RU2554550C2 - Базовая радиостанция и пользовательское оборудование и способы в них - Google Patents

Базовая радиостанция и пользовательское оборудование и способы в них Download PDF

Info

Publication number
RU2554550C2
RU2554550C2 RU2012135496/08A RU2012135496A RU2554550C2 RU 2554550 C2 RU2554550 C2 RU 2554550C2 RU 2012135496/08 A RU2012135496/08 A RU 2012135496/08A RU 2012135496 A RU2012135496 A RU 2012135496A RU 2554550 C2 RU2554550 C2 RU 2554550C2
Authority
RU
Russia
Prior art keywords
sequence
modulation symbols
block
ofdm
dfts
Prior art date
Application number
RU2012135496/08A
Other languages
English (en)
Other versions
RU2012135496A (ru
Inventor
Роберт БАЛЬДЕМАИР
Дэвид АСТЕЛИ
Дирк ГЕРСТЕНБЕРГЕР
Даниель ЛАРССОН
Стефан ПАРКВАЛЛЬ
Original Assignee
Телефонактиеболагет Лм Эрикссон (Пабл)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Телефонактиеболагет Лм Эрикссон (Пабл) filed Critical Телефонактиеболагет Лм Эрикссон (Пабл)
Publication of RU2012135496A publication Critical patent/RU2012135496A/ru
Application granted granted Critical
Publication of RU2554550C2 publication Critical patent/RU2554550C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • H04J11/0033Interference mitigation or co-ordination of multi-user interference at the transmitter by pre-cancellation of known interference, e.g. using a matched filter, dirty paper coder or Thomlinson-Harashima precoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • H04L5/0019Time-frequency-code in which one code is applied, as a temporal sequence, to all frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

Изобретение относится к передаче управляющей информации восходящей линии связи, содержащейся в блоке битов, через радиоканал в базовую станцию. Технический результат состоит в создании в LTE формата физического управляющего канала восходящей линии связи (PUCCH), способного переносить большое количество битов. Для этого предусмотрена передача управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал в базовую радиостанцию. Радиоканал выполнен для переноса управляющей информации восходящей линии связи, а пользовательское оборудование и базовая радиостанция содержатся в сети радиосвязи. Управляющая информация восходящей линии связи содержится в блоке битов. Пользовательское оборудование отображает блок битов в последовательность комплексных оцененных символов модуляции и блочно расширяет последовательность комплексных оцененных символов модуляции посредством символов расширения дискретного преобразования Фурье - мультиплексирования с ортогональным частотным разделением каналов (DFTS-OFDM). 5 н. и 15 з.п. ф-лы, 23 ил.

Description

Область техники, к которой относится изобретение
Варианты осуществления, описанные в настоящем документе, относятся к базовой радиостанции, пользовательскому оборудованию и способам в них. В частности, варианты осуществления, описанные в настоящем документе, относятся к передаче управляющей информации восходящей линии связи, содержащейся в блоке битов, через радиоканал в базовую радиостанцию.
Уровень техники
В современных сетях радиосвязи использовано множество разных технологий, таких как долгосрочное развитие (LTE), усовершенствованное LTE, широкополосный множественный доступ с кодовым разделением каналов (WCDMA) Проекта партнерства 3-го поколения (3GPP), глобальная система мобильной связи/увеличенная скорость передачи данных для развития GSM (GSM/EDGE), всемирное системное взаимодействие для микроволнового доступа (WiMax) и сверхмобильная широкополосная связь (UMB), не говоря о многих других.
Долгосрочное развитие (LTE) является проектом в рамках Проекта партнерства 3-го поколения (3GPP), чтобы разработать стандарт WCDMA по отношению к четвертому поколению мобильных телекоммуникационных сетей. По сравнению с WCDMA LTE обеспечивает увеличенную пропускную способность, значительно более высокие максимальные скорости передачи данных и существенно улучшенные показатели задержек. Например, спецификации LTE поддерживают максимальные скорости передачи данных нисходящей линии связи до 300 Мбит/с, максимальные скорости передачи данных восходящей линии связи до 75 Мбит/с и времена полного обхода сети радиодоступа менее чем 10 мс. Кроме того, LTE поддерживает масштабируемые полосы пропускания несущих от 1,4 МГц до 20 МГц и поддерживает работу как дуплексной связи с частотным разделением (FDD), так и дуплексной связи с временным разделением (TDD).
