RU2560258C2 - Штамм, продуцирующий пептидные антибиотики с высоким выходом, способ его получения и применение - Google Patents

Штамм, продуцирующий пептидные антибиотики с высоким выходом, способ его получения и применение Download PDF

Info

Publication number
RU2560258C2
RU2560258C2 RU2013132191/10A RU2013132191A RU2560258C2 RU 2560258 C2 RU2560258 C2 RU 2560258C2 RU 2013132191/10 A RU2013132191/10 A RU 2013132191/10A RU 2013132191 A RU2013132191 A RU 2013132191A RU 2560258 C2 RU2560258 C2 RU 2560258C2
Authority
RU
Russia
Prior art keywords
formula
strain
compound
fermentation medium
mutant strain
Prior art date
Application number
RU2013132191/10A
Other languages
English (en)
Other versions
RU2013132191A (ru
Inventor
И Чэнь
Шидун ЛЮ
Чжаоли ЧЖАН
Чунься ВАН
Цзин КАН
Сяомин ЦЗИ
Original Assignee
Шанхай Техвелл Биофармасьютикал Ко., Лтд
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шанхай Техвелл Биофармасьютикал Ко., Лтд filed Critical Шанхай Техвелл Биофармасьютикал Ко., Лтд
Publication of RU2013132191A publication Critical patent/RU2013132191A/ru
Application granted granted Critical
Publication of RU2560258C2 publication Critical patent/RU2560258C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/145Fungal isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Изобретение относится к биохимии и биотехнологии и представляет собой штамм Colephoma empetri, депонированный в CGMCC с учетным номером CGMCC 4129, продуцирующий антибиотики с высоким выходом. Полученный штамм имеет стабильные генетические и продуцирующие свойства, производит мало примесей при ферментации и подходит для применения в промышленном производстве. Изобретение позволяет расширить ассортимент штаммов для продукции антибиотиков. 3 н. и 4 з.п. ф-лы, 2 табл., 2 пр.

