RU2557993C1 - Гидрофобные акриловые материалы для интраокулярных линз - Google Patents

Гидрофобные акриловые материалы для интраокулярных линз Download PDF

Info

Publication number
RU2557993C1
RU2557993C1 RU2013157572/15A RU2013157572A RU2557993C1 RU 2557993 C1 RU2557993 C1 RU 2557993C1 RU 2013157572/15 A RU2013157572/15 A RU 2013157572/15A RU 2013157572 A RU2013157572 A RU 2013157572A RU 2557993 C1 RU2557993 C1 RU 2557993C1
Authority
RU
Russia
Prior art keywords
acrylate
copolymer material
mass
macromer
mixture contains
Prior art date
Application number
RU2013157572/15A
Other languages
English (en)
Other versions
RU2013157572A (ru
Inventor
Али Э. АКИНАЙ
Уолтер Р. ЛАРЕДО
Original Assignee
Новартис Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Новартис Аг filed Critical Новартис Аг
Publication of RU2013157572A publication Critical patent/RU2013157572A/ru
Application granted granted Critical
Publication of RU2557993C1 publication Critical patent/RU2557993C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Prostheses (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Изобретение относится к медицине и представляет собой сополимерный материал для офтальмологического устройства, полученный полимеризацией смеси арилакрилового гидрофобного мономера, кремнийсодержащего макромера, гидрофильного мономера, сшивающего мономера, реактивного УФ-поглотителя и вещества, выбранного из группы, состоящей из 2-этилгексилакрилата и н-октилакрилата. Равновесное содержание воды при 35°С в сополимерном материале составляет менее 4%. Изобретение относится также к интраокулярной линзе, включающей указанный сополимерный материал. Сополимерный материал является прозрачным, имеет низкую клейкость, малое поверхностное рассеяние и хорошие установочные свойства. 2 н. и 17 з.п. ф-лы, 6 пр., 6 табл.