LTE является технологией мультиплексирования с частотным разделением каналов, в которой мультиплексирование с ортогональным частотным разделением каналов (OFDM) используют при передаче по нисходящей линии связи (DL) из базовой радиостанции в пользовательское оборудование. Множественный доступ в частотной области с одной несущей (SC-FDMA) используют при передаче по восходящей линии связи (UL) из пользовательского оборудования в базовую радиостанцию. Услуги в LTE поддерживаются в области с коммутацией пакетов. SC-FDMA, используемый в восходящей линии связи, также упоминают как OFDM с расширенным дискретным преобразованием Фурье (DFTS).
Таким образом, основной физический ресурс нисходящей линии связи LTE можно понимать как частотно-временную сетку, как проиллюстрировано на фиг.1, в которой каждый элемент ресурса (RE) соответствует одной поднесущей OFDM в течение одного интервала символа OFDM. Интервал символа содержит циклический префикс (ср), причем ср является заданием префикса символа с повторением конца символа для того, чтобы действовать в качестве защитной полосы между символами и/или содействовать обработке частотной области. Частоты f или поднесущие, имеющие промежутки ∆f поднесущих, определены вдоль оси z, а символы определены вдоль оси x.
Во временной области передачи нисходящей линии связи LTE организованы в радиокадры, равные 10 мс, причем каждый радиокадр содержит десять подкадров с одинаковым размером, #0-#9, каждый с длительностью во времени T
Figure 00000001
=1 мс, как изображено на фиг.2. Кроме того, выделение ресурса в LTE обычно описывают в понятиях блоков ресурса, причем блок ресурса соответствует одному слоту, равному 0,5 мс во временной области и 12 поднесущим в частотной области. Блоки ресурсов пронумерованы в частотной области, начиная с блока ресурса 0 с одного конца полосы пропускания системы.
Передачи нисходящей линии связи планируются динамически, т.е в каждом подкадре базовая станция или базовая радиостанция передает управляющую информацию о том, в какое пользовательское оборудование или терминалы передаются данные и в каких блоках ресурса передаются данные в текущем подкадре нисходящей линии связи. Эту управляющую сигнализацию обычно передают в первых 1, 2, 3 или 4 символах OFDM в каждом подкадре. Система нисходящей линии связи с 3 символами OFDM, используемыми для управляющей сигнализации, проиллюстрирована на фиг.3 и обозначена как область управления. Элементы ресурса, используемые для управляющей сигнализации, указаны с помощью волнообразных линий, а элементы ресурса, используемые для опорных символов, указаны с помощью диагональных линий. Частоты f или поднесущие определены вдоль оси z, а символы определены вдоль оси х.
LTE использует гибридный автоматический запрос повторения (ARQ), в котором после приема данных нисходящей линии связи в подкадре пользовательское оборудование пытается декодировать их и передает отчет в базовую радиостанцию с использованием управляющей сигнализации восходящей линии связи о том, было ли декодирование успешным, с помощью посылки подтверждения приема (ACK), если декодирование успешное, или отрицательного подтверждения приема (NACK), если декодирование неуспешное. В случае неуспешной попытки декодирования базовая радиостанция может повторно передать ошибочные данные.
Управляющая сигнализация восходящей линии связи из пользовательского оборудования или терминала в базовую станцию или базовую радиостанцию содержит:
подтверждения приема гибридного ARQ для принятых данных нисходящей линии связи,
отчеты пользовательского оборудования или терминала, связанные с состояниями канала нисходящей линии связи, используемые в качестве помощи для планирования нисходящей линии связи,
запросы планирования, указывающие, что пользовательское оборудование или терминал требует ресурсов восходящей линии связи для передач данных по восходящей линии связи.
Управляющая информация восходящей линии связи может быть передана двумя разными способами:
на физическом совместно используемом канале восходящей линии связи (PUSCH). Если пользовательскому оборудованию или терминалу назначены ресурсы для передачи данных в текущем подкадре, управляющую информацию восходящей линии связи, включая подтверждения приема гибридного ARQ, передают вместе с данными на PUSCH,
на физическом управляющем канале восходящей линии связи (PUCCH). Если пользовательскому оборудованию или терминалу не назначены ресурсы для передачи данных в текущем подкадре, управляющую информацию восходящей линии связи передают отдельно на PUCCH с использованием блоков ресурса, специально назначенных для этой цели.