Description

Область техники
Настоящее изобретение относится к области производства антибиотиков. В частности, настоящее изобретение относится к штамму, продуцирующему пептидный антибиотик с высоким выходом, к способу получения и к его применению.
Предшествующий уровень техники
В последние несколько десятилетий постоянно растут и заболеваемость, и типы грибковой инфекции, вредной для здоровья человека, особенно для пациентов с иммуносупрессией. В течение этого периода клиническое применение некоторых часто используемых противогрибковых средств, таких как амфотерицин, имидазолы и триазолы, ограничено из-за значительной нейротоксичности, лекарственной устойчивости и тому подобного. Эхинокандины, как род новых противогрибковых средств, относятся к группе натуральных продуктов, обнаруженных в 1970-х годах. Структурно эхинокандины имеют аналогичную циклическим полипептидам основу, но имеют отличающиеся боковые цепи жирных кислот. Эхинокандины могут конкурентно ингибировать синтез β-D-глюкана в клеточных стенках грибков. Преимуществами эхинокандинов являются низкая токсичность, сильная фунгицидная активность, а также отличные фармакокинетические свойства.
Семейство эхинокандинов включает следующие элементы: WF 11899 A, эхинокандины, цилофунгин, пневмокандины, акулеацины и мулундокандин, с микафунгином, эхинокандины и пневмокандины, которые активно исследуют и в настоящее время применяют в клинике.
Микафунгин является водорастворимым липопептидным противогрибковым агентом из эхинокандинов, который получают путем химической модификации продукта ферментации из Colephoma empetri. Микафунгин был разработан Fujisawa как антигрибковый препарат широкого спектра действия. В открытом исследовании у пациентов с глубокой грибковой инфекцией (Candida или Aspergillus), проведенном в Японии, средняя эффективность 92% может быть достигнута после обработки в течение приблизительно 22 дней для каждой дозовой группы. В моноцентровом исследовании, проведенном в США для 14 случаев рака у пациентов с кандидемией, использовали 50~150 мг Микафунгина в комбинации с другими противогрибковыми агентами или без каких-либо других антигрибковых агентов и обнаружили, что в 11 из 12 случаев он был эффективен (92%). Такие виды препаратов превосходят традиционные противогрибковые агенты благодаря негемолитической токсичности и меньшим взаимодействием с другими препаратами.
Figure 00000001
Colephoma empetri может производить класс природных антигрибковых агентов, таких как соединения формулы I, II и III.
Производительность Colephoma empetri (каталожный № FERM ВР-2635) для соединения формулы I очень низка (только 700 мг/л), таким образом, затраты на индустриализацию будут очень высоки.
Общая формула I, II, III
Figure 00000002
Соответственно, необходимо срочно найти штамм со стабильными генетическими свойствами и высоким выходом, который может производить больше соединения формулы I для выполнения требований промышленного производства.
Краткое описание изобретение
Целью настоящего изобретения является создание мутантного штамма Colephoma empetri.
Другой целью настоящего изобретения является обеспечение способа получения указанного мутантного штамма.
Еще одной целью настоящего изобретения является описание применения указанных мутантного штамма.
В первом аспекте настоящего изобретения предусмотрен мутантный штамм Colephoma empetri, который был депонирован в Китайском Главном Центре Коллекционирования Микробиологических Культур (China General Microbiological Culture Collection Center) с регистрационным номером CGMCC 4129.
Во втором аспекте настоящего изобретения предлагается способ получения мутантного штамма, указанного выше, включающий следующие стадии:
(а) смешивание посевной жидкости Colephoma empetri учетный номер FERM ВР-2635 с нитрозогуанидином для получения смеси A;
(б) смешивание указанной смеси A с ферментом, разрушающим клеточную стенку, для получения протопластов;
(в) регенерацию указанных протопластов для получения отдельных колоний и
(г) культивирование указанных отдельных колоний для получения мутантного штамма, указанного выше.
В третьем аспекте настоящего изобретения, предусматривают применение указанного мутантного штамма для получения соединения формулы I:
Figure 00000003
В четвертом аспекте настоящего изобретения предложен способ получения соединения формулы I, содержащий следующую стадию: культивирование указанного мутантного штамма, осуществляемое согласно настоящему методу, в ферментационной среде при температуре от 15 до 35°C с получением соединения формулы I.
В способе получения, указанном выше, указанная ферментационная среда содержит следующие компоненты, в расчете на общий объем ферментационной среды: жидкий кукурузный экстракт 5-20 г/л, мука из жмыха семян хлопчатника 5-30 г/л, дрожжевой экстракт 6-15 г/л, крахмал 10-80 г/л, глюкоза 5-20 г/л, неорганическая соль 1,5-15 г/л, микроэлементы 10-50 г/л, указанная неорганическая соль выбрана из фосфата или сульфата, или их комбинации.
В способе получения, указанном выше, объем инокуляции указанного мутантного штамма, предусмотренного по изобретению, составляет 4-10 об./об.%, в расчете на общий объем ферментационной среды.
В способе получения, указанном выше, исходное значение рН указанной ферментационной среды составляет 5,5-6,5.