Description

Область техники, к которой относится изобретение
Данное изобретение относится к акриловым материалам для устройств. В частности, данное изобретение направлено на акриловые материалы для устройств с низкой липкостью и высоким показателем преломления, устойчивостью к бликованию, низким рассеянием света на поверхности, особенно подходящие для применения в качестве материалов для интраокулярных линз («ИОЛ»), которые можно вводить через небольшие разрезы, меньшие 2,5 мм.
Предшествующий уровень техники
В ходе недавних успехов в области хирургии катаракты с малыми разрезами, повышенное внимание уделялось разработке мягких складных материалов, подходящих для применения в искусственных линзах. В целом, данные материалы относятся к одной из трех категорий: гидрогели, силиконы и акрилы.
Как правило, гидрогелевые материалы имеют сравнительно малый показатель преломления, что делает их менее предпочтительными по сравнению с другими материалами, поскольку для достижения заданной преломляющей способности необходима более толстая линзовая оптическая система. Силиконовые материалы обычно имеют более высокий показатель преломления, чем гидрогели, но склонны мгновенно разворачиваться при помещении в глаз в сложенном положении. Теоретически, мгновенное разворачивание может повредить эндотелий роговицы и/или вызвать разрыв капсулы естественного хрусталика. Акриловые материалы предпочтительны, так как обычно они имеют более высокий показатель преломления, чем силиконовые материалы, и разворачиваются медленнее или контролируемым образом по сравнению с силиконовыми материалами.
В патенте США № 5290892 раскрыты акриловые материалы с высоким показателем преломления, подходящие для применения в качестве материала для ИОЛ. Данные акриловые материалы включают в себя, в качестве основных компонентов, два арилакриловых мономера. Кроме того, они включают в себя сшивающий компонент. ИОЛы, изготовленные из данных акриловых материалов, можно скатать или сложить для вставки через малые разрезы.
В патенте США № 5331073 раскрыты также материалы для мягких акриловых ИОЛ. Данные материалы включают в себя, в качестве основных компонентов, два акриловых мономера, которые определяются свойствами соответствующих им гомополимеров. Первый мономер определяют как мономер, для которого показатель преломления его гомополимера составляет, по меньшей мере, примерно 1,50. Второй мономер определяют как мономер, для которого температура стеклования его гомополимера составляет примерно менее 22°С. Данные материалы для ИОЛ включают в себя также сшивающий компонент. Кроме того, данные материалы могут необязательно включать в себя четвертую составляющую, отличающуюся от первых трех составляющих, которую получают из гидрофильного мономера. Предпочтительно данные материалы составляют в сумме примерно менее 15 масс.% от гидрофильного компонента.
В патенте США № 5693095 раскрыты материалы для складных офтальмологических линз, включающие в себя только два основных линзообразующих компонента в общем количестве, по меньшей мере, 90 масс.%. Первый линзообразующий мономер представляет собой арилакриловый гидрофобный мономер. Другой линзообразующий мономер представляет собой гидрофильный мономер. Материалы линз также включают в себя сшивающий мономер и, необязательно, включают в себя УФ-поглотитель, инициаторы полимеризации, реактивные УФ-поглотители и реактивные поглотители синего света.
В патенте США № 6653422 раскрыты материалы для складных офтальмологических линз, состоящие преимущественно из одного образующего устройство мономера и, по меньшей мере, одного сшивающего мономера. Данные материалы необязательно включают в себя реактивный УФ-поглотитель и необязательно включают в себя реактивный поглотитель синего света. Единственный образующий устройство мономер присутствует в количестве, составляющем, по меньшей мере, около 80 масс.%. Образующий устройство мономер представляет собой арилакриловый гидрофобный мономер.
Некоторые из складывающихся акриловых материалов являются липкими. Складные офтальмологические линзы, изготовленные из липких акриловых материалов, сложны в получении и обращении. Предпринимались попытки понизить липкость, чтобы линзы были проще в обработке или обращении, легче складывались или деформировались и имели меньшие периоды разворачивания. Например, в патенте США № 6713583 раскрыты офтальмологические линзы, изготовленные из материала, который включает в себя разветвленные алкильные группы в количестве, эффективном для снижения липкости. В патенте США № 4834750 раскрыты интраокулярные линзы, изготовленные из материалов, необязательно включающих в себя фторакрилатный компонент для снижения поверхностной липкости. В патенте США № 5331073 раскрыты акриловые материалы, необязательно включающие в себя гидрофильный компонент, который присутствует в количестве, достаточном для снижения липкости данного материала. В патенте США № 5603774 раскрыт способ плазменной обработки для снижения липкости мягкого акрилового изделия. В патенте США № 7585900 раскрыто применение полидиметилсилоксанового макромера с диметилакрилоксипропильными терминальными заместителями в качестве снижающей липкость добавки к некоторым акриловым материалам для офтальмологических устройств, включая материалы для ИОЛ.
Краткое описание изобретения
В настоящее время найдены улучшенные мягкие, складывающиеся акриловые материалы, которые особенно подходят для применения в ИОЛах, но которые также применимы и в качестве других имплантируемых офтальмологических устройств, таких как кератопротезы, роговичные кольца, роговичные импланты и роговичные вкладки. Данные материалы включают, по меньшей мере, один основной линзообразующий компонент, который представляет собой арилакриловый гидрофобный мономер в количестве 30-60 масс.%. Данные материалы также включают в себя 0,1-3 масс.% полидиметилсилоксанового макромера с диметакрилоксипропильными терминальными заместителями. Важно отметить, что для снижения или устранения помутнения и получения прозрачного, оптически приемлемого материала сополимерные вещества настоящего изобретения содержат 10-40 масс.% 2-этилгексилакрилата или н-октилакрилата, и 3-25 масс.% гидрофильной добавки для снижения бликов. Данный материал также включает в себя сшивающий мономер, соединение, поглощающее УФ-излучение и, необязательно, соединение, поглощающее синий свет. Полученные сополимерные материалы для устройства являются гидрофобными, что при их применении в настоящем изобретении означает, что они содержат равновесное количество воды при 35°С, составляющее 4% или менее, предпочтительно, 3% или менее, а более предпочтительно, 2,5% или менее.
В случае ИОЛов недостаточно, чтобы они имели низкую липкость, поскольку необходимо, чтобы они также были оптически прозрачными. Материалы для имплантируемых офтальмологических устройств настоящего изобретения являются оптически прозрачными, так что они подходят для применения в качестве ИОЛов и они имеют низкую клейкость, малое поверхностное рассеяние и хорошие установочные свойства. В числе прочих факторов, настоящее изобретение основано на открытии того, что многокомпонентный сополимерный материал для устройств с высоким показателем преломления, полученный сополимеризацией упомянутых выше ингредиентов, является мягким, небликующим, имеющим низкую липкость и низкую мутность, имеет низкое рассеяние света на поверхности и способен проходить через небольшие (2,5 мм или менее) разрезы с хорошими свойствами разворачивания.
