RU2560356C1 - Способ получения оптически прозрачных монокристаллов граната - Google Patents

Способ получения оптически прозрачных монокристаллов граната Download PDF

Info

Publication number
RU2560356C1
RU2560356C1 RU2013153667/05A RU2013153667A RU2560356C1 RU 2560356 C1 RU2560356 C1 RU 2560356C1 RU 2013153667/05 A RU2013153667/05 A RU 2013153667/05A RU 2013153667 A RU2013153667 A RU 2013153667A RU 2560356 C1 RU2560356 C1 RU 2560356C1
Authority
RU
Russia
Prior art keywords
oxide
terbium
crystal
scandium
calcium
Prior art date
Application number
RU2013153667/05A
Other languages
English (en)
Inventor
Олег Валентинович Палашов
Дмитрий Сергеевич Железнов
Игорь Анатольевич Иванов
Алексей Михайлович Бульканов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт прикладной физики Российской академии наук (ИПФ РАН)
Priority to RU2013153667/05A priority Critical patent/RU2560356C1/ru
Application granted granted Critical
Publication of RU2560356C1 publication Critical patent/RU2560356C1/ru

Links

Abstract

Изобретение относится к выращиванию монокристаллов тербий-скандий-алюминиевого граната и может быть использовано в магнитной микроэлектронике для сцинтилляторной и лазерной техники, в частности для создания изоляторов Фарадея для лазерного излучения высокой средней по времени мощности и высокой энергии в импульсе. Монокристаллы граната получают методом Чохральского путем расплавления исходной шихты, включающей кальцийсодержащую добавку, в качестве которой используют оксид или карбонат кальция, и выращивания монокристалла из расплава на ориентированную затравку диаметром 2-8 мм при скорости вращения кристалла 2-10 об/мин с последующим его отжигом в атмосфере водорода при 850-950°C порядка 5 ч до исчезновения оранжевой окраски, при этом вытягивание кристаллов на ориентированную затравку осуществляют со скоростью 0,5-2 мм/ч, а в качестве исходной шихты используют смесь оксидов тербия, скандия и алюминия при следующем соотношении компонентов, мас.%: оксид тербия - 65,85-66,98, оксид алюминия - 17,96-23,14, оксид скандия - 9,88-16,19. После выращивания осуществляют отжиг кристалла в атмосфере водорода при 850-950°C в течение порядка 5 ч до исчезновения оранжевой окраски. Изобретение позволяет получать оптически прозрачные бесцветные монокристаллы граната, из которых изготавливают магнитооптические элементы диаметром более 30 мм с коэффициентом поглощения 0,8·10-3 см-1, постоянной Верде 46-48 рад/(м·Тл) на длине волны 1064 нм, порогом пробоя среды не хуже 5 Дж/см2 при 10 Гц на длине волны 1064 нм. 1 пр.