Таким образом, настоящее изобретение предусматривает штамм со стабильными генетическими свойствами и высоким выходом, который может производить больше соединения формулы I для лучшего выполнения требований промышленного производства.
Способы осуществления изобретения
Авторы настоящего изобретения неожиданно обнаружили, что мутантный штамм с высоким выходом (учетный номер CGMCC 4129) может быть получен путем мутагенеза штамма Colephoma empetri FERM ВР-2635 с нитрозогуанидином (НТГ) с использованием фермента, лизирующего клеточную стенку, lywallzyme, для получения протопластов, а затем скрининга регенерированных протопластов. Указанный мутантный штамм может продуцировать соединение формулы I с высоким выходом путем ферментации. Таким образом, авторы осуществили настоящее изобретение.
Новый штамм
Настоящее изобретение обеспечивает новый штамм, продуцирующий соединение формулы I. Таксономически указанный новый штамм принадлежит к Colephoma empetri и депонирован в Китайском Главном Центре Коллекционирования Микробиологических Культур (China General Microbiological Culture Collection Center) с учетным номером CGMCC 4129 31 августа 2010 г.
Способ получения нового штамма
Настоящее изобретение относится к способу получения нового штамма с учетным номером CGMCC 4129, и указанный способ может быть осуществлен в соответствии со следующим процессом:
Исходный штамм → посевная жидкость → мутагенная обработка НТГ → удаление клеточной стенки с помощью фермента, лизирующего клеточную стенку (lywallzyme) для получения протопластов → разведение и посев протопластов на чашки→выбор одной колонии и посев ее на скошенный агар → первичный скрининг во встряхиваемых колбах → выбор штамма с большим выходом → посев штамма на скошенный агар → вторичный скрининг во встряхиваемых колбах → выбор штамма с большим выходом, проверка в ферментационном чане, и выполнение эксперимента по определению стабильности → депонирование штамма.
В частности, метод, описанный в настоящем изобретении, включает следующие стадии:
(а) смешивание посевной жидкости Colephoma empetri регистрационный номер FERM ВР-2635 с нитрозогуанидином с получением смеси А;
(б) перемешивание указанной смеси А с разрушающим клеточную стенку ферментом для получения протопластов;
(в) регенерация указанных протопластов для получения отдельных колоний; и
(г) культивирование указанных отдельных колоний для получения нового штамма.
В примере по настоящему изобретению новый штамм может быть получен с помощью следующей процедуры: культивирование посевной жидкости от FERM ВР-2635 (сухая масса клеток, СВК 5-30 г/л) в течение от 1 до 3 суток во встряхиваемых колбах, добавление соответствующего количества НТГ в посевную жидкость, культивирование еще от 1 до 2 суток, а затем центрифугирование посевной жидкости, промывание и ресуспендирование осадка и разрушение клеточных стенок с помощью lywallzyme (коммерчески доступен в Гуандунском Институте Микроорганизмов - Guangdong Microorganism institute), для получения протопластов. Разбавленные протопласты высевали на чашки с гипертоническим КАД (картофельный агар с декстрозой) и культивировали для получения отдельных колоний рекомбинантных клеток. Отдельные колонии, указанные выше, проверяют для получения мутантного нового штамма.
Далее, настоящее изобретение относится к способу получения соединения формулы 1 путем ферментации нового штамма, полученного с помощью мутагенеза.
В примере по настоящему изобретению способ получения нового штамма с помощью мутагенеза и ферментирования нового штамма для получения соединения формулы I является следующим:
(1) исходный штамм: Colephoma empetri FERM ВР-2635
(2) посевная культура исходного штамма.
Депонированный штамм FERM ВР-2635 в глицерине размораживают, высевают в посевной среде (с нагрузкой 50 мл/250 мл), культивируют на шейкере при 200-300 об/мин при температуре 25-30°C в течение от 1 до 3 суток до тех пор, пока масса в расчете на сухой мицелий не достигает приблизительно 5-30 г/л.
Состав посевной среды: сахароза 10-20 г/л, дрожжевой экстракт 4-10 г/л, соевый триптон 10-20 г/л, KH2PO4 1,5-2 г/л, MgSO4·7H2O 0,4-1 г/л, микроэлементы 10-50 г/л, начальный pH 5,3-6,0. Среду стерилизуют при 121°C в течение 20 мин. Микроэлементы: FeSO4·7H2O 10-20 г/л, MnSO4 H2O 10-20 г/л, ZnSO4·7H2O 2-10 г/л, CaCl2 0,7-2,0 г/л, H3BO3 0,56-2,0 г/л, CuCl2·2H2O 0,25-2,0 г/л, (NH4) 6Mo7O24·7H2O 0,19-2,0 г/л, концентрированная соляная кислота 500 мл/л.
(3) разделение отдельных колоний.
Прежде всего посевную жидкость из исходного штамма подвергают мутагенной обработке НТГ, а затем обрабатывают lywallzyme для разрушения клеточной стенки. Полученные протопласты регенерируют для получения мутантного штамма.
(4) скринирование мутантного штамма.
Протопласты высевают на гипертоническую среду КАД. Единичные колонии, растущие в течение от 10 до 12 суток, высевают на среду для культивирования на скошенном агаре для дальнейшего культивирования. Через 8-10 суток посевную среду инокулируют (нагрузка на 25 мл/250 мл) с газоном, выращенным на среде культивирования на скошенном агаре, и культивируют на шейкере при 280 об/мин при температуре 25-30°C в течение 6-10 суток. Посевную жидкость высевают в среду ферментации (нагрузка 25 мл/250 мл) и культивируют на шейкере при 200-300 об/мин при температуре 25-30°C в течение 6-12 суток. После завершения культивирования ферментационную жидкость экстрагируют метанолом и содержание соединения формулы I в ферментационной жидкости измеряют с помощью высокоэффективной жидкостной хроматографии.