Подробное описание изобретения
Если не указано иначе, количества всех компонентов представлены на основе % масс./масс., масс.%.
Материалы для офтальмологических устройств в соответствии с настоящим изобретением содержат, по меньшей мере, один основной составляющий устройство мономер. Для удобства данный составляющий устройство мономер можно называть линзообразующим мономером, в частности применительно к ИОЛ. Однако материалы настоящего изобретения также подходят для применения в других имплантируемых офтальмологических устройствах, таких как кератопротезы, роговичные кольца, имплантаты и роговичные вкладки.
Арилакриловые гидрофобные мономеры, подходящие для использования в качестве основных линзообразующих мономеров в материалах настоящего изобретения имеют следующую формулу
Figure 00000001
в которой:
А представляет собой Н,
В представляет собой (СН2)m, S(СН2)u, O(СН2)v или [O(СН2)2]n,
u равно 1-4,
v равно 1-4,
C представляет собой (СН2)w,
m равно 1-6,
n равно 1-10,
Y отсутствует, представляет собой O, S или NR, при условии, что если Y представляет собой O, S или NR, то В представляет собой (СН2)m,
R представляет собой Н, СН3, CnH2n+1, где n=1-10, изо-ОС3Н7, С6Н5 или СН2С6Н5,
w равно 0-6, при условии, что m+w≤8, а
D представляет собой Н, С14 алкил, С14 алкокси, С6Н5, СН2С6Н5, Br, F, Cl или I.
Предпочтительными арилакриловыми гидрофобными мономерами для применения в материалах настоящего изобретения являются мономеры, в которых В представляет собой (СН2)m, m равно 1-5, Y отсутствует, представляет собой O или S, w равно 0-1, а D представляет собой Н. Наиболее предпочтительными являются бензилакрилат, 2-фенилэтилакрилат, 2-феноксиэтилакрилат, 4-фенилбутилакрилат, 5-фенилпентилакрилат, 2-бензилоксиэтилакрилат, 3-бензилоксипропилакрилат, 3-фенилпропилакрилат, 3-феноксипропилакрилат, 2-(фенилтио)пропилакрилат и 2-(фенилтио)этилакрилат. В одном из вариантов осуществления материалы настоящего изобретения включают в себя только один основной линзообразующий мономер. В другом варианте осуществления материалы настоящего изобретения включают в себя два основных линзообразующих мономера. Особенно предпочтительными линзообразующими мономерами являются 2-фенилэтилакрилат, 2-феноксиэтилакрилат, бензилакрилат и 2-(фенилтио)этилакрилат.
Мономеры структуры I можно получить известными способами. Например, сопряженный спирт требуемого мономера можно смешать в реакционном сосуде с метилакрилатом, тетрабутилтитанатом (катализатор) и ингибитором полимеризации, таким как 4-бензилоксифенол. После этого данный сосуд можно нагреть для ускорения реакции и отогнать побочные продукты реакции, чтобы довести реакцию до завершения. Другие схемы синтеза включают в себя прибавление акриловой кислоты к сопряженному спирту и катализ карбодиимидом, или смешивание сопряженного спирта с акрилоилхлоридом и акцептором HCl, таким как пиридин или триэтиламин.
Материалы настоящего изобретения включают в себя 30-60%, предпочтительно, 35-50%, а более предпочтительно, 40-50% основного линзообразующего мономера(мономеров).
Помимо основного линзообразующего мономера, материалы настоящего изобретения включают в себя макромерную добавку формулы (II) в количестве, достаточном для снижения липкости данного материала. Как правило, количество макромерной добавки в материалах настоящего изобретения будет изменяться в интервале от 0,1-3,9% масс./масс., а предпочтительно, будет изменяться в интервале 1-3% масс./масс., наиболее предпочтительно, 1,5-2,5% масс./масс. Данный макромер представляет собой полидиметилсилоксановый макромер с диметилакрилоксипропильными терминальными заместителями, имеющий формулу:
Figure 00000002
в которой
R1 и R2 независимо представляют собой -СН3, -СН2СН3, - СН2СН2СН3, -СН2СН2СН2СН3, -С6Н5, -СН2С6Н5, -СН2СН2С6Н5, - СН2СН2СН2С6Н5 или -СН2СН2СН2СН2С6Н5,
R3 представляет собой Н, СН3 или СН2СН3,
z равно 2-11, а
х обозначает число повторяющихся звеньев и определяет молекулярную массу макромера.
Предпочтительными макромерами формулы (II) являются макромеры, в которых
R1=R2=СН3,
R3 представляет собой Н, СН3 или СН2СН3, а
z=3, и
х=0-43.
Более предпочтительными макромерами формулы (II) являются макромеры, в которых R1, R2, R3 и z такие, как определено выше для предпочтительных макромеров, а х равен 0-22. В одном из вариантов осуществления х равен 5-14 (обычно соответствует молекулярной массе макромера (Mn), составляющей 800-1400). В другом варианте осуществления х равен 2-5 (обычно соответствует молекулярной массе макромера (Mn), составляющей 550-700).
Полидиметилсилоксаны с диметилакрилоксипропильными терминальными заместителями формулы (II) (“PDMS”), также известные как полидиметилсилоксаны с метакрилоксипропильными терминальными заместителями, можно получить известными способами. Некоторые PDMS соединения коммерчески доступны от Gelest, Inc. с молекулярной массой в интервале 800-1400 (оценка Mn среднего диапазона составляет 1000). Коммерчески доступны силоксаны с диметилакрилоксипропильными терминальными заместителями с более высокими значениями (Mn 4К-6К, 5К-20К, 20К-30К) и более низкими значениями (Mn 386, 550-700) молекулярной массы. Выбор макромерной добавки ограничен растворимостью (в оставшемся составе полимерного материала) и прозрачностью состава (сополимерный материал должен быть прозрачным). Как правило, используемый в данном изобретении PDMS будет иметь молекулярную массу (Mn) примерно 300 - примерно 3500, а предпочтительно, примерно 350 - примерно 2000. В одном из вариантов осуществления особенно предпочтительный PDMS имеет Mn от около 800 - до около 1400. В другом варианте осуществления особенно предпочтительный PDMS имеет Mn от около 500 - около 700.
Чтобы макромер формулы II и другие компоненты были совместимы в конечной композиции, материалы настоящего изобретения включают в себя 10-40%, предпочтительно 15-35%, а наиболее предпочтительно, 17-32% 2-этилгексилакрилата или н-октилакрилата.
В целях снижения бликования материалы настоящего изобретения содержат также гидрофильный мономер, выбранный из группы, включающей в себя гидрокси(С24 алкил)метакрилаты, глицеринметакрилат и N-винилпирролидон (NVP). Предпочтительными являются гидрокси(С24 алкил)метакрилаты. Наиболее предпочтительным гидрофильным мономером является 2-гидроксиэтилметакрилат. Материалы настоящего изобретения включают в себя общее количество гидрофильного мономера, составляющее 5-30%, предпочтительно, 10-25%, а наиболее предпочтительно, 15-25%. В одном из вариантов осуществления материалы настоящего изобретения содержат, по меньшей мере, один гидрофильный мономер, выбранный из приведенного выше перечня, и, по меньшей мере, один гидрофильный мономер другого типа, такой как макромер на основе монометилового эфира полиэтиленгликоля (Mn~4100 дальтон), или мономеры и макромеры, описанные в опубликованной патентной заявке США №№ 20090088493, 20090088544 и 20090093604 соответственно. Независимо от их идентичности общее количество гидрофильных мономеров, содержащихся в материалах настоящего изобретения, должно быть ограниченным, чтобы равновесное содержание воды (при 35°С) в полимеризованном материале устройства настоящего изобретения составляло менее 4%.
