержащий этапы, на которых:
управляют, с помощью контроллера источника, источником излучения для модуляции потока испускаемого излучения между высоким потоком и низким потоком в течение разных периодов интегрирования при одном сканировании; и
формируют данные изображения с высоким разрешением на основании данных проекций высокого разрешения, полученных с недостаточным шагом дискретизации, полученных в течение высокого потока, и неполных данных проекций низкого разрешения, полученных в течение низкого потока, при этом данные проекций высокого разрешения, полученные с недостаточным шагом дискретизации, и неполные данные проекций низкого разрешения собирают в течение разных интервалов сбора данных одного сканирования.
2. Способ по п. 1, дополнительно содержащий этап, на котором:
пополняют неполные данные проекций низкого разрешения данными проекций высокого разрешения, полученными с недостаточным шагом дискретизации.
3. Способ по п. 2, дополнительно содержащий этапы, на которых:
реконструируют данные изображения с низким разрешением на основании полных данных проекций низкого разрешения; и
реконструируют данные изображения с высоким разрешением на основании опорных данных изображения с низким разрешением и данных проекций высокого разрешения, полученных с недостаточным шагом дискретизации.
4. Способ по п. 3, дополнительно содержащий этапы, на которых:
повышают четкость опорных данных изображения с низким разрешением; и
реконструируют полные данные изображения с высоким разрешением на основании опорных данных изображения с низким разрешением, подвергнутых повышению четкости, и данных проекций высокого разрешения, полученных с недостаточным шагом дискретизации.
5. Способ по п. 4, в котором этап повышения четкости включает в себя обратную свертку опорных данных изображения с низким разрешением.
6. Способ по любому из пп. 3-5, дополнительно содержащий этапы, на которых:
реконструируют промежуточные данные изображения с высоким разрешением на основании опорных данных изображения с низким разрешением и данных проекций высокого разрешения, полученных с недостаточным шагом дискретизации; и
фильтруют промежуточные данные изображения с высоким разрешением в процессе формирования данных изображения с высоким разрешением.
7. Способ по п. 6, в котором этап фильтрации промежуточных данных изображения с высоким разрешением включает в себя размытие промежуточных данных изображения с высоким разрешением.
8. Способ по п. 6, в котором промежуточные данные изображения с высоким разрешением фильтруют на основании МПФ (модуляционно-передаточных функций), соответствующих определенным режиму сканирования с высоким разрешением и режиму сканирования с низким разрешением.
9. Способ по п. 6, дополнительно содержащий этапы, на которых:
определяют разностные данные изображения на основании отфильтрованных промежуточных данных изображения с высоким разрешением и опорных данных изображения с низким разрешением; и
оптимизируют промежуточные данные изображения с высоким разрешением, пока разностные данные изображения не удовлетворят предварительно определенным критериям, при этом оптимизированные промежуточные данные изображения с высоким разрешением выводят как полные данные изображения с высоким разрешением.
10. Способ по любому из пп. 1-5, в котором данные проекций высокого разрешения, полученные с недостаточным шагом дискретизации, и неполные данные проекций низкого разрешения получают в течение процедуры визуализации, при которой сборы данных высокого разрешения и сборы неполных данных низкого разрешения перемежаются.
11. Способ по п. 10, в котором сбор данных высокого разрешения включает в себя испускание излучения, имеющего первый поток, и регистрацию излучения пикселем детектора, имеющим первую площадь, и сбор данных низкого разрешения включает в себя испускание излучения, имеющего второй поток, и регистрацию излучения, по меньшей мере, двумя пикселями детектора, объединенными, чтобы иметь вторую площадь, при этом первый поток больше, чем второй поток, и первая площадь меньше, чем вторая площадь.
12. Способ по любому из пп. 1-5, дополнительно содержащий этап, на котором:
используют алгоритм реконструкции при сканировании со сжатием, чтобы сформировать данные изображения с высоким разрешением.
13. Система для реконструкции данных изображения с высоким разрешением, содержащая:
источник (108) излучения, выполненный с возможностью попеременного модулирования испускаемого потока излучения между высоким и низким потоками в течение разных периодов интегрирования при сканировании;
детекторную матрицу (112), выполненную с возможностью попеременного переключения мультиплексирования пикселей детектора между высоким и низким разрешениями скоординировано с модуляцией потока; и
блок (124) реконструкции, выполненный с возможностью реконструкции данных изображения с высоким разрешением на основании данных проекций, соответствующих данным проекций высокого разрешения, полученным с недостаточным шагом дискретизации, и неполных данных проекций низкого разрешения.
14. Система по п. 13, в которой блок (124) реконструкции использует алгоритм реконструкции при сканировании со сжатием, чтобы реконструировать данные изображения с высоким разрешением.
15. Система по п. 14, в которой блок (124) реконструкции реконструирует данные изображения с низким разрешением на основании данных проекций низкого разрешения и данных проекций высокого разрешения, полученных с недостаточным шагом дискретизации, повышает четкость данных изображения с низким разрешением и формирует промежуточные данные изображения с высоким разрешением на основании, частично, данных изображения с низким разрешением, подвергнутых повышению четкости.
RU2013102504/08A 2010-06-21 2011-04-27 Способ и система для выполнения визуализации методом низкодозовой компьютерной томографии RU2571564C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US35682010P 2010-06-21 2010-06-21
US61/356,820 2010-06-21
PCT/IB2011/051850 WO2011161558A1 (en) 2010-06-21 2011-04-27 Method and system for performing low- dose ct imaging