Составы используемой среды можно найти в Improvement of FR 901379 production by mutant selection and medium optimization, Journal of Bioscience and Bioengineering VOL 107 No.5, 530-534, 2009, Journal of antibiotics, Vol 45, No.12, Dec 1992, 1867-1874.
Гипертоническая среда КАД: картофель 300 г/л, глюкоза 20 г/л, агар 15 г/л, сахароза 273,6 г/л, стерилизация при 121°C в течение 20 мин.
(5) ферментирование мутантного штамма.
Соответствующие технические решения были описаны в литературе. Для получения подробной информации, пожалуйста, обратитесь к Improvement of FR901379 production by mutant selection and medium optimization, Journal of Bioscience and Bioengineering VOL 107 No.5, 530-534, 2009, Journal of antibiotics, Vol 45, No.12, Dec 1992, 1867-1874.
Отличительные признаки настоящего изобретения, упомянутые выше, или особенности, упомянутые в примерах, могут быть дополнительно объединены. Любой признак, раскрытый в настоящем описании, может быть использован в сочетании с любыми другими признаками, и каждый признак, раскрытый в описании, может быть заменен альтернативным признаком, который может служить идентичной, эквивалентной или аналогичной цели. Таким образом, признаки, раскрытые здесь, являются только общими примерными примерами эквивалентных или сходных признаков, если специально не указано иначе.
Основные преимущества настоящего изобретения включают:
1. Мутантный новый штамм получают со стабильным высоким выходом и стабильными генетическими свойствами.
2. Высокая генетическая стабильность и меньшее продуцирование примесей для нового штамма облегчают разделение и очистку при продуцировании соединения формулы I, а также при масштабировании, и тем самым пригодны для промышленного производства.
3. Выход соединения формулы I может достигать 1,5 г/л при оптимальных условиях ферментации.
Настоящее изобретение будет ниже дополнительно проиллюстрировано со ссылкой на конкретные примеры. Следует понимать, что эти примеры приведены только для иллюстрации настоящего изобретения, но не ограничивают объем настоящего изобретения. Экспериментальные способы без каких-либо конкретных условий, описанных в следующих примерах, как правило, выполняются при обычных условиях или в соответствии с инструкциями производителя. Если не указано иное, то все проценты, соотношения, пропорции или части рассчитываются по массе.
Единица "отношение массы к объему в процентах", используемая в настоящем изобретении, хорошо известна специалистам в данной области техники, например, сказанное относится к массе вещества, растворенного в 100 мл раствора.
Если не определено иначе, все технические и научные термины, используемые в настоящем описании, имеют значения, общепринятые специалистами в данной области. Кроме того, все методы и материалы, которые аналогичны или эквивалентны раскрытым в данном документе, могут быть применены в способах по настоящему изобретению. Предпочтительные способы и материалы для осуществления настоящего способы, описанные здесь, даны только в качестве примеров.
В примерах по настоящему изобретению, условия высокоэффективной жидкостной хроматографии, используемой для измерения содержания соединения формулы I в ферментационной жидкости, являются следующими:
содержание соединения формулы I в ферментационной жидкости измеряют с помощью высокоэффективной жидкостной хроматографии:
хроматографическая колонка: Calesil DOS-100 (4,6 мм × 250 мм, 5 мкм) подвижная фаза:ацетонитрил:вода = 50:50 с 0.05N из NH4H2PO4,
температура колонки: 35°C,
градиент элюирования, скорость потока: 1,0 мл/мин,
объем впрыска: 5 мкл, длина волны детектирования: 210 нм.
Пример 1
Получение нового штамма CGMCC 2933 путем мутагенеза.
1. мутагенез
Депонированный штамм FERM ВР-2635 в глицерине размораживают, высевают в посевную среду с инокуляцией в количестве 4% (нагрузка 50 мл/250 мл), затем культивируют на шейкере при скорости 280 об/мин при 25°C в течение 2 суток до получения сухой массы мицелия около 5-30 г/л. Мутаген НТГ добавляют в посевную жидкость при концентрации 10 мкг/мл, а посевную жидкость культивируют еще сутки. Затем берут 10 мл посевной жидкости, содержащей НТГ, центрифугируют при 5000 об/мин в течение 10 минут и полученный осадок промывают два раза двумя объемами 0,6 М NaCl для удаления среды и НТГ. Степень гибели микроорганизмов для этого процесса составляет 85-90%.
Посевная среда: сахароза 10 г/л, дрожжевой экстракт 5 г/л, соевый триптон 10 г/л, КН2РО4 1,5 г/л, MgSO4·7H2O 0,4 г/л, микроэлементы 10 г/л, исходный pH 5,3. Посевную среду стерилизуют при 121°C в течение 20 минут.
Микроэлементы: FeSO4·7H2O 10 г/л, MnSO4·H2O 10 г/л ZnSO4·7H2O, 2 г/л CaCl2, 0,7 г/л H3BO3 0,56 г/л, CuCl2·2H2O 0,25 г/л (NH4)6Mo7O24·7H2O 0,19 г/л, концентрированная соляная кислота 500 мл/л
2. Подготовка протопластов и разделение единичных колоний