В настоящем документе фокус находится в последнем случае, т.е. когда управляющую информацию уровня 1/уровня 2 (L1/L2), приведенную в качестве примера с помощью отчетов о статусе канала, подтверждений приема гибридного ARQ и запросов планирования, передают в ресурсах восходящей линии связи, т.е. в блоках ресурса, конкретно назначенных для управляющей информации L1/L2 восходящей линии связи, на физическом управляющем канале восходящей линии связи (PUCCH). Уровень 1 содержит физический уровень, а уровень 2 содержит уровень линии данных. Как проиллюстрировано на фиг.4, ресурсы 41, 42 PUCCH назначены на краях полной доступной полосы пропускания системы восходящей линии связи соты. Каждый такой ресурс содержит двенадцать «поднесущих», т.е. он содержит один блок ресурса в каждом из двух слотов подкадра восходящей линии связи. Для того чтобы обеспечить разнесение частоты, эти частотные ресурсы скачкообразно перестраивают частоту на границе слота, как проиллюстрировано с помощью стрелки, т.е. в подкадре имеется один «ресурс» 41, содержащий 12 поднесущих в верхней части спектра в первом слоте подкадра, и ресурс 42 с одинаковым размером в нижней части спектра в течение второго слота подкадра или наоборот. Если требуется больше ресурсов для управляющей сигнализации L1/L2 восходящей линии связи, например, в случае очень большой общей полосы пропускания передачи, поддерживающей большое число пользователей, дополнительные блоки ресурса могут быть назначены после ранее назначенных блоков ресурса. Частоты f или поднесущие определены вдоль оси z, а символы определены вдоль оси х.
Причинами для размещения ресурсов PUCCH на краях всего доступного спектра являются:
вместе со скачкообразной перестройкой частоты, описанной выше, размещение ресурсов PUCCH на краях полного доступного спектра максимизирует разнесение частоты, испытываемое управляющей сигнализацией,
назначение ресурсов восходящей линии связи для PUCCH в других позициях в спектре, т.е. не на краях, фрагментировало бы спектр восходящей линии связи, делая невозможным назначение очень широких полос пропускания передачи в одно мобильное пользовательское оборудование или терминал и при этом поддержку свойства одной несущей передачи восходящей линии связи.
Полоса пропускания одного блока ресурса в течение одного подкадра является слишком большой для нужд управляющей сигнализации одного пользовательского оборудования или терминала. Поэтому для того, чтобы эффективно использовать ресурсы, отложенные для управляющей сигнализации, множество пользовательских оборудований или терминалов могут совместно использовать один и тот же блок ресурса. Это выполняется с помощью назначения разным пользовательским оборудованиям или терминалам разных ортогональных поворотов фазы последовательности частотной области длины 12, характерной для соты.
Поэтому ресурс, используемый с помощью PUCCH, не только задают в частотно-временной области с помощью пары блоков ресурса, но также с помощью примененного поворота фазы. Аналогично случаю опорных сигналов имеются до двенадцати заданных разных поворотов фазы, обеспечивающих до двенадцати разных ортогональных последовательностей из каждой последовательности, характерной для соты. Однако в случае частотно избирательных каналов не все двенадцать поворотов фазы могут быть использованы, если должна быть поддержана ортогональность. Обычно до шести поворотов считают полезными в соте.
Как упомянуто выше, управляющая сигнализация L1/L2 восходящей линии связи включает в себя подтверждения приема гибридного ARQ, отчеты о статусе канала и запросы планирования. Возможны разные комбинации этих типов сообщений, использующие один из двух доступных форматов PUCCH, которые могут переносить разное число битов.
Формат 1 PUCCH. Фактически в спецификациях LTE имеются три формата: 1, 1а и 1b, несмотря на то, что в настоящем документе все они упомянуты как формат 1 для простоты. Формат 1 PUCCH используют для подтверждения приема гибридного ARQ и запросов планирования. Он может переносить до двенадцати битов информации помимо прерывистой передачи (DTX). Если в нисходящей линии связи не была обнаружена передача информации, также известная как DTX подтверждение приема не генерируют. Следовательно, имеются 3 или 5 разных комбинаций в зависимости от того, была ли использована MIMO в нисходящей линии связи или нет. Это проиллюстрировано на фиг.5. В колонке 51 обозначен индекс комбинации, в колонке 52 раскрыта информация ARQ, посылаемая, когда не используется MIMO, а в колонке 52 изображена информация ARQ, когда используется MIMO, когда принимают первый транспортный блок и второй транспортный блок.