Description

Изобретение относится к выращиванию монокристаллов и может быть использовано при выращивании монокристаллов граната, а именно тербий-скандий-алюминиевого граната, обладающего характеристиками, необходимыми для применения, например, в магнитной микроэлектронике, в сцинтилляторной и лазерной технике, в частности для создания изоляторов Фарадея для лазерного излучения высокой средней по времени мощности и высокой энергией в импульсе.
Сейчас основной средой, применяемой для изготовления магнитооптических элементов изоляторов Фарадея, являются кристаллы тербий-галлиевого граната, однако его применение ограничено не очень высоким порогом пробоя среды (5 Дж/см2 при 10 Гц на длине волны 1064 нм), сравнительно невысокой теплопроводностью (5 Вт/(м·К)) и тем фактом, что хоть и удается вырастить монокристаллы диаметром до 80 мм, из них практически не удается получить магнитооптические элементы приемлемого оптического качества диаметром более 30 мм.
Долгое время предпринимались попытки создания кристаллических материалов, которые можно будет эффективно использовать в мощных широкоапертурных изоляторах Фарадея. Одним из перспективных материалов является тербий-алюминиевый гранат, который имеет на 20% большее по сравнению с тербий-галлиевым гранатом значение постоянной Верде и большее значение коэффициента теплопроводности, однако не удается вырастить монокристаллы приемлемого оптического качества даже диаметром, превышающим 3-4 мм.
Основное требование к качеству магнитооптических элементов для вращателей Фарадея - это оптическая однородность кристаллов (30-40 дБ), в случае вращателей Фарадея для высокой средней мощности излучения добавляется требования к величине коэффициента поглощения (0,8×10-3 см-1), постоянной Верде и коэффициенту теплопроводности (не хуже, чем у тербий-галлиевого граната: 40 рад/(м·Тл); для излучения с высокой энергией в импульсе и высокой частотой повторения импульсов, во избежание пробоя оптического элемента, налагаются дополнительные требования на диаметр кристалла и порог пробоя среды (не менее 30 мм и не хуже 5 Дж/см2 при 10 Гц на длине волны 1064 нм соответственно).
Из заявки Российской Федерации №94008773, приоритет 27.04.1996, известен бесцветный синтетический монокристалл, в том числе и со структурой граната, в частности, матрица монокристалла может быть выполнена на основе тербий-галлиевого граната (матрица) и при этом дополнительно содержать в качестве примеси неодим, никели и/или кобальт, причем содержание примеси составляет от 10-8 до 10-2 мас.% и может содержать дополнительные примеси (кальций, стронций и/или магний), причем содержание дополнительной примеси составляет от 10-8 до 10-2 мас.%.
Бесцветные монокристаллы получали различными известными методами, в частности методом Багдасарова, а также методом Чохральского.
Так, в частности, бесцветные монокристаллы со структурой граната выращивали по методу Чохральского в иридиевом или платиновом тигле (для кальций-ниобий-галлиевого граната). Для монокристаллов на основе кальций-ниобий-галлиевого граната использовались следующие условия роста: скорость вытягивания 2-5 мм/ч, скорость вращения 60-80 об/мин, скорость потока кислорода через реакционный объем 0,5-2 л/мин, отношение диаметра кристалла к диаметру тигля не более 0,6. Выращенные кристаллы имели диаметр до 80 мм, причем из расплава переходило в кристалл до 75 вещества.
Ближайшим к предлагаемому способу выращивания оптически прозрачных кристаллов граната является описанный в патенте РФ №2328561, приоритет 15.09.2006, способ получения оптически прозрачных монокристаллов тербий-галлиевого граната методом Чохральского путем расплавления исходной шихты, включающей просветляющую кальцийсодержащую добавку, и последующего выращивания монокристалла из расплава на затравку. В качестве исходной шихты используют смесь оксидов тербия и галлия, в качестве кальцийсодержащей добавки - оксид или карбонат кальция, а после выращивания осуществляют отжиг кристалла в атмосфере водорода при 850-950°C в течение 5 часов до исчезновения оранжевой окраски.
Изобретение позволяет получать оптически прозрачные достаточно однородные монокристаллы с коэффициентом поглощения 0,5·10-3 см-1 диаметром до 80 мм, однако магнитооптические элементы высокой оптической однородности - только диаметром до 30 мм. Кроме того, как уже говорилось, для кристаллов тербий-галлиевого граната характерны невысокие теплопроводность и порог пробоя среды.
Задачей, на которое направлено заявленное изобретение, является выращивание оптически прозрачных монокристаллов граната с бесцветной окраской и повышенной оптической прозрачностью, из которых возможно получить магнитооптические 3
элементы приемлемого оптического качества, а именно диаметром более 30 мм с коэффициентом поглощения 0,8×10-3 см-1, постоянной Верде в 46-48 рад/(м·Тл) на длине волны 1064 нм, порогом пробоя среды не хуже 5 Дж/см2 при 10 Гц на длине волны 1064 нм для применения в лазерной технике с большой средней мощностью излучения.