Publications (2)

Publication Number Publication Date
RU2013102504A RU2013102504A (ru) 2014-07-27
RU2571564C2 true RU2571564C2 (ru) 2015-12-20

Family

ID=44120321

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013102504/08A RU2571564C2 (ru) 2010-06-21 2011-04-27 Способ и система для выполнения визуализации методом низкодозовой компьютерной томографии

Country Status (6)

Country Link
US (1) US9262845B2 (ru)
EP (1) EP2583250B1 (ru)
JP (1) JP5848759B2 (ru)
CN (1) CN102947864B (ru)
RU (1) RU2571564C2 (ru)
WO (1) WO2011161558A1 (ru)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608001B2 (ja) * 2010-07-13 2014-10-15 富士フイルム株式会社 放射線画像撮影方法および装置
JP5818588B2 (ja) * 2011-09-05 2015-11-18 株式会社東芝 放射線検出データ処理装置及び方法
US9147229B2 (en) * 2012-01-20 2015-09-29 Kabushiki Kaisha Toshiba Method and system for image denoising using discrete total variation (TV) minimization with one-direction condition
EP2915180B1 (en) * 2012-10-30 2018-12-05 California Institute of Technology Fourier ptychographic imaging systems, devices, and methods
US9864184B2 (en) 2012-10-30 2018-01-09 California Institute Of Technology Embedded pupil function recovery for fourier ptychographic imaging devices
US10652444B2 (en) 2012-10-30 2020-05-12 California Institute Of Technology Multiplexed Fourier ptychography imaging systems and methods
CN103413338B (zh) * 2013-05-29 2016-04-13 中国工程物理研究院流体物理研究所 一种基于广义变分最小化的少量投影ct图像重建方法
CN104240270B (zh) * 2013-06-14 2017-12-05 同方威视技术股份有限公司 Ct成像方法和系统
CN105659143B (zh) 2013-07-31 2019-03-22 加州理工学院 孔径扫描傅立叶重叠关联成像
KR20150016032A (ko) 2013-08-02 2015-02-11 삼성전자주식회사 영상 복원 모드 선택이 가능한 영상 복원 방법 및 그 장치
JP2016530567A (ja) 2013-08-22 2016-09-29 カリフォルニア インスティチュート オブ テクノロジー 可変照明フーリエタイコグラフィー撮像装置、システム、及び方法
JP6466057B2 (ja) * 2013-09-04 2019-02-06 キヤノンメディカルシステムズ株式会社 医用画像診断装置
DE102013217852B3 (de) * 2013-09-06 2014-10-30 Siemens Aktiengesellschaft Verfahren und Röntgensystem zur Zwei-Energiespektren-CT-Abtastung und Bildrekonstruktion
US11468557B2 (en) 2014-03-13 2022-10-11 California Institute Of Technology Free orientation fourier camera
JP6072723B2 (ja) 2014-04-21 2017-02-01 株式会社日立製作所 磁気共鳴イメージング装置、及び画像撮像方法
US10162161B2 (en) 2014-05-13 2018-12-25 California Institute Of Technology Ptychography imaging systems and methods with convex relaxation
WO2016007605A1 (en) * 2014-07-08 2016-01-14 The General Hospital Corporation System and method for motion-free computed tomography
EP3195265B1 (en) * 2014-09-15 2018-08-22 Koninklijke Philips N.V. Iterative image reconstruction with a sharpness driven regularization parameter
AU2015369663A1 (en) 2014-12-22 2017-05-11 California Institute Of Technology Epi-illumination fourier ptychographic imaging for thick samples
CN107209362B (zh) 2015-01-21 2020-11-06 加州理工学院 傅立叶重叠关联断层摄影
