RU2561734C1 - Способ получения бутадиена - Google Patents

Способ получения бутадиена Download PDF

Info

Publication number
RU2561734C1
RU2561734C1 RU2014118089/04A RU2014118089A RU2561734C1 RU 2561734 C1 RU2561734 C1 RU 2561734C1 RU 2014118089/04 A RU2014118089/04 A RU 2014118089/04A RU 2014118089 A RU2014118089 A RU 2014118089A RU 2561734 C1 RU2561734 C1 RU 2561734C1
Authority
RU
Russia
Prior art keywords
formaldehyde
propylene
mixture
carried out
source
Prior art date
Application number
RU2014118089/04A
Other languages
English (en)
Inventor
Александр Григорьевич Лиакумович
Раиса Ахтямовна Ахмедьянова
Татьяна Михайловна Богачева
Дмитрий Геннадьевич Милославский
Лилия Марсельевна Юнусова
Ксения Валерьевна Голованова
Валерий Николаевич Забористов
Original Assignee
Общество с ограниченной ответственностью "ЭРИТРЕНЪ" (ООО "ЭРИТРЕНЪ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ЭРИТРЕНЪ" (ООО "ЭРИТРЕНЪ) filed Critical Общество с ограниченной ответственностью "ЭРИТРЕНЪ" (ООО "ЭРИТРЕНЪ)
Priority to RU2014118089/04A priority Critical patent/RU2561734C1/ru
Application granted granted Critical
Publication of RU2561734C1 publication Critical patent/RU2561734C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения бутадиена, включающему конденсацию пропилена с формальдегидом в среде растворителя с последующим выделением целевого продукта. При этом процесс ведут в реакторе высокого давления в присутствии макропористого катионита в водородной форме на основе полистирола с привитыми сульфогруппами при температуре 120-140°С, в качестве растворителя используют гексановый растворитель - нефрас, в качестве источника формальдегида берут 1,3,5-триоксан или 1,3-диоксолан, или смесь полиоксиметиленгликолей при мольном соотношении пропилена к формальдегиду (3-5):1 соответственно, а указанный макропористый катионит берут в расчете 10-20 мас.ч. на 100 мас.ч. смеси пропилена и источника формальдегида, и процесс ведут до полного превращения формальдегида. Использование настоящего способа позволяет снизить энергозатраты, повысить экологию окружающей среды за счет упрощения способа получения бутадиена и уменьшения количества сточных вод. 6 пр., 2 табл.