К промытым мицелиям добавляют 10 мл смеси ферментов (в буфере двузамещенный фосфорнокислый натрий - лимонная кислота (pH 6,0) с 0,5 М NaCl), смесь ферментов содержит 20 мг/мл lywallzyme (2000 ед./мг), 10 мг/мл фермента улитки (5 ед./мг) и 10 мг/мл целлюлозы (15 ед./мг). Полученную смесь встряхивают при 80 об/мин при 30°C в течение 5 ч для ферментативного разрушения. Реакционную смесь ферментативного разрушения фильтруют через вату для удаления мицелия и получают одноклеточную суспензию, содержащую только протопласты. Один миллилитр этого раствора отбирают и центрифугируют при 14000 об/мин в течение 10 минут. Осадок растворяют в 1 мл буфера двузамещенный фосфорнокислый натрий - лимонная кислота (pH 6,0), содержащего 0,5 М NaCl. Этот раствор затем последовательно разбавляют в различных концентрациях, равномерно наносят на гипертоническую КАД среду с 0,8 М сахарозой и культивируют при 25°C в течение от 6 до 8 суток для получения примерно 6000 отдельных колоний.
3. Процесс скрининга штамма, обеспечивающего высокий выход CGMCC 4129
После культивирования в течение 8 суток отдельные колонии отбирали и высевали на среду для культивирования на скошенном агаре для дальнейшего культивирования. После 8 суток газон площадью от 0,5 до 1,0 см2 отбирали и высевали в посевную среду (объем загрузки 25 мл/250 мл) (всего 4000 отдельных колоний), культивировали на шейкере при 280 об/мин и 25°C в течение 5 суток. Посевную жидкость высевали в ферментационную среду с инокуляционным объемом 4% (объем загрузки 25 мл/250 мл), культивировали на шейкере при 280 об/мин и температуре 25°C в течение 10 суток (на 6-й день культивирования добавляли 5% крахмала).
После окончания культивирования ферментационную жидкость экстрагировали 50 мл метанола и содержание соединения формулы I в ферментационной жидкости измеряли с помощью высокоэффективной жидкостной хроматографии. Всего было получено 5 штаммов с высоким выходом, и штамм с высоким выходом CGMCC 4129 был скринировали еще раз для подтверждения того, что выход соединения формулы I составлял 1,4 г/л.
Пример 2
Продуцирование соединения формулы I новым штаммом CGMCC 4129 Новый штамм CGMCC 4129, полученный в примере 1, в посевной среде засевают в ферментационную среду в инокуляционном количестве 4%, культивируют в 50-литровом ферментере при температуре 25°C. pH ферментационной жидкости поддерживают равной 6,5. После культивирования в течение 10 суток выход соединения формулы I составил 1,5 г/л (на 6-й день культуры добавляют 5% крахмала).
Ферментационная среда: жидкий кукурузный экстракт 20 г/л, мука из жмыха семян хлопчатника 10 г/л, дрожжевой экстракт (коммерчески доступная форма Oxiod) 8 г/л, крахмал 40 г/л, глюкоза 5-10 г/л, КН2РО4 1,5 г/л, MgSO4·7H2O 0,4 г/л, микроэлементы 10 мл/л, исходный pH 5,3. Глюкозу стерилизуют отдельно при 115°C в течение 20 минут.
Микроэлементы: FeSO4·7H2O 10 г/л, MnSO4·H2O 10 г/л ZnSO4·7H2O, 2 г/л CaCl2, 0,7 г/л H3BO3 0,56 г/л, CuCl2·2H2O 0,25 г/л, (NH4)6Mo7O24·7H2O 0,19 г/л, концентрированная соляная кислота 500 мл/л.
Пример для сравнения
Мощность исходного штамма FERM ВР-2635 для продуцирования соединения формулы I сравнивают с мощностью мутантного штамма CGMCC 4129, используя следующие методы:
Исходный штамм и мутантный штамм культивировали, используя способ культивирования, описанный в Примере 2 соответственно. После окончания культивирования ферментационную жидкость экстрагировали с использованием двух объемов метанола и содержание соединения формулы I в ферментационной жидкости измеряли с помощью высокоэффективной жидкостной хроматографии. Результаты показаны в Таблице 1.
Таблица 1
Штамм № Выход соединения формулы I (г·л-1)
FERM BP-26357 0.07
CGMCC 4129 1.5
Используемые среды перечислены ниже:
Среда скринирования: картофель 300 г/л, глюкоза 20 г/л, агар 15 г/л, сахароза 273,6 г/л, стерилизуют при 121°C в течение 20 минут.
Среда культивирования на скошенном агаре: картофель 300 г/л, глюкоза 20 г/л, агар 15 г/л, стерилизуют при 121°C в течение 20 минут.
Посевная среда: сахароза 10 г/л, дрожжевой экстракт 5 г/л, соевый триптон 10 г/л, KH2PO4 1,5 г/л, MgSO4·7H2O 0,4 г/л, микроэлементы 10 г/л, исходный pH 5,3, стерилизуют при 121°C в течение 20 минут.
Ферментационная среда: жидкий кукурузный экстракт 20 г/л, мука из жмыха семян хлопчатника 10 г/л, дрожжевой экстракт (коммерчески доступная форма (Oxiod) 8 г/л, крахмал 40 г/л, глюкоза 5-10 г/л KH2PO4 1,5 г/л, MgSO4·7H2O 0,4 г/л, микроэлементы 10 мл/л, исходный pH 5,3. Глюкозу стерилизуют отдельно при 115°C в течение 20 минут.
Микроэлементы: FeSO4·7H2O 10 г/л, MnSO4·H2O 10 г/л ZnSO4·7H2O, 2 г/л CaCl2, 0,7 г/л H3BO3 0,56 г/л, CuCl2·2H2O 0,25 г/л (NH4)6Mo7O24·7H2O 0,19 г/л, концентрированная соляная кислота 500 мл/л.
Пример 3
Стабильность нового штамма 4129 CGMCC
Субкультивирование проводят с использованием такой же среды и условий культивирования, как описаны в Примере 2. Результат показан в таблице 2.
Таблица 2
Стабильность пассажей нового штамма
Номер пассажа F1 F2 F6
Выход соединения формулы I (г/л) 1,5 1,3 1,6
Результаты показывают, что новый штамм обладает превосходной стабильностью.
Приведенное выше описание является лишь предпочтительными примерами по настоящему изобретению и не предназначено для ограничения объема существенного технического содержания настоящего изобретения. Существенное техническое содержание настоящего изобретения широко определено в рамках формулы изобретения, прилагаемой к настоящей заявке. Любой технический объект или способ, осуществленный другими лицами, должен считаться попадающим в объем формулы изобретения настоящей заявки, если объект или способ полностью идентичен с тем, что определено в формуле изобретения настоящей заявки или является эквивалентной заменой или модификацией.