Сополимерные материалы настоящего изобретения являются сшитыми. Сополимеризуемый сшивающий агент, применяемый в сополимерах данного изобретения, может представлять собой любое терминальное, ненасыщенное по типу этилена соединение, содержащее более одной ненасыщенной группы. Подходящие сшивающие агенты включают в себя, например, низкомолекулярные сшивающие агенты с молекулярной массой от 100-500 дальтон и высокомолекулярные сшивающие агенты с молекулярной массой от 501-6000 дальтон. Низкомолекулярные сшивающие агенты обычно будут присутствовать в общем количестве от 0,5-3%, тогда как высокомолекулярные сшивающие агенты обычно будут присутствовать в общем количестве от 2-10%. Как правило, общее количество сшивающего агента в материалах настоящего изобретения будет изменяться от 0,5-10%, а предпочтительно, будет изменяться от 1-3%. Для определения общего количества сшивающего агента в настоящем изобретении макромер формулы (II) не считается частью сшивающего компонента и игнорируется. Подходящие низкомолекулярные сшивающие агенты включают в себя: диметилакрилат этиленгликоля, диметилакрилат диэтиленгликоля, аллилметакрилат, 1,3-пропандиолдиметакрилат, 2,3-пропандиолдиметакрилат, 1,6-гександиолдиметакрилат, 1,4-бутандиолдиметакрилат, диметакрилат триэтиленгликоля и соответствующие им акрилаты. Предпочтительные низкомолекулярные сшивающие мономеры включают в себя 1,4-бутандиолдиметакрилат и диметакрилат триэтиленгликоля. Подходящие высокомолекулярные сшивающие агенты включают в себя диакрилат полиэтиленгликоля (Mn=700 дальтон) и диметакрилат полиэтиленгликоля (Mn=2000 дальтон).
В предпочтительном варианте осуществления материалы настоящего изобретения содержат 0,5-2% диметакрилата триэтиленгликоля (TEGDMA).
Помимо компонента арилакрилового гидрофобного линзообразующего мономера, макромера формулы (II), гидрофильной добавки для уменьшения бликования, 2-этилгексилакрилата или н-октилакрилата и сшивающего компонента материалы линз в соответствии с настоящим изобретением включают в себя также реактивные поглотители УФ и/или синего света.
Известно много реактивных поглотителей УФ-света. Предпочтительные реактивные УФ-поглотители представляют собой 2-(2'-гидрокси-3'-металлил-5'-метилфенил)бензотриазол, коммерчески доступный в виде о-металлил тинувина Р (“oMTP”) от Polysciences Inc., Warrington, Пенсильвания, и 3-(2Н-бензо[d][1,2,3]триазол-2-ил)-4-гидроксифенилэтилметакрилат (“Norbloc 7966”). УФ-поглотители обычно присутствуют в количестве от около 0,1-5% масс./масс. В одном из вариантов осуществления материалы настоящего изобретения содержат 1,5-2,5%, предпочтительно, 1,5-2% реактивного УФ-поглотителя.
Известно много реактивных соединений, поглощающих синий свет. Предпочтительными реактивными соединениями, поглощающими синий свет, являются соединения, описанные в патенте США № 5470932, опубликованной патентной заявке США № 20110003910 и в находящейся в процессе одновременного рассмотрения, принадлежащей тому же патентообладателю, патентной заявке США серийный номер 13/008409, полное содержание которых включено настоящим ссылкой. Предпочтительным красителем, поглощающим синий свет, является N-2-[3-(2'-метилфенилазо)-4-гидроксифенил]этилметакриламид. Поглотители синего света обычно присутствуют в количестве от около 0,01-1% масс./масс., предпочтительно, 0,02-0,5% масс./масс.
Материалы для имплантируемых офтальмологических устройств настоящего изобретения получают смешиванием описанных выше ингредиентов и полимеризацией полученной смеси. Подходящие инициаторы полимеризации включают в себя термические инициаторы и фотоинициаторы. Предпочтительные термические инициаторы включают в себя не содержащие перекисей радикальные инициаторы, такие как 2,2'-(диазен-1,2-диил)бис(2,4-диметилпентаннитрил), третбутил(перокси-2-этил)гексаноат и ди(третбутилциклогексил)пероксидикарбонат (коммерчески доступный в виде Perkadox® 16 от Akzo Chemicals Inc., Чикаго, Иллинойс). Предпочтительный фотоинициатор представляет собой фенилфосфорилбис(мезитилметанон), который коммерчески доступен в виде Irgacure 819. Инициаторы обычно присутствуют в количестве примерно 5% масс./масс. или менее, а предпочтительно, примерно 1% или менее. Обычно при определении количеств других ингредиентов в сополимерных композициях общее количество инициатора в нее не включают.
Идентичность и количество описанного выше основного линзообразующего мономера, а также идентичность и количество любых других дополнительных компонентов определяют, исходя из требуемых свойств конечной офтальмологической линзы. Предпочтительно, ингредиенты и их процентное соотношение выбирают таким образом, чтобы материалы акриловых линз согласно настоящему изобретению обладали следующими свойствами, которые делают материалы настоящего изобретения особенно подходящими для применения в ИОЛах, предназначенных для вставки через разрезы размером 2,5 мм или менее, а предпочтительно, 2,0 мм или менее.
Показатель преломления материала линз предпочтительно в сухом состоянии составляет, по меньшей мере, примерно 1,50 при определении на рефрактометре Abbe при 589 нм (источник света - Na лампа). Для данного оптического диаметра оптическая система, изготовленная из материалов, показатель преломления которых меньше 1,50, обязательно толще, чем оптическая система той же мощности, которая изготовлена из материалов с большим показателем преломления. В качестве таковых для оптических устройств ИОЛ, полученных из материалов, показатель преломления которых меньше примерно 1,50, как правило, требуются разрезы относительно большего размера для имплантации ИОЛ.
Температура стеклования (“Tg”) материала линз, оказывающая влияние на характеристики складывания и разворачивания, предпочтительно составляет примерно менее 25°С, а более предпочтительно, примерно менее 15°С. Tg измеряют путем дифференциальной сканирующей калориметрии при 10°С/мин и определяют как полувысоту роста теплоемкости.
Материал линз будет иметь удлинение (деформацию при разрыве), составляющее, по меньшей мере, 100%, предпочтительно, по меньшей мере, 125% и наиболее предпочтительно, по меньшей мере, 150%. Это свойство свидетельствует о том, что линзы, как правило, не будут трескаться, разрываться или расщепляться при складывании. Удлинение образцов полимеров определяют при помощи образцов для испытания на растяжение в форме гантели общей длиной 20 мм, длиной в области захвата 11 мм, общей шириной 2,49 мм, шириной узкой части 0,833 мм, радиусом сопряжения 8,83 мм и толщиной 0,9 мм. Испытание проводят на образцах в стандартных лабораторных условиях при 23±2°С и 50±5% относительной влажности с использованием разрывной машины. Расстояние захватывания устанавливают при 11 мм, а скорость ползуна устанавливают при 500 мм/минуту, и растягивают образец до разрыва. Деформацию при разрыве приводят в виде доли смещения при разрыве относительно первоначального расстояния захвата. Разрушающее напряжение рассчитывают при максимальной нагрузке для образца, обычно нагрузке при разрушении образца, предполагая, что начальная площадь остается постоянной. Модуль Юнга рассчитывают из текущего наклона кривой напряжение-деформация в области линейной упругой деформации. 25% секущий модуль рассчитывают в виде наклона прямой линии, проведенной на кривой напряжение-деформация между деформацией 0% и деформацией 25%. 100% секущий модуль рассчитывают в виде наклона прямой линии, проведенной на кривой напряжение-деформация между деформацией 0% и деформацией 100%.