Description

Изобретение относится к диеновым соединениям, а именно к способу получения бутадиена, который используется, главным образом, в качестве мономера при производстве подавляющего большинства синтетических каучуков общего назначения: стереорегулярные 1,4-цис-бутадиеновые, бутадиен-стирольные, бутадиен-метилстирольные, ряд синтетических каучуков специального назначения - бутадиен-нитрильные, бутадиен-метилвинилпиридиновые и др. Помимо производства синтетических каучуков бутадиен используется в промышленном масштабе для производства синтетических смол, адиподинитрила (в производстве полиамидов) и себациновой кислоты, см. «Основы химии и технологии мономеров» Н.А. Платэ, Е.В. Сливинский. - М.: Наука: МАИК «Наука/Интерпериодика», 2002. - 696 с.
Известен способ получения бутадиена, включающий превращение этанола или смеси этанола с ацетальдегидом в присутствии катализатора, в котором взаимодействие проводят в присутствии твердофазного катализатора, содержащего металл, выбранный из группы: серебро, золото или медь, и оксид металла, выбранный из группы оксид магния, титана, циркония, тантала или ниобия, процесс осуществляют в условиях газофазной конденсации при 200-400°С, при атмосферном давлении и скорости подачи сырья 0,1-15 г/г·ч.
Преимущественное выполнение, когда оксиды, выбранные из группы магния, титана, циркония, тантала или ниобия, модифицированы щелочным металлом и/или оксидами церия, олова или сурьмы; используют катализатор, нанесенный на носитель; процесс осуществляют при массовом отношении ацетальдегида к этанолу в смеси, равном (0-3):10 соответственно; процесс проводят в условиях непрерывного потока в реакторе с неподвижным слоем катализатора, см. RU Патент №2440962, МПК С07С 11/167, 2012.
Недостатками известного способа являются сложность технологического процесса, которая связана с использованием на стадиях дегидрирования и конденсации разных катализаторов, процесс конденсации протекает при температурах до 400°С.
С недавнего времени можно рассматривать в качестве потенциального сырья для ряда процессов пропилен: получение ароматических углеводородов; алкилирование; синтез бутадиена. Основным способом производства пропилена является пиролиз углеводородного сырья. При этом ежегодно вводятся все новые мощности, строятся все более крупнотоннажные производства, см. http://www.ssa.ru/articles/entry/6144FC4B5.
Наиболее близким по технической сущности является способ получения бутадиена конденсацией пропилена с формальдегидом, в котором в качестве источника формальдегида используют формалин (35%-ный водный раствор формальдегида), процесс ведут в присутствии серной кислоты, конденсацию пропилена с формальдегидом осуществляют в колонне с барботажем при подаче газообразного пропилена, подогретого до 100°С, под давлением 25-30 атм, с последующим разложением продукта реакции 4-метилдиоксана-1,3 путем пропускания над катализатором дегидратации, представляющим собой смесь трикальцийфосфата и сернокислого кальция, взятых в соотношении 3:1 при температуре 375°С с последующим выделением целевого продукта.
Преимущественное выполнение способа получения бутадиена, когда конденсацию пропилена с формальдегидом ведут в присутствии инертного растворителя или эмульгатора (смеси нефтяных сульфокислот), стойкого в кислой среде, см. SU Авторское свидетельство №183199, МПК С07С, 1966.
Преимущественное выполнение способа получения бутадиена, когда водно-кислотный слой после отделения продукта конденсации формальдегида с пропиленом насыщают формальдегидом и снова используют в процессе.
Недостатками указанного способа получения бутадиена являются необходимость ведения процесса в две стадии в высококоррозионно-активной среде, в присутствии значительных количеств воды вследствие использования формалина в качестве источника формальдегида, высокая температура стадии разложения 4-метилдиоксана-1,3 и регенерации катализатора, составляющая 375°С, а также необходимость выпаривания под вакуумом (20-40 мм рт.ст.) избыточной воды из водно-кислотного слоя после отделения органического слоя до достижения концентрации формальдегида в растворе 30-35%.
Задачей изобретения является упрощение способа получения бутадиена за счет уменьшения количества технологических операций, снижения температурного режима и количества сточных вод.