Claims (7)

1. Мутантный штамм Colephoma empetri для получения соединения формулы I, депонированный в Китайском Главном Центре Коллекционирования Микробиологических Культур (China General Microbiological Culture Collection Center) под учетным номером CGMCC 4129
Figure 00000004
2. Применение мутантного штамма по п.1 для получения соединения формулы I.
3. Способ получения соединения формулы I, включающий следующую стадию: культивирование мутантного штамма по п.1 в ферментационной среде при температуре от 15 до 35°C с получением соединения формулы I.
4. Способ получения по п.3, где указанная ферментационная среда содержит следующие компоненты в расчете на общий объем ферментационной среды: жидкий кукурузный экстракт 5-20 г/л, мука из жмыха семян хлопчатника 5-30 г/л, дрожжевой экстракт 6-15 г/л, крахмал 10-80 г/л, глюкоза 5-20 г/л, неорганические соли 1,5-15 г/л, микроэлементы 10-50 г/л.
5. Способ получения по п.3, где указанная неорганическая соль выбрана из фосфата или сульфата или их комбинации.
6. Способ получения по п.3, где инокуляционный объем указанного мутантного штамма по п.1 составляет от 4 до 10 об.%, в расчете на общий объем ферментационной среды.
7. Способ получения по п.3, где исходное значение pH указанной ферментационной среды составляет от 5,5 до 6,5.
RU2013132191/10A 2010-12-15 2011-12-15 Штамм, продуцирующий пептидные антибиотики с высоким выходом, способ его получения и применение RU2560258C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010105878654A CN102533551B (zh) 2010-12-15 2010-12-15 一种肽类抗生素的高产菌株及其制备方法和用途
CN201010587865.4 2010-12-15
PCT/CN2011/084043 WO2012079521A1 (zh) 2010-12-15 2011-12-15 一种肽类抗生素的高产菌株及其制备方法和用途