ИОЛы, полученные из материалов настоящего изобретения, могут иметь любую форму, которую можно скатать или сложить до малого поперечного сечения, способного пройти через разрез относительно меньшего размера. Например, данные ИОЛы могут иметь дизайн, известный как моноблочный или составной дизайн, и включать в себя оптическую и гаптическую компоненты. Оптикой является та часть, которая выполняет функцию линзы. Гаптика связана с оптикой и удерживает оптическую часть на ее надлежащем месте в глазу. Оптическая и гаптическая часть(части) могут быть сделаны из одного и того же или различного материала. Составные линзы называются так потому, что оптическую и гаптическую часть(части) изготавливают отдельно, а затем гаптику соединяют с оптикой. В моноблочных линзах оптическую и гаптическую части изготавливают из одного куска материала. В зависимости от материала гаптику затем вырезают или вытачивают из материала, получая ИОЛ.
Далее изобретение будет иллюстрировано следующими примерами, которые подразумеваются как иллюстративные, но не ограничивающие.
Пример 1
Составы, представленные в таблице 1, получали следующим образом. Моноблочные ИОЛы и образцы для испытаний размером 20×10×0,9 мм (длина × ширина × толщина) получали путем теплового или фотоотверждения. Отвержденные тепловым способом образцы отверждали с использованием цикла отверждения 70°С→105°С. Вкратце, образцы сперва нагревали при линейном возрастании от температуры окружающей среды до 70°С в течение 15 минут, вымачивали при 70°С в течение 1 часа, нагревали при линейном возрастании от 70°С до 105°С в течение 20 минут, а затем вымачивали при 110°С в течение 2 часов. Фотоотвержденные образцы отверждали путем нагревания образцов для испытаний в заполненном азотом сухом боксе в течение 10 минут при 55°С с последующим облучением 24-дюймовой люминесцентной лампой Philips TLK 40W/03 в течение 60 минут. Отвержденные образцы экстрагировали ацетоном в течение 15 часов при температуре окружающей среды, медленно сушили при температуре окружающей среды в течение 15 часов, а затем сушили в вакууме при низком давлении (0,1 мм рт.ст.) в течение минимум 15 часов при 60°С.
Таблица 1
Форма PEA HEMA HEA EHA n-OA PDMS-1000-DMA TEGDMA DEGDA BDDA NEGDA UV ABS-BB/масс.% инициатор/
масс.%
A 68,2 15 10 - - 2,5 2,5 - - - oMTP/1,8 PERK/1,0
B 61,75 18 - 18,2 - - 1 - - 0,75 WL-2/0,3 AIBN/1,0
C 45 20 - - 29,7 2,0 - - - 1,5 oMTP/1,8 IRG819/0,2
D 45,2 20 - - 30 2 - 1 - - oMTP/1,8 IRG819/0,2
E 44,2 21 - - 30 2 - - 1 - oMTP/1,8 IRG819/0,2
F 45,2 20 - - 29,5 2 - - - 1,5 оМТР/1,8 ВВ/0,04 IRG819/0,2
G 43,16 21 - - 30 2 - - - 2 оМТР/1,8 ВВ/0,04 IRG819/0,2
H 45,16 20 - - 29,5 2 - - - 1,5 оМТР/1,8 ВВ/0,04 IRG819/0,27
I 45,16 20 - - 29,5 2 - - - 2 оМТР/1,8 ВВ/0,04 IRG819/0,27
J 46,16 20 - - 30,5 - - - - 1,5 оМТР/1,8 ВВ/0,04 IRG819/0,27
PEA=2-фенилэтилакрилат
HEMA=2-гидроксиэтилметакрилат
HEA=2-гидроксиэтилакрилат
ЕНА=2-этилгексилакрилат
н-ОА=н-октилакрилат
PDMS-1000-DMA=диметилсилоксан с метакрилоксипропильными терминальными заместителями. Молекулярная масса PDMS-1000-DMA полимера составляет примерно 1000 дальтон, а вязкость изменяется в интервале 12-18 сСт.
TEGDMA=диметакрилат триэтиленгликоля
DEGDA= диакрилат диэтиленгликоля
BDDA=бутан-1,4-диолдиакрилат
TEGDA=диакрилат триэтиленгликоля
оМТР=о-металлил тинувин Р, 2-(2Н-бензо[d][1,2,3]триазол-2-ил)-4-метил-6-(2-метилаллил)фенол
WL-2=3-(5-фтор-2Н-бензо[2][1,2,3]триазол-2-ил)-2-гидрокси-5-метоксибензилметакрилат
ВВ=ослабляющий синий свет хромофор (AL8739)=N-(4-гидрокси-3-(о-толилдиазенил)фенетил)метакриламид
PERK: Perkadox 16, бис(4-третбутилциклогексил)пероксидикарбонат
AIBN: 2,2'-азобисизобутиронитрил
Irgacure 819=фенилфосфорилбис(мезитилметанон)
Пример 2
До и после экстракции ацетоном образцы для испытаний взвешивали для расчета массовой доли экстрагируемых веществ. После этого высушенные образцы для испытаний приводили в равновесие в деионизированной воде при 35°С в течение минимум 24 часов. Затем определяли значения массовой доли экстрагируемых веществ, равновесного содержания воды (EWC при 35°С) и показателя преломления (в увлажненном состоянии при 35°С), представленные в таблице 2. Прозрачность образцов количественно оценивали на сухих и увлажненных линзах при помощи волоконно-оптического осветителя Dolan-Jenner Fiber-Lite (модель 190). Увлажненные линзы помещали на пути световых лучей, вращая образцы в направлении осей x, y и z для определения относительного помутнения. Как видно из таблицы 2, образец А, содержащий НЕА, был мутным, главным образом, вследствие несовместимости между НЕА с более короткими цепочками и PDMS-1000-DMA. Хорошая совместимость достигалась при ЕНА и н-ОА, приводя к прозрачному материалу. Оценку бликования проводили на ИОЛах, отлитых в формы для линзы на 21,0D. Образцы помещали в BBS при 45°С в течение 24 часов, а затем охлаждали до температуры окружающей среды. Образцы исследовали через 2 часа при помощи оптического микроскопа при наблюдении в светлом поле (BF) и темном поле (DF) при 100-кратном увеличении. В описанных условиях BF бликования не наблюдалось. Настройка в DF была более чувствительна к возникновению бликов, которые не наблюдались при настройке в BF. Количество бликов в темном поле относительно визуального блика также приведено в таблице 2.
Таблица 2
Пример % экстрагируемых веществ EWC (35°С) (масс.%) Показатель преломления (35°С) Прозрачность Блики в темном поле
A 3,17±0,5 2,7 - Мутный
B 2,0±0,3 1,5 1,524 Прозрачный <30
C 2,7±0,1 2,1 1,506 Прозрачный <10
D 4,2±0,1 2,2 1,507 Прозрачный <10
E 1,7±0,1 2,2 1,506 Прозрачный <5
F 2,9±0,2 2,3 1,509 Прозрачный <15
G 2,5±0,1 2,5 1,507 Прозрачный <5
H 2,5±0,1 2,1 1,509 Прозрачный <5
I 2,5±0,1 2,2 1,508 Прозрачный <5
J 4,6±0,2 2,1 1,512 Прозрачный -
Пример 3
Исследование липкости
Некоторые образцы для испытаний из примеров A-J тестировали на липкость с использованием модифицированного тензометрического метода испытания, в котором определяют прилипание полимера к металлу (нержавеющая сталь) и полимера к полимеру. Значения липкости, превышающие 52 N, считались соответствующими очень высокой липкости, и не могли быть точно определены при использовании данного динамометрического элемента. Значения липкости в интервале 40-52 N считались соответствующими высокой липкости. Значения липкости в интервале 30-40 N считались соответствующими умеренной липкости. Значения липкости в интервале 20-30 N считались соответствующими низкой липкости.
Исследование прилипания полимера к металлу проводили на механической разрывной машине Instron с использованием специального зажимного приспособления для измерения прилипания или адгезии металл-полимер. Приспособление включает в себя хорошо отполированную цилиндрическую стационарную шпильку из нержавеющей стали диаметром 8 мм, соединенную с неподвижной частью силовой рамы. Верхняя (подвижная) деталь направляющего блока силовой рамы соединена с кольцевой металлической платформой с отверстием в центре. Подвижный направляющий блок опускают, пока нижняя шпилька не покажется в отверстии в центре верхнего зажимного приспособления, и поперечное движение останавливают, когда данная шпилька находится чуть выше металлической платформы. Затем на выступающую шпильку помещают образец полимера. От образца полимера отрезают под нажимом свежий диск диаметром 10 мм и помещают на вершину выступающей шпильки. На поверхность образца помещают груз массой 300 грамм, насаживая образец на шпильку при помощи ровного груза. Через минуту после помещения груза на образец запускают механическую разрывную машину Instron со скоростью разделения 5 мм/мин. Сбор данных осуществляют со скоростью 5 точек/сек до тех пор, пока образец не вытянут со шпильки. Регистрируют максимальное усилие.