Техническая задача решается способом получения бутадиена, включающим конденсацию пропилена с формальдегидом в среде растворителя с последующим выделением целевого продукта, в котором процесс ведут в реакторе высокого давления в присутствии макропористого катионита в водородной форме на основе полистирола с привитыми сульфогруппами при температуре 120-140°С, в качестве растворителя используют гексановый растворитель - нефрас, в качестве источника формальдегида берут 1,3,5-триоксан или 1,3-диоксолан, или смесь полиоксиметиленгликолей при мольном соотношении пропилена к формальдегиду (3-5):1 соответственно, а указанный макропористый катионит берут в расчете 10-20 мас.ч. на 100 мас.ч. смеси пропилена и источника формальдегида, и процесс ведут до полного превращения формальдегида. Компонентный и количественный состав продуктов определяют хроматографическим методом.
Решение технической задачи позволяет упростить способ получения бутадиена путем уменьшения количества технологических операций, снижения температурного режима ведения процесса и количества сточных вод, что снижает энергозатраты и повышает экологию окружающей среды.
Характеристика веществ, используемых при осуществлении способа:
Пропилен (пропен) формулы СН2=СН-СН3 - ненасыщенный углеводород, относящийся к классу алкенов, представляющий собой бесцветный газ со слабым запахом, горюч; tпл составляет -187,65°С; tкип составляет -47,7°С; плотность составляет 0,5139 г/см3. Растворяется в различных органических растворителях, не растворяется в воде.
В качестве источника формальдегида используют: 1,3,5-триоксан (C3H6O3) - циклический безводный тример формальдегида по ТУ 6-09-3208-78, легко разлагается до формальдегида в кислой среде.
Содержание чистого вещества составляет 99,5% масс., tпл составляет 61-62°С, tкип составляет 115°С. Бесцветное кристаллическое вещество, легко возгоняется, растворим в воде, спиртах, кетонах, органических кислотах, эфирах, ароматических углеводородах;
1,3-диоксолан (этиленформаль) С3Н6О2 используют по ТУ 6-05-751768-38-94. Жидкость, tкип составляет 82,5°С; плотность составляет 1,004 г/см3; nD составляет 1,3974; растворим в воде, устойчив в нейтральной и слабощелочной средах, гидролизуется кислотами с образованием формальдегида;
Смесь полиоксиметиленгликолей используют по ТУ 6-05-930-73, известна также как параформ или параформальдегид, представляет собой низкомолекулярный полимер формальдегида с молекулярной массой 258-3018 г/моль; бесцветные кристаллы с запахом формальдегида; tпл составляет 70-120°С; медленно растворяется в холодной воде, быстро - в горячей воде, мало растворима в ацетоне; при нагревании разлагается до формальдегида в кислой среде.
Макропористый катионит в водородной форме на основе полистирола с привитыми сульфогруппами, например, марки Lewatit 2620, КУ-23, Amberlyst 36 WET, см. Таблицу 1, имеет размер гранул от 0,315 до 1,25 мм, обменную емкость от 4,4 до 5,4 мг-экв/г, см. «Водоподготовка в энергетике» Копылов А.С., Лавыгин В.М., Очков В.Ф. / Учебное пособие для вузов / 2-е изд., стереот.- М.: Издательский дом МЭИ, 2006. - 309 с. - ISBN 5-903072-45-3.
Figure 00000001
В качестве растворителя используют гексановый растворитель - Нефрас: Нефрас-П1-65/75, Нефрас-П1-63/75, Нефрас-П1-65/70 по ТУ 39.1011228-89.
Для лучшего понимания изобретения приводим примеры конкретного выполнения.
Пример по прототипу.
В барботажную колонну с насадкой, заполненную 35%-ным формалином, содержащим 10% серной кислоты (в расчете на воду), при температуре 100-110°С подают пропилен в виде газа, предварительно подогретого до 100°С (под давлением 25-30 атм). Избыток подаваемого пропилена не превышает 25%. Пребывание реакционной жидкости в колонне 4-6 час.
Продукты реакции, полученные на выходе из колонны, экстрагируют дихлорэтаном. Дихлорэтановый слой затем отделяют от водно-кислотного. Дихлорэтановый слой нейтрализуют и разгоняют. Дихлорэтан и метилдиоксан отгоняют при атмосферном давлении, а высшие продукты при остаточном давлении 100-150 мм рт.ст.
Водно-кислотный слой, содержащий кислоту и непрореагировавший формальдегид, смешивают со свежим водным раствором формальдегида. Для отгонки избыточной воды полученный раствор упаривают под вакуумом (20-40 мм рт.ст.) до получения 30-35%-ного водного раствора формальдегида. Потери кислоты в процессе компенсируются добавлением свежей кислоты. Полученный формальдегидно-кислотный раствор нужного состава повторно направляют в процесс.