Publications (2)

Publication Number Publication Date
RU2013132191A RU2013132191A (ru) 2015-01-20
RU2560258C2 true RU2560258C2 (ru) 2015-08-20

Family

ID=46244111

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013132191/10A RU2560258C2 (ru) 2010-12-15 2011-12-15 Штамм, продуцирующий пептидные антибиотики с высоким выходом, способ его получения и применение

Country Status (9)

Country Link
US (1) US8911968B2 (ru)
EP (1) EP2653532B1 (ru)
JP (1) JP5908923B2 (ru)
KR (1) KR101375421B1 (ru)
CN (1) CN102533551B (ru)
AU (1) AU2011344954B2 (ru)
CA (1) CA2821791C (ru)
RU (1) RU2560258C2 (ru)
WO (1) WO2012079521A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618604B (zh) * 2011-01-31 2014-09-03 上海天伟生物制药有限公司 一种环脂肽化合物的制备方法
CN103695415A (zh) * 2013-12-30 2014-04-02 祁文瑾 新型假丝酵母菌rna提取试剂及其使用方法
CN108949895A (zh) * 2018-08-06 2018-12-07 中南林业科技大学 一种拮抗菌筛选方法
CN112111408B (zh) * 2020-09-04 2022-03-01 杭州华东医药集团新药研究院有限公司 一种米卡芬净前体wf11899a生产菌株及发酵方法
CN116355777A (zh) * 2021-12-21 2023-06-30 山东鲁抗医药股份有限公司 高产多杀菌素菌株及其用途
CN116496911B (zh) * 2023-04-23 2023-12-26 浙江昊清生物科技有限公司 一种米卡芬净中间体fr901379高产菌株及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2110578C1 (ru) * 1997-06-18 1998-05-10 Научно-исследовательский институт по изысканию новых антибиотиков РАМН Штамм amycolatopsis orientalis subsp. eremomycini вкпм-s892 - продуцент антибиотика эремомицина и способ получения антибиотика эремомицина
US6730776B1 (en) * 1998-03-16 2004-05-04 Fujisawa Pharmaceutical Co., Ltd. WF14573 or its salt, production thereof and use thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8925593D0 (en) * 1989-11-13 1990-01-04 Fujisawa Pharmaceutical Co Fr901379 substance and preparation thereof
FI912873A (fi) * 1990-06-18 1991-12-19 Fujisawa Pharmaceutical Co Ny polypeptidfoerening och foerfarande foer dess framstaellning.
ATE544851T1 (de) * 1996-03-08 2012-02-15 Astellas Pharma Inc Verfahren zur deacylierung von zyklischen lipopeptiden