Аналогичным образом проводили исследования прилипания полимера к полимеру. Вкратце, два РММА столбика диаметром 6 мм использовали в качестве неподвижной и подвижной деталей силовой рамы ползунка. Образцы разрезали на диски диаметром 6 мм и приклеивали на РММА столбики при помощи эпоксидного клея. Давали высохнуть использованному клею в течение примерно 15 часов перед испытанием. Один столбик образца для испытаний помещали в нижний зажим, а один - в верхний зажим. Верхний и нижний столбики соединяли и выравнивали столбики таким образом, чтобы образцы полностью соприкасались друг с другом. На верхний столбик помещали груз массой 300 грамм и надавливали с постоянной нагрузкой на образец, приклеивая его к нижнему столбику. Через минуту после помещения груза на образец запускают механическую разрывную машину Instron со скоростью разделения 1 мм/мин. Сбор данных осуществляют со скоростью 0,15 точек/сек до тех пор, пока образец не вытянут со шпильки. Регистрируют максимальное усилие. В данном тесте максимальное усилие зарегистрировано примерно при 7 N для материала AcrySof (SM9,2). Таким образом, значение липкости примерно при 7 N или менее должно считаться соответствующим низкому прилипанию полимера к полимеру.
Образцы, обработанные перед экстракцией, после экстракции и после плазмы тестировали на прилипание полимера к металлу и прилипание полимера к полимеру. Результаты сведены в таблицу 3. Образец J не содержал PDMS-1000-DMA. Из таблицы 3 видно, что добавление 2% PDMS-1000-DMA приводит к снижению прилипания полимера к металлу и прилипания полимера к полимеру. Большая часть значений прилипания полимера к металлу составляет менее 20 N, и для этих образцов определены очень низкие (намного ниже 7 N) величины прилипания полимера к полимеру.
Таблица 3
Образец Прилипание полимера к металлу (N) Прилипание полимера к полимеру (N)
До экстракции После экстракции После плазмы До экстракции После экстракции После плазмы
A 26,2±3,1 - - - - -
В 33±3,1 - - - - -
С 15±0,7 14±1,8 16,6±1,8 - - 1,4±0,4
D 14±1,9 15,4±2 21,6±3,2 - - -
E 19±2,6 20±1,1 15±0,4 - - -
F 10±0,7 12,2±1,8 - - - 0,7±0,3
G 10±0,8 13,1±4,8 - - - 0,4±0,1
H 16±1,5 14,3±1,6 5,1±2,2 3,4±1,8 3±0,2 1,6±0,7
I 18,2±5,8 21,6±4,0 6,6±1,7 4,1±0,5 3,2±1,4 1,5±0,5
J 26,3±3,2 19,4±2,4 - 5,0±0,6 5,2±2,1 -
Пример 4
Испытание на растяжение
Механические свойства при растяжении экстрагированных образцов для испытаний из примеров А-I измеряли при помощи разрывной машины Instron, а результаты представлены в таблице 4.
Таблица 4
Пример
(N≥3)
Разрушающее напряжение (МПа) Деформация при
разрыве (%)
Модуль Юнга
(МПа)
Секущий модуль
25% (МПа)
Секущий модуль 100% (МПа)
А 8,9±0,9 139±6,8 62,7±5,3 13,7±1,1 6,1±0,3
В 4,5±0,3 198±9,8 22±2,2 3,1±0,2 1,8±0,1
С 5,9±0,6 167±4,6 12,1±0,7 3,6±0,2 2,7±0,2
D 6,4±0,4 183±6,7 12,0±0,7 3,7±0,1 2,7±0,06
Е 5,9±0,4 152±4,9 11,2±0,6 3,99±0,15 3,2±0,11
F 5,9±0,7 167±9 11±0,7 3,6 ±0,3 2,7±0,2
G 5,4±0,2 144±2,8 12±0,9 3,9±0,1 3,1±0,1
Н 5,8±0,9 145±11,8 11,9±1,0 4,7±0,2 3,6±0,15
I 5,6±0,4 145±7,7 11,9±1,0 4,4±0,2 3,4±0,2
J 6,4±0,7 185±10 11,5±0,7 4,7±0,5 3,0±0,3
Пример 5
Измерения рассеяния на поверхности
Повышенное рассеяние света на поверхности ИОЛ представляет собой хорошо известное явление, которое хирурги-офтальмологи могут обнаружить в глазу с имплантатами при помощи микроскопа с щелевой лампой. Метод Шеймпфлюг-фотографии представляет собой метод, обычно используемый для количественной оценки количества рассеянного света. Вкратце, Шеймпфлюг-камеру применяют для фиксации изображения имплантированной ИОЛ. После этого при помощи доступного программного обеспечения можно количественно оценить интенсивность рассеянного света, измеренную в значениях ССТ. В настоящее время лучшие в своем классе конкуренты в ряду ИОЛов имеют значения ССТ менее 30 для образцов линз, подвергавшихся ускоренному старению в течение 10 лет. В данном исследовании из составов изготавливали моноблочные ИОЛы с оптической силой 21 диоптрия. Сначала ИОЛы подвергали старению в условиях ускоренного старения в солевом растворе (BSS) при 90°С. Линзы промывали в деионизированной воде для удаления солей, а затем сушили. Измерения рассеянного света проводили на образцах, оставленных перед этим для достижения равновесия в солевом растворе BSS при температуре окружающей среды в течение 20 часов. Как показано в таблице 5, для образцов, подвергавшихся старению в течение 3 и 5 лет, наблюдалось небольшое количество отсчетов рассеивания на поверхности, в интервале 0-30 ССТ. Данные для десяти лет будут получены к июню 2011 года соответственно.
Таблица 5
Образец (N=3) SS (CCT) (t=10 лет) (увлажненный)
B 33,7±6,9
C 5,8±2,2
D 13,1±7,3
E 19,2±7,5 (t=3 года)
F 9,8±3,8
G 11,9±5,7
H 15,7±1,4
I 10,9±2,9
Пример 6
Оценка установки линзы
Линзы, отлитые в формы на 40 диоптрий из некоторых составов, устанавливали при помощи картриджей Monarch III D с использованием насадок Н4 (имеющих или не имеющих мягкий наконечник) и вязкоэластичного раствора Viscoat. Установку линзы проводили при 18°С и 23°С без учета времени пребывания. Оценки после установки, включающие в себя уровень давления, вызванного наконечником картриджа, повреждение оптической и гаптической частей и время разворачивания оптической и гаптической частей приведены в таблице 6. В целом, значения уровня давления, равные 5, обычно означают высокий уровень повреждения картриджем. Значения уровня давления, равные 3-4, означают некоторый, но ожидаемый уровень повреждения картриджем. Значения в интервале 0-2 указывают на небольшое или отсутствие повреждения. Как показано в таблице 6, значения уровня давления были небольшими, и ни при 18, ни при 23°С не наблюдалось существенного повреждения картриджем. Кроме того, значения давления, вызванного насадкой, были меньше, чем значения, приведенные для линз оптической силы 27,0 диоптрий AcrySof (SN60WF) при использовании аналогичных картриджей и условий. Измерения установочных усилий при значениях ниже 15 N также считаются приемлемыми. В общем, все оптические части линз разворачивались быстро, в течение 4 секунд установки при 18 и 23°С и проходили косметическую проверку после установки. Кроме того, гаптическая часть не прилипала к оптической части при установке. Однако для составов с более низкой концентрацией сшивающего агента (1,5 масс.%) определяли более продолжительное время разворачивания по сравнению с составами, содержащими более высокую концентрацию сшивающего агента (1,75 и 2,0 масс.%).
Таблица 6
Состав (N=3) Усилие инжекции (N) Уровень давления, вызванного насадкой Оптическое время (с) Разворачивание Гаптическое время (с) Разворачивание
18°С 23°С 18°С 23°С
B 7,9±0,4 5,9±0,4 <4 <3 <4 <10
C Усилие ручной инж. н/норм. <4 <3 <4 >300
D Усилие ручной инж. н/норм. <4 <3 <6 <4
G Усилие ручной инж. н/норм. <4 <3 <4 <4
11,1±0,3 8,6±0,3
Поскольку теперь изобретение описано полностью, следует понимать, что его можно осуществить в других конкретных формах или модификациях, не выходя из его духа или существенных признаков. Соответственно, описанные выше варианты осуществления следует считать во всех аспектах иллюстративными, а не ограничивающими, при этом рамки данного изобретения определены прилагаемой формулой изобретения, а не предшествующим описанием, и подразумевается, что все изменения, которые попадают в значения и интервал эквивалентности формулы изобретения, входят в нее.