Формат 1 PUCCH использует одну и ту же структуру в двух слотах подкадра, как проиллюстрировано на фиг.6. Для передачи подтверждения приема (ACK) гибридного ARQ используют один бит подтверждения приема гибридного ARQ, чтобы сгенерировать символ двоичной фазовой манипуляции (BPSK); в случае пространственного мультиплексирования нисходящей линии связи используют два бита подтверждения приема, чтобы сгенерировать символ квадратурной фазовой манипуляции (QPSK). С другой стороны, для запроса планирования символ BPSK/QPSK заменяют на точку созвездия, рассматриваемую как отрицательное подтверждение приема в базовой радиостанции или развитом узле В (eNodeB). Каждый символ BPSK/QPSK умножают на последовательность, повернутую по фазе, длины 12. Затем их взвешивают с помощью последовательности длиной 4 до того, как будут преобразованы в процессе IFFT. Сдвиги фазы изменяются на уровне символа SC-FDMA или DFTS-OFDM. Опорные символы (RS) взвешивают с помощью последовательности длиной 3. Затем символ модуляции используют, чтобы сгенерировать сигнал, передаваемый в каждом из двух слотов PUCCH. Символы модуляции BPSK, символы модуляции QPSK и комплексные оцененные символы модуляции являются примерами символов модуляции.
Для формата 2 PUCCH в спецификации LTE также имеются три варианта: форматы 2, 2а и 2b, где последние два формата используют для одновременной передачи подтверждений приема гибридного ARQ, как обсуждено позже в этом разделе. Однако для простоты в настоящем документе все они упомянуты как формат 2.
Отчеты о статусе канала используются для того, чтобы предоставить в базовую радиостанцию или eNodeB оценку характеристик канала в пользовательском оборудовании или терминале, для того чтобы помочь планированию, зависящему от канала. Отчет о статусе канала содержит множество битов для каждого подкадра. Формат 1 PUCCH, который допускает максимум два бита информации для каждого подкадра, очевидно, не может быть использован для этой цели. Вместо этого передачу отчетов о статусе канала по PUCCH обрабатывают с помощью формата 2 PUCCH, который допускает множество битов информации для каждого подкадра.
Формат 2 PUCCH, проиллюстрированный для обычного циклического префикса на фиг.7, основан на повороте фазы той же последовательности, характерной для соты, что и формат 1, т.е. последовательности с повернутой фазой длины 12, которая изменяется для каждого символа SC-FDMA или DFTS-OFDM. Биты информации подвергают блочному кодированию. Модулированный QPSK, каждый символ QPSK b0-b9 из кодирования умножают на последовательность длиной 12, повернутую по фазе, а все символы SC-FDMA или DFTS-OFDM окончательно обрабатывают IFFT до того, как они переданы.
Для того чтобы отвечать возрастающим требованиям усовершенствованных международных мобильных телекоммуникаций (IMT), 3GPP в настоящее время стандартизует версию 10 LTE, также известную как усовершенствованное LTE. Одной характеристикой версии 10 является поддержка полос пропускания, больших чем 20 МГц, в то же время, по-прежнему, обеспечение обратной совместимости с версией 8. Этого достигают с помощью агрегирования множества составляющих несущих, каждая из которых может быть совместимой с версией 8, для того чтобы сформировать большую полную полосу пропускания в пользовательское оборудование версии 10. Это проиллюстрировано на фиг.8, где пять 20 МГц агрегированы в 100 МГц.
По существу каждую из составляющих несущих на фиг.8 обрабатывают отдельно. Например, гибридным ARQ управляют отдельно на каждой составляющей несущей, как проиллюстрировано на фиг.9. Для обработки гибридного ARQ требуются подтверждения приема, информирующие передатчик о том, был ли успешным прием транспортного блока или нет. Прямым способом реализации этого является передавать множество сообщений подтверждения приема по одному на каждой составляющей несущей. В случае пространственного мультиплексирования сообщение подтверждения приема соответствовало бы двум битам, так как имеются два транспортных блока на составляющей несущей, в этом случае уже в первой версии LTE. При отсутствии пространственного мультиплексирования сообщение подтверждения приема является одним битом, так как имеется только один транспортный блок на каждую составляющую несущую. Каждый поток F1-Fi иллюстрирует поток данных одному и тому же пользователю. Управление линией радиосвязи (RLC) для каждого принятого потока данных выполняют на уровне RLC. В уровне МАС управления доступом к среде (МАС) выполняют мультиплексирование и обработку HARQ относительно потока данных. В физическом (PHY) уровне выполняют кодирование и модуляцию с OFDM потока данных.