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2110578C1 (ru) * 1997-06-18 1998-05-10 Научно-исследовательский институт по изысканию новых антибиотиков РАМН Штамм amycolatopsis orientalis subsp. eremomycini вкпм-s892 - продуцент антибиотика эремомицина и способ получения антибиотика эремомицина
US6730776B1 (en) * 1998-03-16 2004-05-04 Fujisawa Pharmaceutical Co., Ltd. WF14573 or its salt, production thereof and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANDA M. et.al. Improvement of FR901379 production by mutant selection and medium optimization, J Biosci Bioeng. 2009 May;107(5):530-4. doi: 10.1016/j.jbiosc.2009.01.002. *

Also Published As

Publication number Publication date
RU2013132191A (ru) 2015-01-20
EP2653532B1 (en) 2015-02-11
JP2013545481A (ja) 2013-12-26
US8911968B2 (en) 2014-12-16
KR20130090925A (ko) 2013-08-14
CA2821791A1 (en) 2012-06-21
JP5908923B2 (ja) 2016-04-26
CA2821791C (en) 2017-03-07
US20140162314A1 (en) 2014-06-12
EP2653532A1 (en) 2013-10-23
CN102533551A (zh) 2012-07-04
KR101375421B1 (ko) 2014-03-17
AU2011344954B2 (en) 2016-01-28
WO2012079521A1 (zh) 2012-06-21
EP2653532A4 (en) 2013-10-23
CN102533551B (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
RU2507252C2 (ru) МУТАНТНЫЙ ШТАММ Glarea lozoyensis И ЕГО ПРИМЕНЕНИЕ
RU2560258C2 (ru) Штамм, продуцирующий пептидные антибиотики с высоким выходом, способ его получения и применение
Lou et al. The efficient genetic transformation of Cordyceps militaris by using mononuclear protoplasts
CN108841733B (zh) 一株生产松刚霉素主份——灰黄霉素的菌株及方法
CN103087928A (zh) 真菌Glarea lozoyensis及其在调控微生物代谢物纽莫康定B0中的应用
WO2022247190A1 (zh) 一种高产喜树碱内生菌株及其应用
CA2257254C (en) Antibiotic producing microbe
CN115305221B (zh) 一种复合微生物菌剂及其制备方法和在防治草莓空心病中的应用
EP0781348B1 (en) Process for manufacturing cyclosporin a by highly productive fusant strain
JP5818915B2 (ja) 環状リポペプチド化合物の製造方法
Sung et al. Effect of preservation periods and subcultures on fruiting body formation of Cordyceps militaris in vitro
CN114907989B (zh) 一种阿尼芬净前体棘白菌素b高产菌株及其应用
CN103087937A (zh) 一种选育高产wf16616的寄生弯颈霉突变株的方法
CN116987635A (zh) 一种链霉菌菌株及制备放线菌素的方法与应用
CN117363492A (zh) 一种降解茶渣不溶性膳食纤维的复合菌株及应用
CN117903968A (zh) 一种链霉菌及其应用

Legal Events

Date Code Title Description
RH4A Copy of patent granted that was duplicated for the russian federation

Effective date: 20160404

MM4A The patent is invalid due to non-payment of fees

Effective date: 20161216