Claims (19)

1. Сополимерный материал для офтальмологического устройства, полученный полимеризацией смеси, включающей
а) 30-60% масс./масс. или более арилакрилового гидрофобного мономера формулы (I)
Figure 00000003

в которой:
А представляет собой Н,
В представляет собой (СН2)m, S(СН2)u, O(СН2)v или [O(СН2)2]n,
u равно 1-4,
v равно 1-4,
C представляет собой (СН2)w,
m равно 1-6,
n равно 1-10,
Y отсутствует или представляет собой O, S или NR, при условии, что если Y представляет собой O, S или NR, то В представляет собой (СН2)m,
R представляет собой Н, СН3, CnH2n+1, где n=1-10, изо-ОС3Н7, С6Н5 или СН2С6Н5,
w равно 0-6, при условии, что m+w≤8, а
D представляет собой Н, С14 алкил, С14 алкокси, С6Н5, СН2С6Н5, Br, F, Cl или I;
b) 0,1-3,9% масс./масс. макромера формулы (II)
Figure 00000004

в которой
R1 и R2 независимо представляют собой -СН3, -СН2СН3, -СН2СН2СН3, -СН2СН2СН2СН3, -С6Н5, -СН2С6Н5, -СН2СН2С6Н5, -СН2СН2СН2С6Н5 или -СН2СН2СН2СН2С6Н5,
R3 представляет собой Н, СН3 или СН2СН3,
z равно 2-11, а
х обозначает число повторяющихся звеньев и определяет молекулярную массу макромера, и является таким, чтобы молекулярная масса макромера составляла примерно от 300 до примерно 3500;
с) 10-40% масс./масс. 2-этилгексилакрилата или н-октилакрилата,
d) 5-30% масс./масс. гидрофильного мономера, выбранного из группы, включающей: гидрокси(С24 алкил)метакрилаты, глицеринметакрилат и N-винилпирролидон;
е) сшивающий мономер, и
f) реактивный УФ-поглотитель;
где в данном сополимерном материале для офтальмологического устройства равновесное содержание воды при 35°С составляет менее 4%.
2. Сополимерный материал для устройства по п.1, в котором арилакриловый гидрофобный мономер выбирают из группы, включающей: бензилакрилат, 2-фенилэтилакрилат, 2-феноксиэтилакрилат, 4-фенилбутилакрилат, 5-фенилпентилакрилат, 2-бензилоксиэтилакрилат, 3-бензилоксипропилакрилат, 3-фенилпропилакрилат, 3-феноксипропилакрилат, 2-(фенилтио)пропилакрилат и 2-(фенилтио)этилакрилат.
3. Сополимерный материал для устройства по п.2, в котором арилакриловый гидрофобный мономер выбирают из группы, включающей: 2-фенилэтилакрилат, 2-феноксиэтилакрилат, бензилакрилат и 2-(фенилтио)этилакрилат.
4. Сополимерный материал для устройства по п.1, в котором смесь содержит 35-50% масс./масс. арилакрилового гидрофобного мономера.
5. Сополимерный материал для устройства по п.4, в котором смесь содержит 40-50% масс./масс. арилакрилового гидрофобного мономера.
6. Сополимерный материал для устройства по п.1, в котором смесь содержит 1-3% масс./масс. макромера формулы (II).
7. Сополимерный материал для устройства по п.6, в котором смесь содержит 1,5-2,5% масс./масс. макромера формулы (II).
8. Сополимерный материал для устройства по п.1, в котором молекулярная масса макромера формулы (II) составляет 350-2000.
9. Сополимерный материал для устройства по п.8, в котором молекулярная масса макромера формулы (II) составляет 800-1400.
10. Сополимерный материал для устройства по п.8, в котором молекулярная масса макромера формулы (II) составляет 550-700.
11. Сополимерный материал для устройства по п.1, в котором смесь содержит 15-35% масс./масс. н-октилакрилата.
12. Сополимерный материал для устройства по п.11, в котором смесь содержит 17-32% масс./масс. н-октилакрилата.
13. Сополимерный материал для устройства по п.1, в котором гидрофильный мономер представляет собой гидрокси(С24 алкил)метакрилат, а смесь содержит 10-25% масс./масс. гидрофильного мономера.
14. Сополимерный материал для устройства по п.13, в котором гидрофильный мономер представляет собой 2-гидроксиэтилметакрилат, а смесь содержит 15-25% масс./масс. гидрофильного мономера.
15. Сополимерный материал для устройства по п.1, в котором смесь содержит 0,5-10% масс./масс. сшивающего агента.
16. Сополимерный материал для устройства по п.15, в котором смесь содержит 1-3% масс./масс. сшивающего агента и данный сшивающий агент выбирают из группы, включающей: диметилакрилат этиленгликоля, диметилакрилат диэтиленгликоля, аллилметакрилат, 1,3-пропандиолдиметакрилат, 2,3-пропандиолдиметакрилат, 1,6-гександиолдиметакрилат, 1,4-бутандиолдиметакрилат, диметакрилат триэтиленгликоля и соответствующие им акрилаты.
17. Сополимерный материал для устройства по п.16, в котором сшивающий агент выбирают из группы, включающей 1,4-бутандиолдиметакрилат и диметакрилат триэтиленгликоля.
18. Сополимерный материал для устройства по п.1, в котором смесь дополнительно содержит реакционноспособное соединение, поглощающее синий свет.
19. Интраокулярная линза, включающая сополимерный материал для устройства по п.1.
RU2013157572/15A 2011-06-01 2012-05-31 Гидрофобные акриловые материалы для интраокулярных линз RU2557993C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161492270P 2011-06-01 2011-06-01
US61/492,270 2011-06-01
PCT/US2012/040246 WO2012166948A1 (en) 2011-06-01 2012-05-31 Hydrophobic acrylic intraocular lens materials

Publications (2)

Publication Number Publication Date
RU2013157572A RU2013157572A (ru) 2015-07-20
RU2557993C1 true RU2557993C1 (ru) 2015-07-27

Family

ID=46246238

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013157572/15A RU2557993C1 (ru) 2011-06-01 2012-05-31 Гидрофобные акриловые материалы для интраокулярных линз

Country Status (21)

Country Link
US (1) US8466209B2 (ru)
EP (1) EP2714107B1 (ru)
JP (1) JP5588576B2 (ru)
KR (1) KR101384567B1 (ru)
CN (1) CN103561786B (ru)
AR (1) AR086603A1 (ru)
AU (1) AU2012262099B2 (ru)
BR (1) BR112013030573B1 (ru)
CA (1) CA2836291C (ru)
DK (1) DK2714107T3 (ru)
ES (1) ES2538022T3 (ru)
HK (1) HK1190345A1 (ru)
IL (1) IL229338A (ru)
MX (1) MX2013014075A (ru)
PL (1) PL2714107T3 (ru)
PT (1) PT2714107E (ru)
RU (1) RU2557993C1 (ru)
SG (1) SG195008A1 (ru)
TW (1) TWI513768B (ru)
WO (1) WO2012166948A1 (ru)
ZA (1) ZA201308484B (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2800871C2 (ru) * 2019-06-28 2023-07-31 Джонсон Энд Джонсон Вижн Кэа, Инк. Светоустойчивая имитация макулярного пигмента
US11820899B2 (en) 2018-03-02 2023-11-21 Johnson & Johnson Vision Care, Inc. Polymerizable absorbers of UV and high energy visible light
US11958824B2 (en) 2019-06-28 2024-04-16 Johnson & Johnson Vision Care, Inc. Photostable mimics of macular pigment
US11993037B1 (en) 2018-03-02 2024-05-28 Johnson & Johnson Vision Care, Inc. Contact lens displaying improved vision attributes

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015084788A1 (en) 2013-12-04 2015-06-11 Novartis Ag Soft acrylic materials with high refractive index and minimized glistening
RU2717083C2 (ru) 2014-04-07 2020-03-18 Тюбитак Композиция для изготовления интраокулярной линзы (иол) и способ изготовления такой линзы
WO2016061457A1 (en) * 2014-10-17 2016-04-21 Key Medical Technologies, Inc. Polymers and methods for opthalmic applications
JP6392993B2 (ja) * 2014-12-16 2018-09-19 ノバルティス アーゲー 眼科用装具のための疎水性アクリレート−アクリルアミドコポリマー
JP6371480B2 (ja) 2014-12-16 2018-08-08 ノバルティス アーゲー 眼科用装具のための低含水率アクリレート−アクリルアミドコポリマー
ES2703566T3 (es) 2015-02-16 2019-03-11 Novartis Ag Envasado en húmedo de materiales de lente intraocular con elevado índice refractivo
CN104725553B (zh) * 2015-03-20 2018-01-16 北京艾克伦医疗科技有限公司 一种用于制备人工晶状体的复合材料及其应用
EP3307206B1 (en) * 2015-06-10 2023-09-20 Alcon Inc. Intraocular lens materials and components
CN109641831B (zh) * 2016-08-30 2021-09-10 东莞东阳光医疗智能器件研发有限公司 单体、聚合物、制备方法及其用途
ES2763538T3 (es) 2016-11-22 2020-05-29 Reper Sarl Material copolimérico biocompatible e implante oftalmológico compuesto por el mismo
RU2657810C1 (ru) * 2016-12-22 2018-06-15 Общество с ограниченной ответственностью "Репер-НН" Композиция для изготовления интраокулярных линз
US10918476B2 (en) 2017-03-30 2021-02-16 Verily Life Sciences Llc Electrowetting intraocular lens with isotonic aqueous phase
US11191636B2 (en) 2017-08-22 2021-12-07 Verily Life Sciences Llc Electrowetting lenses having oleophobic surfaces
WO2019051311A1 (en) 2017-09-08 2019-03-14 Verily Life Sciences Llc SELF-CONDUCTING WIRES IN WET ENVIRONMENTS
GB201814535D0 (en) 2018-09-06 2018-10-24 Uea Enterprises Ltd Intraocular devices
WO2020180185A1 (en) * 2019-03-07 2020-09-10 Oculentis Holding B.V. Intraocular lens compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331073A (en) * 1992-11-09 1994-07-19 Allergan, Inc. Polymeric compositions and intraocular lenses made from same
US20020107337A1 (en) * 1999-12-10 2002-08-08 Rosenzweig Howard S. Contact lens
RU2269552C1 (ru) * 2004-12-23 2006-02-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Полимерная композиция для мягких контактных линз продленного ношения и способ ее получения
US7585900B2 (en) * 2006-07-21 2009-09-08 Alcon, Inc. Low-tack ophthalmic and otorhinolaryngological device materials