CN107209123B (zh) 2015-01-26 2020-08-11 加州理工学院 多孔傅立叶重叠关联和荧光成像
JP6675214B2 (ja) * 2015-03-12 2020-04-01 キヤノンメディカルシステムズ株式会社 X線ct装置及びデータ圧縮復元方法
JP2018509622A (ja) 2015-03-13 2018-04-05 カリフォルニア インスティチュート オブ テクノロジー フーリエタイコグラフィ手法を用いるインコヒーレント撮像システムにおける収差補正
US9993149B2 (en) 2015-03-25 2018-06-12 California Institute Of Technology Fourier ptychographic retinal imaging methods and systems
WO2016187591A1 (en) 2015-05-21 2016-11-24 California Institute Of Technology Laser-based fourier ptychographic imaging systems and methods
DE102015007939A1 (de) 2015-06-19 2016-12-22 Universität Stuttgart Verfahren und Computerprogrammprodukt zum Erzeugen eines hochaufgelösten 3-D-Voxeldatensatzes mit Hilfe eines Computertomographen
CN106530366B (zh) * 2015-09-09 2019-04-16 清华大学 能谱ct图像重建方法及能谱ct成像系统
CA3005439A1 (en) * 2015-11-20 2017-05-26 Integrated Dynamic Electron Solutions, Inc. Temporal compressive sensing systems
US10789737B2 (en) 2015-12-22 2020-09-29 Carestream Health, Inc. Tomographic image acquisition using asymmetrical pixel binning
EP3661334B1 (en) * 2016-05-31 2021-07-07 Koninklijke Philips N.V. Apparatus for generating x-rays
US10568507B2 (en) 2016-06-10 2020-02-25 California Institute Of Technology Pupil ptychography methods and systems
US11092795B2 (en) 2016-06-10 2021-08-17 California Institute Of Technology Systems and methods for coded-aperture-based correction of aberration obtained from Fourier ptychography
WO2018046454A1 (en) 2016-09-08 2018-03-15 Koninklijke Philips N.V. Radiation detector and x-ray imaging system
CN106683146B (zh) * 2017-01-11 2021-01-15 上海联影医疗科技股份有限公司 一种图像重建方法和图像重建算法的参数确定方法
CN106989835B (zh) * 2017-04-12 2023-07-11 东北大学 基于压缩感知的光子计数x射线能谱探测装置及成像系统
WO2019090149A1 (en) 2017-11-03 2019-05-09 California Institute Of Technology Parallel digital imaging acquisition and restoration methods and systems
CN109978809B (zh) * 2017-12-26 2022-02-22 同方威视技术股份有限公司 图像处理方法、装置及计算机可读存储介质
KR102128765B1 (ko) * 2018-05-16 2020-07-01 가천대학교 산학협력단 의료영상기기에서 압축센싱 활용을 위한 샘플링 패턴 산출장치 및 그 방법
US11408983B2 (en) * 2018-10-01 2022-08-09 Infineon Technologies Ag Lidar 2D receiver array architecture
US11039801B2 (en) 2019-07-02 2021-06-22 GE Precision Healthcare LLC Systems and methods for high-resolution spectral computed tomography imaging
CN112401912A (zh) * 2020-12-10 2021-02-26 杭州美诺瓦医疗科技股份有限公司 一种具有更低放射剂量的儿童骨龄成像方法及其成像装置
KR102540320B1 (ko) * 2021-07-20 2023-06-07 연세대학교 산학협력단 적응적 샘플링 기반 cbct 영상 획득 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389096B1 (en) * 2000-11-22 2002-05-14 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for providing additional computed tomography imaging modes
RU2343458C2 (ru) * 2005-11-21 2009-01-10 Тсинхуа Юниверсити Система формирования изображения