Передача множества сообщений подтверждения приема гибридного ARQ по одному на каждой составляющей несущей в некоторых ситуациях может быть затруднительной. Если современные структуры управляющей сигнализации восходящей линии связи мультиплексирования с частотным разделением (FDD) LTE должны быть повторно использованы, максимум два бита информации могут быть посланы обратно в базовую радиостанцию или eNodeB с использованием формата 1 PUCCH.
Одной возможностью является связать множество битов подтверждения приема в одно сообщение. Например, ACK могло бы быть сигнализировано только, если транспортные блоки на всех составляющих несущих правильно приняты в данном подкадре, иначе подается обратно NACK. Недостатком этого является то, что некоторые транспортные блоки могли бы быть повторно переданы, даже если они были приняты правильно, что могло бы уменьшить производительность системы.
Введение формата подтверждения приема гибридного ARQ с множеством битов является альтернативным решением. Однако в случае множества составляющих несущих нисходящей линии связи число битов подтверждения приема в восходящей линии связи может стать достаточно большим. Например, в случае с пятью составляющими несущими, каждая из которых использует MIMO, имеется 5
Figure 00000002
разных комбинаций с учетом того, что также предпочтительно подсчитывается DTX, что требует log
Figure 00000003
11,6 битов. Ситуация может стать еще хуже в дуплексной связи с временным разделением (TDD), где множество подкадров нисходящей линии связи могут требовать подтверждения приема в одном подкадре восходящей линии связи. Например, в конфигурации TDD с 4 подкадрами нисходящей линии связи и 1 подкадром восходящей линии связи на каждые 5 мс имеются 5
Figure 00000004
комбинаций, что соответствует более чем 46 битам информации.
В настоящее время в LTE нет специфицированного формата PUCCH, который может переносить такое большое число битов. US 2008/247477 A1 относится к системе, в которой выборки в символе DFTS-OFDM масштабируются с помощью масштабирующего коэффициента
Сущность изобретения
Задачей вариантов осуществления, описанных в настоящем документе, является предоставить механизм, который дает возможность высокой производительности передачи в сети радиосвязи эффективным способом. Задачу выполняют с помощью способов и устройств по пунктам 1, 7, 8, 14 и 15 формулы изобретения.
В соответствии с первым аспектом вариантов осуществления, описанных в настоящем документе, задачу выполняют с помощью способа в пользовательском оборудовании для передачи управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал в базовую радиостанцию. Радиоканал выполнен для переноса управляющей информации восходящей линии связи, а пользовательское оборудование и базовая радиостанция содержатся в сети радиосвязи. Управляющая информация восходящей линии связи содержится в блоке битов.
Пользовательское оборудование отображает блок битов в последовательность комплексных оцененных символов модуляции. Пользовательское оборудование также блочно расширяет последовательность комплексных оцененных символов модуляции посредством символов расширения дискретного преобразования Фурье - мультиплексирования с ортогональным частотным разделением каналов (DFTS-OFDM). Это выполняется с помощью применения расширяющей последовательности к последовательности комплексных оцененных символов модуляции для того, чтобы получить блочно расширенную последовательность комплексных оцененных символов модуляции. Пользовательское оборудование дополнительно преобразует блочно расширенную последовательность комплексных оцененных символов модуляции для каждого символа DFTS-OFDM. Это выполняется с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, к блочно расширенной последовательности комплексных оцененных символов модуляции. Пользовательское оборудование также передает блочно расширенную последовательность комплексных оцененных символов модуляции, которая была преобразована, через радиоканал в базовую радиостанцию.
В соответствии с другим аспектом вариантов осуществления, описанных в настоящем документе, задачу выполняют с помощью пользовательского оборудования для передачи управляющей информации восходящей линии связи во временных в подкадре через радиоканал в базовую радиостанцию. Радиоканал выполнен для переноса управляющей информации восходящей линии связи, а управляющая информация восходящей линии связи содержится в блоке битов.