Технический эффект, заключающийся в улучшении характеристик магнитооптических элементов, использующихся в лазерной технике, обеспечивается тем, что получают оптически прозрачные монокристаллы граната методом Чохральского путем расплавления исходной шихты, включающей кальцийсодержащую добавку, в качестве которой используют оксид или карбонат кальция, и выращивания монокристалла из расплава на ориентированную затравку диаметром 2-8 мм при скорости вращения кристалла 2-10 об/мин с последующим его отжигом в атмосфере водорода при 850-950°C порядка 5 ч до исчезновения оранжевой окраски.
Новым является то, что вытягивание кристаллов на ориентированную затравку осуществляют со скоростью 0,5-2 мм/ч, а в качестве исходной шихты используют смесь оксидов тербия, скандия и алюминия со значениями массовых долей компонентов, попадающих в диапазон между следующими граничными значениями включительно: оксид тербия - 66,98, оксид алюминия - 23,14, оксид скандия - 9,88 и оксид тербия - 65,85, оксид алюминия - 17,96, оксид скандия - 16,19.
Ниже приводится конкретный пример осуществления способа, иллюстрирующий изобретение, но не ограничивающий его.
Пример 1. Оптически прозрачные монокристаллы тербий-скандий-алюминиевого граната (ТСАГ) выращивают по методу Чохральского, гранатообразующие компоненты (матрица), предварительно просушенные (при температуре 800-1000°C, например), взвешивают на аналитических весах, перемешивают до образования гомогенной смеси.
Типичный примерный состав шихты может включать (в мас. %):
вариант 1: оксид тербия - 66,98, оксид алюминия - 23,14, оксид скандия - 9,88;
вариант 2: оксид тербия - 65,85, оксид алюминия - 17,96, оксид скандия - 16,19.
В вариантах указаны граничные значения, любые промежуточные значения массовых долей, попадающих в диапазон указанных вариантов, тоже подходят.
Из смеси оксидов могут прессовать таблетки. Смесь оксидов (шихту) помещают в тигель (иридиевый или платиновый), плавят, добавляют кальцийсодержащую добавку (оксид кальция (СаО) или карбонат кальция (СаСО3) в расплавленную шихту.
Оксид кальция (СаО) или карбонат кальция (СаСО3) вводят в расплав в количестве от 0,1 до 1,0 г один-два раза перед выращиванием кристаллов на количество шихты, равное 4-8 кг. При использовании оксида кальция (СаО), его добавляют в количестве 0,1 г. При использовании карбоната кальция (СаСО3), его добавляют в количестве до 1 г.
Далее выращивают ориентированные кристаллы из расплава (вытягивание кристаллов на затравку, обладающую требуемой ориентацией). Выращенный монокристалл с добавкой оксида кальция (СаО) или карбоната кальция (СаСО3) имеет оранжевую окраску и характерную полосу высокого поглощения в диапазоне длин волн 400-659 нм. Далее осуществляют отжиг кристаллов в течение 5 часов в атмосфере водорода при 900°C. После отжига кристалл становится бесцветным и полоса поглощения исчезает. Получают оптически прозрачные монокристаллы.
Введенные добавки (оксид кальция (СаО) или карбонат кальция (СаСО3)) препятствуют винтовому росту кристаллов. Их влияние на технический результат (который, как указано выше, состоит в улучшении характеристик магнитооптических элементов, использующихся в лазерной технике) заключается в стабилизации процесса выращивания и препятствовании винтовому росту кристаллов.
При получении монокристаллов тербий-скандий-алюминиевого граната заявленным способом, соответствующих озвученным требованиям, используют следующие условия роста:
- скорость вытягивания - 0,5-2 мм/час;
- скорость вращения кристалла - 2-10 об/мин;
- диаметр затравки - от 2 мм до 8 мм.
Выращивание кристаллов осуществляют в инертной атмосфере (например, в атмосфере азота) с добавкой кислорода. Нарушение условий роста (например, превышение предельной скорости вытягивания, которая у кристаллов ТСАГ ниже, чем у ближайшего аналога - тербий-галлиевого граната) приводит к нарушению кристаллической структуры получающихся магнитооптических элементов, возникновению в их объеме неоднородностей, свилей, ухудшению оптических и термооптических характеристик.
Магнитооптические элементы из выращенных монокристаллов - это, например, цилиндрические элементы, в частности, диаметром 30 и более мм и длиной 20-40 мм, или элементы, имеющие форму параллелепипеда, например 3×10×30 мм, используемые для изготовления вращателей Фарадея.
Тербий-скандий-алюминиевый гранат, обладает, в отличие от более экзотических аналогов, кубической кристаллической решеткой. Термонаведенные эффекты в кристаллах с такой кристаллической решеткой имеют подробное и простое теоретическое описание. Его удается вырастить наиболее простыми традиционно и широко используемыми способами: методом Чохральского и методом «вытягивания вниз». Тербий-скандий-алюминиевый гранат обладает практически такой же постоянной Верде, как и тербий-алюминиевый гранат, - в 1,2 раза больше, чем у тербий-галлиевого граната. Тербий-скандий-алюминиевый гранат прозрачен в диапазоне длин волн 500-1400 нм. При этом порог пробоя тербий-скандий-алюминиевого граната по крайней мере не уступает аналогичной характеристике тербий-галлиевого граната. Готовые магнитооптические элементы из тербий-скандий-алюминиевого граната могут обладать диаметром более 30 мм, они отличаются низким поглощением и высокой однородностью параметров по поперечному сечению. Тербий-скандий-алюминиевый гранат является весьма перспективной и привлекательной средой, в частности, для создания мощных широкоапертурных изоляторов Фарадея.