Метилдиоксановую смесь, содержащую 95% 4-метилдиоксана-1,3 и 5% бутандиола-1,3, разбавляют слабым формалиновым раствором с содержанием 3-5% формальдегида в соотношении 1:2 по весу. Смесь такого состава пропускают над катализатором, состоящим из трикальцийфосфата (75%) и сернокислого кальция (25%), при температуре 375°С и скорости 360 мл/л кат. час (считая на 4-метилдиоксана-1,3 в виде жидкости). Разложение протекает в течение 1-2 часов, после чего реактор переключают на регенерацию катализатора паровоздушной смесью. Регенерацию проводят при температуре 375°С в течение 1-2 часов. Водный конденсат, получающийся в результате разложения метилдиоксановой смеси после отгонки бутадиена и азеотропа метилдиоксана (К760; 88°С) с содержанием формальдегида 10-15%, направляют на колонну для насыщения формальдегидом.
Примеры конкретного выполнения по заявляемому объекту.
Пример 1
В реактор высокого давления (с рабочим давлением до 100 атм), снабженный перемешивающим устройством, в присутствии макропористого катионита в водородной форме на основе полистирола с привитыми сульфогруппами марки КУ-23 с размером гранул 0,315-1,25 мм и обменной емкостью 4,4-4,75 мг-экв/г, в расчете 10 мас.ч. на 100 мас.ч. смеси пропилена и источника формальдегида, в качестве которого используют 1,3,5-триоксан, загружают источник формальдегида - 1,3,5-триоксан в мольном соотношении к пропилену, равном 1:3, соответственно, процесс ведут в гексановом растворителе, в качестве которого используют Нефрас марки П1-65/75 в количестве не менее 40% от смеси пропилена и источника формальдегида, а затем подают пропилен. Процесс ведут при температуре 120°С до полного исчерпания формальдегида, а непрореагировавший пропилен направляют на рецикл.
Пример 2
В реактор высокого давления (с рабочим давлением до 100 атм), снабженный перемешивающим устройством, в присутствии макропористого катионита в водородной форме на основе полистирола с привитыми сульфогруппами марки КУ-23 с размером гранул 0,315-1,25 мм с обменной емкостью 4,4-4,75 мг-экв/г; в расчете 20 мас.ч. на 100 мас.ч. смеси пропилена и источника формальдегида - 1,3,5-триоксана, загружают источник формальдегида - 1,3,5-триоксан в мольном соотношении к пропилену, равном 1:3, соответственно, процесс ведут в гексановом растворителе, в качестве которого используют Нефрас марки П1-63/75 в количестве не менее 40% от смеси пропилена и источника формальдегида, а затем подают пропилен. Процесс ведут при температуре 120°С до полного исчерпания формальдегида, а непрореагировавший пропилен направляют на рецикл.
Пример 3
Процесс ведут, как в примере 2, отличие состоит в использовании в качестве источника формальдегида 1,3-диоксолана, а в качестве гексанового растворителя Нефрас марки П1-65/70.
Пример 4
Процесс ведут, как в примере 3, отличие состоит в использовании в качестве источника формальдегида смеси полиоксиметиленгликолей (параформальдегида).
Пример 5
В реактор высокого давления (с рабочим давлением до 100 атм), снабженный перемешивающим устройством, в присутствии макропористого катионита в водородной форме на основе полистирола с привитыми сульфогруппами марки Amberlyst 36 WET с размером гранул 0,6-0,85 мм, обменной емкостью 5,4 мг-экв/г.в расчете 20 мас.ч. на 100 мас.ч. смеси пропилена и источника формальдегида, загружают источник формальдегида - смесь полиоксиметиленгликолей (параформальдегид) в мольном соотношении к пропилену, равном 1:5, соответственно, процесс ведут в гексановом растворителе Нефрас марки П1-65/70 в количестве не менее 40% от смеси пропилена и источника формальдегида, а затем подают пропилен. Процесс ведут при температуре 140°С до полного исчерпания формальдегида, а непрореагировавший пропилен направляют на рецикл.
Пример 6
Процесс ведут, как в примере 5, отличие состоит в том, что процесс ведут в присутствии макропористого катионита в водородной форме на основе полистирола с привитыми сульфогруппами марки Lewatit 2620 с размером гранул 0,5-0,62 мм и обменной емкостью 5,2 мг-экв/г.
Компонентный и количественный состав продуктов по заявляемому способу определяют хроматографическим методом.
Обобщенные результаты по примерам 1-6 представлены в таблице 2.
Figure 00000002
Как видно из примеров конкретного выполнения, заявляемый объект по сравнению с прототипом позволяет упростить способ получения бутадиена путем уменьшения количества технологических операций, снижения температурного режима ведения процесса и количества сточных вод, что снижает энергозатраты и повышает экологию окружающей среды при получении бутадиена на превращенный формальдегид на уровне прототипа.