Пользовательское оборудование содержит схему отображения, сконфигурированную для отображения блока битов в последовательность комплексных оцененных символов модуляции. Также пользовательское оборудование содержит схему блочного расширения, сконфигурированную для блочного расширения последовательности комплексных оцененных символов модуляции, чтобы получить блочно расширенную последовательность комплексных оцененных символов модуляции. Кроме того, пользовательское оборудование содержит схему преобразования, сконфигурированную для преобразования блочно расширенной последовательности комплексных оцененных символов модуляции для каждого символа DFTS-OFDM. Это выполняется с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, в блочно расширенную последовательность комплексных оцененных символов модуляции. Пользовательское оборудование также содержит передатчик, сконфигурированный для передачи блочно расширенной последовательности комплексных оцененных символов модуляции, которая была преобразована, через радиоканал в базовую радиостанцию.
В соответствии с другим аспектом вариантов осуществления, описанных в настоящем документе, задачу выполняют с помощью способа в базовой радиостанции для приема управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал из пользовательского оборудования. Радиоканал выполнен для переноса управляющей информации восходящей линии связи, а управляющая информация восходящей линии связи содержится в блоке битов. Пользовательское оборудование и базовая радиостанция содержатся в сети радиосвязи.
Базовая радиостанция принимает последовательность комплексных оцененных символов модуляции. Базовая радиостанция также демодулирует с OFDM последовательность комплексных оцененных символов модуляции. Базовая радиостанция также преобразует, для каждого символа DFTS-OFDM, последовательность комплексных оцененных символов модуляции, которая была демодулирована с OFDM, с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, в демодулированную с OFDM последовательность комплексных оцененных символов модуляции.
Базовая радиостанция дополнительно сжимает последовательность комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, с помощью сжимающей последовательности. Базовая радиостанция также отображает сжатую последовательность комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, в блок битов.
В соответствии с другим аспектом вариантов осуществления, описанных в настоящем документе, задачу выполняют с помощью базовой радиостанции для приема управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал из пользовательского оборудования. Радиоканал выполнен для переноса управляющей информации восходящей линии связи, а управляющая информация восходящей линии связи содержится в блоке битов. Базовая радиостанция содержит приемник, сконфигурированный для приема последовательности комплексных оцененных символов модуляции. Базовая радиостанция также содержит схему демодуляции с OFDM, сконфигурированную для демодуляции с OFDM последовательности комплексных оцененных символов модуляции. Базовая радиостанция дополнительно содержит схему преобразования, сконфигурированную для преобразования, для каждого символа DFTS-OFDM, последовательности комплексных оцененных символов модуляции DFTS-OFDM, которая была демодулирована с OFDM, с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, в демодулированную с OFDM последовательность комплексных оцененных символов модуляции. Базовая радиостанция также содержит схему блочного сжатия, сконфигурированную для блочного сжатия последовательности комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, с помощью сжимающей последовательности. Кроме того, базовая радиостанция содержит схему отображения, сконфигурированную для отображения блочно сжатой последовательности комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, в блок битов.
Таким образом, уменьшаются помехи между сотами, поскольку матрица или матрицы преобразует блочно расширенную последовательность комплексных оцененных символов модуляции для каждого символа DFTS-OFDM и, тем самым, увеличивает подавление помех.
В соответствии с другим аспектом вариантов осуществления, описанных в настоящем документе, задачу выполняют с помощью способа в терминале для передачи управляющей информации восходящей линии связи в слоте в подкадре через канал в базовую станцию в беспроводной системе связи. Управляющая информация восходящей линии связи содержится в кодовом слове. Терминал отображает кодовое слово в символы модуляции. Терминал блочно расширяет символы модуляции посредством символов DFTS-OFDM с помощью повторения символов модуляции для каждого символа DFTS-OFDM и применения блочно расширяющей последовательности весовых коэффициентов к повторенным символам модуляции, чтобы получить соответственную взвешенную копию символов модуляции для каждого символа DFTS-OFDM. Затем терминал преобразует, для каждого символа DFTS-OFDM, соответственную взвешенную копию символов модуляции с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, в соответственную взвешенную копию символов модуляции. Затем терминал передает, на каждом или в каждом символе DFTS-OFDM, соответственную взвешенную копию символов модуляции, которые были преобразованы, в базовую станцию.