Claims (1)

  1. Способ получения оптически прозрачных монокристаллов граната методом Чохральского путем расплавления исходной шихты, включающей кальцийсодержащую добавку, в качестве которой используют оксид или карбонат кальция, и выращивания монокристалла из расплава на ориентированную затравку диаметром 2-8 мм при скорости вращения кристалла 2-10 об/мин с последующим его отжигом в атмосфере водорода при 850-950°C порядка 5 ч до исчезновения оранжевой окраски, отличающийся тем, что вытягивание кристаллов на ориентированную затравку осуществляют со скоростью 0,5-2 мм/ч, а в качестве исходной шихты используют смесь оксидов тербия, скандия и алюминия со значениями массовых долей компонентов, попадающих в диапазон между следующими граничными значениями включительно: оксид тербия - 66,98, оксид алюминия - 23,14, оксид скандия - 9,88 и оксид тербия - 65,85, оксид алюминия - 17,96, оксид скандия - 16,19.
RU2013153667/05A 2013-12-03 2013-12-03 Способ получения оптически прозрачных монокристаллов граната RU2560356C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013153667/05A RU2560356C1 (ru) 2013-12-03 2013-12-03 Способ получения оптически прозрачных монокристаллов граната

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013153667/05A RU2560356C1 (ru) 2013-12-03 2013-12-03 Способ получения оптически прозрачных монокристаллов граната

Publications (1)

Publication Number Publication Date
RU2560356C1 true RU2560356C1 (ru) 2015-08-20

Family

ID=53880624

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013153667/05A RU2560356C1 (ru) 2013-12-03 2013-12-03 Способ получения оптически прозрачных монокристаллов граната

Country Status (1)

Country Link
RU (1) RU2560356C1 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2328561C1 (ru) * 2006-09-15 2008-07-10 Закрытое акционерное общество "НИИ материаловедения" Способ получения оптически прозрачных монокристаллов тербий-галлиевого граната
EP2599899A1 (en) * 2010-07-26 2013-06-05 Fujikura Ltd. Garnet single crystal, optical isolator and laser processing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2328561C1 (ru) * 2006-09-15 2008-07-10 Закрытое акционерное общество "НИИ материаловедения" Способ получения оптически прозрачных монокристаллов тербий-галлиевого граната
EP2599899A1 (en) * 2010-07-26 2013-06-05 Fujikura Ltd. Garnet single crystal, optical isolator and laser processing machine

Similar Documents

Publication Publication Date Title
Liu et al. Growth and Luminescence of M-Type ${\rm GdTaO} _ {4} $ and Tb: ${\rm GdTaO} _ {4} $ Scintillation Single Crystals
JP2016522135A5 (ru)
JP2011529017A (ja) ドープされたβ−ホウ酸バリウム単結晶、その製造方法およびその周波数変換器部品
CN103046131B (zh) 钕离子掺杂的二价阳离子氟化物激光晶体及其制备方法
JP2002293693A (ja) テルビウム・アルミニウム・ガーネット単結晶及びその製造方法
JP5337011B2 (ja) 磁気光学素子用酸化テルビウム結晶
RU2560356C1 (ru) Способ получения оптически прозрачных монокристаллов граната
Hatamoto et al. Growth and scintillation properties of cerium doped lutetium scandium borate single crystals
Wu et al. A homogeneity study on (Ce, Gd) 3 Ga 2 Al 3 O 12 crystal scintillators grown by an optical floating zone method and a traveling solvent floating zone method
Fedorova et al. Growth of MBO 3 (M= La, Y, Sc) and LaSc 3 (BO 3) 4 crystals from LiBO 2-LiF fluxes
JP2001226196A (ja) テルビウム・アルミニウム・ガーネット単結晶およびその製造方法
Petrosyan et al. Growth, optical and EPR studies of 151Eu2+: YAG single crystals
RU2328561C1 (ru) Способ получения оптически прозрачных монокристаллов тербий-галлиевого граната
Niwa et al. Growth and photoluminescence spectra of high quality AgGaS2 single crystals
JP2011190138A (ja) 電気磁気効果単結晶の製造方法
Chen et al. Growth of lead molybdate crystals by vertical Bridgman method
JPH034518B2 (ru)
Leonyuk et al. Crystal growth and characterization of YAl3 (BO3) 4 doped with Sc, Ga, Pr, Ho, Tm, Yb
RU2324018C2 (ru) Серийный способ выращивания кристаллов галлий-скандий-гадолиниевых гранатов для пассивных лазерных затворов
Chen et al. Czochralski growth and Faraday rotation properties of Tb9. 33 (SiO4) 6O2 crystals
Ding et al. Growth and spectroscopic properties of Yb0. 1Gd1. 8La0· 1SiO5 crystal: A promising new laser material for ultrashort laser
Luchechko et al. Growing features and luminescence of Bi3+ ions in Gd3Ga5O12 epitaxial films
RU2759536C1 (ru) Нелинейно-оптический и фотолюминесцентный материал редкоземельного скандобората самария и способ его получения
RU2777116C1 (ru) Способ получения борсодержащего монокристалла ниобата лития
CN115341283B (zh) 一种硼酸锂钡铽磁光晶体及其制备方法和应用

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181204