Claims (1)

  1. Способ получения бутадиена, включающий конденсацию пропилена с формальдегидом в среде растворителя с последующим выделением целевого продукта, отличающийся тем, что процесс ведут в реакторе высокого давления в присутствии макропористого катионита в водородной форме на основе полистирола с привитыми сульфогруппами при температуре 120-140°С, в качестве растворителя используют гексановый растворитель - нефрас, в качестве источника формальдегида берут 1,3,5-триоксан или 1,3-диоксолан, или смесь полиоксиметиленгликолей при мольном соотношении пропилена к формальдегиду (3-5):1 соответственно, а указанный макропористый катионит берут в расчете 10-20 мас.ч. на 100 мас.ч. смеси пропилена и источника формальдегида, и процесс ведут до полного превращения формальдегида.
RU2014118089/04A 2014-05-05 2014-05-05 Способ получения бутадиена RU2561734C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014118089/04A RU2561734C1 (ru) 2014-05-05 2014-05-05 Способ получения бутадиена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014118089/04A RU2561734C1 (ru) 2014-05-05 2014-05-05 Способ получения бутадиена

Publications (1)

Publication Number Publication Date
RU2561734C1 true RU2561734C1 (ru) 2015-09-10

Family

ID=54073355

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014118089/04A RU2561734C1 (ru) 2014-05-05 2014-05-05 Способ получения бутадиена

Country Status (1)

Country Link
RU (1) RU2561734C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586197A (zh) * 2018-05-03 2018-09-28 浙江新化化工股份有限公司 一种1,3-丁二醇的生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU183199A1 (ru) * М. И. Фарберов Способ получения дивинила
RU2004530C1 (ru) * 1991-08-15 1993-12-15 Институт нефтехимических процессов им.Ю.Г.Мамедалиева Способ получени дивинила
CN101665399A (zh) * 2008-09-05 2010-03-10 中国石油化工股份有限公司 丁二烯生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU183199A1 (ru) * М. И. Фарберов Способ получения дивинила
RU2004530C1 (ru) * 1991-08-15 1993-12-15 Институт нефтехимических процессов им.Ю.Г.Мамедалиева Способ получени дивинила
CN101665399A (zh) * 2008-09-05 2010-03-10 中国石油化工股份有限公司 丁二烯生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108586197A (zh) * 2018-05-03 2018-09-28 浙江新化化工股份有限公司 一种1,3-丁二醇的生产方法

Similar Documents

Publication Publication Date Title
US5210354A (en) Propylene oxide-styrene monomer process
KR101802543B1 (ko) 글리세롤로부터의 아크롤레인 및/또는 아크릴산의 제조 방법
US8410326B2 (en) Integrated process and apparatus to produce hydrocarbons from aqueous solutions of lactones, hydroxy-carboxylic acids, alkene-carboxylic acids, and/or alcohols
US2042224A (en) Process of converting a polyhydric alcohol to a carbonyl compound
CN107074677B (zh) 用于从1,3-丁二醇产生1,3-丁二烯的工艺
GB2559641A (en) Process
CN112390712A (zh) 一种采用固定床连续式反应制备1,3-丁二醇的方法
KR20120102776A (ko) 글리세롤로부터의 아크롤레인 및/또는 아크릴산의 제조 방법
RU2561734C1 (ru) Способ получения бутадиена
US3972955A (en) Process for preparation of isoprene
EP2523930A1 (en) Production of methyl-vinyl ketone from levulinic acid
CN105392794A (zh) 用于生产含果糖苷的产物的方法
GB2542869B (en) Process for the production of glycolic acid in the presence of a silica catalyst
US10759811B2 (en) Method of preparing anhydrosugar alcohol by two-step reaction
EP0030109B1 (en) Process for producing isoprene
US2803667A (en) Production of alcohols and ethers
KR20050106070A (ko) 고 농도 기체 포름알데히드의 제조 방법
SU183199A1 (ru) Способ получения дивинила
RU2765441C2 (ru) Способ производства изопрена
WO2016092517A1 (en) Process for the production of 1, 3-butadiene from 1, 4 -butanediol via tetrahydrofuran
US3128313A (en) Preparation of concentrated formaldehyde
RU2567556C1 (ru) Способ получения изобутилена из трет-бутанолсодержащей фракции (варианты)
RU2575926C1 (ru) Способ получения изопрена
US3792104A (en) Manufacture of isoprene
WO2017091531A1 (en) Process to produce and purify monoethylene glycol

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160506

NF4A Reinstatement of patent

Effective date: 20190506

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200506