В некоторых вариантах осуществления, описанных в настоящем документе, предоставляется формат преобразования, в котором кодовое слово или блок битов, соответствующие управляющей информации восходящей линии связи из всех сконфигурированных или активированных составляющих несущих одного пользователя, отображаются в символы модуляции, такие как последовательность комплексных оцененных символов модуляции, и блочно расширяются посредством символов DFTS-OFDM с использованием расширяющей последовательности. Последовательность символов в одном символе DFTS-OFDM затем преобразуется и передается в одном символе DFTS-OFDM. Мультиплексирование пользователей обеспечивается с помощью блочного расширения, т.е. один и тот же сигнал или последовательность символов расширяют посредством всех символов DFTS-OFDM в одном слоте или подкадре, а преобразование для каждого символа DFTS-OFDM уменьшает помехи между сотами.
Краткое описание чертежей
Варианты осуществления теперь будут описаны более подробно в связи с раскрытыми чертежами, на которых:
фиг.1 - блок-схема, изображающая ресурсы в частотно-временной сетке,
фиг.2 - блок-схема, изображающая структуру радиокадра временной области LTE,
фиг.3 - блок-схема, изображающая символы, распределенные через подкадр нисходящей линии связи,
фиг.4 - блок-схема, изображающая передачу управляющей сигнализации L1/L2 на PUCCH,
фиг.5 - таблица, определяющая комбинации информации HARQ,
фиг.6 - блок-схема формата 1 PUCCH с обычной длиной циклического префикса,
фиг.7 - блок-схема формата 2 PUCCH с обычной длиной циклического префикса,
фиг.8 - блок-схема, изображающая агрегирование несущих,
фиг.9 - блок-схема, изображающая уровень RLC/MAC и PHY уровень для агрегирования несущих,
фиг.10 - блок-схема, изображающая сеть радиосвязи,
фиг.11 - блок-схема, изображающая процесс в пользовательском оборудовании,
фиг.12 - блок-схема, изображающая процесс в пользовательском оборудовании,
фиг.13 - блок-схема, изображающая процесс в пользовательском оборудовании,
фиг.14 - блок-схема, изображающая процесс в пользовательском оборудовании,
фиг.15 - блок-схема, изображающая процесс в пользовательском оборудовании,
фиг.16 - блок-схема, изображающая процесс в пользовательском оборудовании,
фиг.17 - блок-схема, изображающая процесс в пользовательском оборудовании,
фиг.18 - блок-схема, изображающая процесс в пользовательском оборудовании,
фиг.19 - блок-схема, изображающая процесс в пользовательском оборудовании,
фиг.20 - схематическая блок-схема последовательности этапов процесса в пользовательском оборудовании,
фиг.21 - блок-схема, изображающая пользовательское оборудование,
фиг.22 - схематическая блок-схема последовательности этапов процесса в базовой радиостанции, и
фиг.23 - блок-схема, изображающая базовую радиостанцию.
Подробное описание
Фиг.10 раскрывает схематическую сеть радиосвязи, также упомянутую как беспроводная система связи, в соответствии с технологией радиодоступа, такой как долгосрочное развитие (LTE), усовершенствованное LTE, широкополосный множественный доступ с кодовым разделением каналов (WCDMA) Проекта партнерства 3-го поколения (3GPP), глобальная система мобильной связи/увеличенная скорость передачи данных для развития GSM (GSM/EDGE), всемирное системное взаимодействие для микроволнового доступа (WiMax) и сверхмобильная широкополосная связь (UMB), не говоря о многих других возможных осуществлениях.
Сеть радиосвязи содержит пользовательское оборудование 10, также упомянутое как терминал 10, и базовую радиостанцию 12. Базовая радиостанция 12 обслуживает пользовательское оборудование 10 в соте 14 с помощью предоставления зоны радиопокрытия через географическую область. Базовая радиостанция 12 передает данные в передаче нисходящей линии связи (DL) в пользовательское оборудование 10, а пользовательское оборудование 10 передает данные в передаче восходящей линии связи (UL) в базовую радиостанцию 12. Передача UL может быть эффективно сгенерирована с помощью использования процесса обратного быстрого преобразования Фурье (IFFT) в пользовательском оборудовании 10, а затем демодулирована в базовой радиостанции 12 с помощью использования процесса быстрого преобразования Фурье (FFT).