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437338B1 (en) 1999-09-29 2002-08-20 General Electric Company Method and apparatus for scanning a detector array in an x-ray imaging system
WO2001039558A1 (en) 1999-11-23 2001-05-31 Koninklijke Philips Electronics N.V. X-ray examination apparatus with exposure control
US7054406B2 (en) 2002-09-05 2006-05-30 Kabushiki Kaisha Toshiba X-ray CT apparatus and method of measuring CT values
JP4880587B2 (ja) * 2004-04-13 2012-02-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コンピュータ断層撮影のための動的線量制御
CN100536777C (zh) * 2004-04-13 2009-09-09 皇家飞利浦电子股份有限公司 用于计算机断层摄影的动态剂量控制
US20090310737A1 (en) * 2004-12-22 2009-12-17 Koninklijke Philips Electronics N.V. Method for computer tomography, and computer tomograph
EP1902424B1 (en) 2005-07-08 2009-11-11 Wisconsin Alumni Research Foundation Highly constrained image reconstruction method
EP1952342B1 (en) * 2005-11-17 2014-01-08 Philips Intellectual Property & Standards GmbH Method for displaying high resolution image data together with time-varying low resolution image data
US7317783B2 (en) 2006-04-21 2008-01-08 Pavel Dolgonos Reduced X-Ray exposure using power modulation
EP2027593A1 (en) 2006-05-22 2009-02-25 Philips Intellectual Property & Standards GmbH X-ray tube whose electron beam is manipulated synchronously with the rotational anode movement
US7881510B2 (en) * 2007-06-08 2011-02-01 Allegheny-Singer Research Institute Method and apparatus for forming an image with dynamic projective data
JP5220125B2 (ja) 2007-12-20 2013-06-26 ウイスコンシン アラムナイ リサーチ ファウンデーシヨン 先験的画像制限画像再構成法
US8194937B2 (en) 2007-12-20 2012-06-05 Wisconsin Alumni Research Foundation Method for dynamic prior image constrained image reconstruction
EP2240906B1 (en) 2008-01-14 2013-12-11 Wisconsin Alumni Research Foundation Method for prior image constrained progressive image reconstruction
US8135186B2 (en) * 2008-01-25 2012-03-13 Purdue Research Foundation Method and system for image reconstruction
US7697658B2 (en) 2008-02-01 2010-04-13 Virginia Tech Intellectual Properties, Inc. Interior tomography and instant tomography by reconstruction from truncated limited-angle projection data
US8472688B2 (en) 2008-04-17 2013-06-25 Wisconsin Alumni Research Foundation Method for image reconstruction employing sparsity-constrained iterative correction
WO2009155418A2 (en) * 2008-06-18 2009-12-23 Wright State University Computed tomography scanners, x-ray filters and methods thereof
US8952333B2 (en) * 2009-11-02 2015-02-10 Virginia Tech Intellectual Properties, Inc. Methods for improved single photon emission computed tomography using exact and stable region of interest reconstructions
US8705828B2 (en) * 2011-08-31 2014-04-22 Carestream Health, Inc. Methods and apparatus for super resolution scanning for CBCT system and cone-beam image reconstruction

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389096B1 (en) * 2000-11-22 2002-05-14 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for providing additional computed tomography imaging modes
RU2343458C2 (ru) * 2005-11-21 2009-01-10 Тсинхуа Юниверсити Система формирования изображения

Also Published As

Publication number Publication date
JP5848759B2 (ja) 2016-01-27
CN102947864A (zh) 2013-02-27
WO2011161558A1 (en) 2011-12-29
US9262845B2 (en) 2016-02-16
EP2583250B1 (en) 2014-12-17
US20130083886A1 (en) 2013-04-04
CN102947864B (zh) 2015-08-12
JP2013529491A (ja) 2013-07-22
EP2583250A1 (en) 2013-04-24
RU2013102504A (ru) 2014-07-27

Similar Documents

Publication Publication Date Title
RU2571564C2 (ru) Способ и система для выполнения визуализации методом низкодозовой компьютерной томографии
EP2049918B1 (en) Stereo tube computed tomography
JP4401751B2 (ja) アーティファクト低減を容易にする方法及び装置
US10206638B2 (en) X-ray CT and medical diagnostic apparatus with photon counting detector
US7372934B2 (en) Method for performing image reconstruction using hybrid computed tomography detectors
US7760848B2 (en) Method and system for generating a multi-spectral image of an object
US7263167B2 (en) Direct conversion X-ray detector with over-range and pile-up correction
KR102330564B1 (ko) 통계적 반복 재구성 및 물질 분해용 시스템 및 방법
EP2371288B1 (en) Method and system for image data acquisition
US7396162B1 (en) Scatter correction for CT method and apparatus
US20090060121A1 (en) Computed tomography data acquisition apparatus and method
US9592021B2 (en) X-ray CT device, and method
US9943279B2 (en) Methods and systems for task-based data generation and weighting for CT spectral imaging
US11653892B2 (en) Counting response and beam hardening calibration method for a full size photon-counting CT system
JP2010142478A (ja) X線ct装置
CN109196957B (zh) 用于生成x射线的装置
US20240230934A1 (en) Pcct energy calibration from x-ray tube spectra using a neural network
CN116687431A (zh) 用于计算机断层摄影系统的自适应数据采集

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170428