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834750A (en) 1987-09-17 1989-05-30 Ioptex Research, Inc. Deformable-elastic intraocular lens
US5290892A (en) 1990-11-07 1994-03-01 Nestle S.A. Flexible intraocular lenses made from high refractive index polymers
US5603774A (en) 1993-09-27 1997-02-18 Alcon Laboratories, Inc. Method for reducing tackiness of soft acrylic polymers
US5470932A (en) 1993-10-18 1995-11-28 Alcon Laboratories, Inc. Polymerizable yellow dyes and their use in opthalmic lenses
WO1996040303A1 (en) 1995-06-07 1996-12-19 Alcon Laboratories, Inc. Improved high refractive index ophthalmic lens materials
JPH11287971A (ja) * 1998-04-02 1999-10-19 Kuraray Co Ltd 眼用レンズ材料
US6241766B1 (en) 1998-10-29 2001-06-05 Allergan Sales, Inc. Intraocular lenses made from polymeric compositions
ES2235935T3 (es) 1999-09-07 2005-07-16 Alcon Inc. Materiales para dispositivos otorrinolaringologicos y oftalmicos plegables.
US6703466B1 (en) * 2001-06-18 2004-03-09 Alcon, Inc. Foldable intraocular lens optics having a glassy surface
US7714039B2 (en) 2006-07-21 2010-05-11 Alcon, Inc. Low-tack ophthalmic and otorhinolaryngological device materials
US8058323B2 (en) 2006-07-21 2011-11-15 Novartis Ag Low-tack ophthalmic and otorhinolaryngological device materials
TW200816966A (en) 2006-07-21 2008-04-16 Alcon Mfg Ltd Low-tack ophthalmic and otorhinolaryngological device materials
US8053489B2 (en) 2007-07-20 2011-11-08 Bausch & Lomb Incorporated Crosslink agents and dual radical cure polymer
TW200920330A (en) 2007-10-02 2009-05-16 Alcon Inc Ophthalmic and otorhinolaryngological device materials containing an alkyl ethoxylate
TW200916130A (en) 2007-10-02 2009-04-16 Alcon Inc Ophthalmic and otorhinolaryngological device materials containing an alkylphenol ethoxylate
TWI426931B (zh) * 2007-10-03 2014-02-21 Alcon Inc 眼科與耳鼻喉科裝置材料(一)
TWI426932B (zh) 2007-10-05 2014-02-21 Alcon Inc 眼科與耳鼻喉科裝置材料(三)
US20100069522A1 (en) 2008-03-17 2010-03-18 Linhardt Jeffrey G Lenses comprising amphiphilic multiblock copolymers
TWI487690B (zh) 2009-07-06 2015-06-11 Alcon Inc 用於眼用鏡片材料之可見光吸收劑
TWI473629B (zh) 2010-01-18 2015-02-21 Alcon Inc 用於眼用晶體材料之可見光吸收劑
TWI473823B (zh) 2010-06-21 2015-02-21 Novartis Ag 具有經降低的閃光之高折射率、丙烯酸系眼科裝置材料
TWI517861B (zh) * 2011-02-08 2016-01-21 諾華公司 低黏度疏水性眼科裝置材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331073A (en) * 1992-11-09 1994-07-19 Allergan, Inc. Polymeric compositions and intraocular lenses made from same
US20020107337A1 (en) * 1999-12-10 2002-08-08 Rosenzweig Howard S. Contact lens
RU2269552C1 (ru) * 2004-12-23 2006-02-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Полимерная композиция для мягких контактных линз продленного ношения и способ ее получения
US7585900B2 (en) * 2006-07-21 2009-09-08 Alcon, Inc. Low-tack ophthalmic and otorhinolaryngological device materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11820899B2 (en) 2018-03-02 2023-11-21 Johnson & Johnson Vision Care, Inc. Polymerizable absorbers of UV and high energy visible light
US11993037B1 (en) 2018-03-02 2024-05-28 Johnson & Johnson Vision Care, Inc. Contact lens displaying improved vision attributes
RU2800871C2 (ru) * 2019-06-28 2023-07-31 Джонсон Энд Джонсон Вижн Кэа, Инк. Светоустойчивая имитация макулярного пигмента
US11958824B2 (en) 2019-06-28 2024-04-16 Johnson & Johnson Vision Care, Inc. Photostable mimics of macular pigment

Also Published As

Publication number Publication date
EP2714107A1 (en) 2014-04-09
JP5588576B2 (ja) 2014-09-10
PT2714107E (pt) 2015-07-02
AU2012262099B2 (en) 2014-05-01
CN103561786B (zh) 2015-10-14
RU2013157572A (ru) 2015-07-20
BR112013030573A2 (pt) 2016-09-27
NZ617790A (en) 2014-12-24
CA2836291C (en) 2014-07-22
PL2714107T3 (pl) 2015-08-31
DK2714107T3 (en) 2015-05-04
JP2014515290A (ja) 2014-06-30
CN103561786A (zh) 2014-02-05
ZA201308484B (en) 2015-01-28
TW201249931A (en) 2012-12-16
AU2012262099A1 (en) 2014-01-23
KR101384567B1 (ko) 2014-04-11
TWI513768B (zh) 2015-12-21
CA2836291A1 (en) 2012-12-06
AR086603A1 (es) 2014-01-08
SG195008A1 (en) 2013-12-30
HK1190345A1 (en) 2014-07-04
IL229338A (en) 2014-05-28
EP2714107B1 (en) 2015-04-08
IL229338A0 (en) 2014-01-30
US20120309899A1 (en) 2012-12-06
WO2012166948A1 (en) 2012-12-06
MX2013014075A (es) 2014-03-21
ES2538022T3 (es) 2015-06-16
US8466209B2 (en) 2013-06-18
BR112013030573B1 (pt) 2019-05-21
KR20140010194A (ko) 2014-01-23

Similar Documents

Publication Publication Date Title
RU2557993C1 (ru) Гидрофобные акриловые материалы для интраокулярных линз
RU2571138C2 (ru) Гидрофобные акриловые материалы для интраокулярных линз
KR101729641B1 (ko) 저점착성의 소수성 안과용 장비 물질
KR102309508B1 (ko) 굴절률이 높고 아베수가 높은 인공 수정체 재료
NZ617790B2 (en) Hydrophobic acrylic intraocular lens materials

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200601