Здесь следует заметить, что базовая радиостанция также может быть упомянута, например, как узел В, развитый узел В (eNB, eNodeB), базовая станция, базовая приемопередающая станция, базовая станция точки доступа, маршрутизатор базовой станции или любое другое сетевое устройство, которое может связываться с пользовательским оборудованием в соте, обслуживаемой с помощью базовой радиостанции 12, например, в зависимости от использованной технологии радиодоступа и терминологии. Пользовательское оборудование 10 может быть представлено с помощью терминала, например, пользовательского оборудования беспроводной связи, мобильного сотового телефона, персонального цифрового ассистента (PDA), беспроводной платформы, портативного компьютера, компьютера или любого другого вида устройства, которое может связываться беспроводным способом с базовой радиостанцией 12.
Базовая радиостанция 12 передает управляющую информацию о том, какие пользовательские данные передаются, и на каких блоках ресурса передаются данные. Пользовательское оборудование 10 пытается декодировать управляющую информацию и данные и передает отчет в базовую радиостанцию 12 с использованием управляющей сигнализации восходящей линии связи, было ли декодирование данных успешным, причем в этом случае передается подтверждение приема (ACK), или неуспешным, причем в этом случае передается отрицательное подтверждение приема (NACK).
В соответствии с вариантами осуществления, описанными в настоящем документе, пользовательское оборудование 10 выполнено для передачи блока битов, соответствующих управляющей информации восходящей линии связи, в слотах, т.е. временных слотах, в подкадре через канал, т.е. радиоканал, в базовую радиостанцию 12. Блок битов может содержать ACK и/или NACK, закодированные совместно. Канал может быть физическим управляющим каналом восходящей линии связи (PUCCH), который является радиоканалом, выполненным для переноса управляющей информации восходящей линии связи. Блок битов также может быть упомянут как определенное число битов, кодовое слово, закодированные биты, биты информации, последовательность ACK/NACK или подобные.
Пользовательское оборудование 10 отображает блок битов в символы модуляции, т.е. в последовательность комплексных оцененных символов модуляции. Это отображение может быть отображением QPSK, в котором результирующий символ модуляции QPSK является комплексным оцененным, где один из двух битов в каждом символе модуляции представляет реальную часть, также упомянутую как канал Q, символа модуляции. Символы модуляции могут быть упомянуты как комплексные оцененные символы модуляции, символы QPSK, символы BPSK или подобные.
Затем пользовательское оборудование 10 блочно расширяет последовательность комплексных оцененных символов модуляции с помощью расширяющей последовательности, такой как ортогональная последовательность. Например, один и тот же сигнал или блок битов, который отображен в комплексные оцененные символы модуляции, может быть расширен посредством всех символов DFTS-OFDM в множество символов DFTS-OFDM с помощью применения расширяющей последовательности к последовательности комплексных оцененных символов модуляции, представляющих сигнал или блок битов. Блочно расширенная последовательность комплексных оцененных символов модуляции, таким образом, может быть разделена на части или сегменты, причем каждый сегмент или часть блочно расширенной последовательности комплексных оцененных символов модуляции соответствует одному символу DFTS-OFDM или выделен для одного символа DFTS-OFDM, выведенного из множества символов DFTS-OFDM, т.е. между сегментами или частями и символами DFTS-OFDM имеется соответствие один к одному. Символы DFTS-OFDM также упомянуты как символы SC-FDMA. SC-FDMA может быть рассмотрен как обычное OFDM с предварительным кодированием, основанным на DFT.
В соответствии с вариантами осуществления, описанными в настоящем документе, пользовательское оборудование 10 затем преобразует или предварительно кодирует блочно расширенную последовательность комплексных оцененных символов модуляции для каждого символа DFTS-OFDM с помощью матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота. Таким образом, каждый сегмент или часть блочно расширенной последовательности комплексных оцененных символов модуляции, который соответствует символу DFTS-OFDM или выделен для символа DFTS-OFDM, преобразуется отдельно с помощью применения матрицы к этому сегменту или части блочно расширенной последовательности комплексных оцененных символов модуляции. Матрица может быть общей матрицей, которая содержит матрицу DFT, например, матрицу DFT, которая циклически сдвинута, причем величина циклического сдвига изменяется с индексом символа DFTS-OFDM и/или индексом слота. С помощью преобразования блочно расширенной последовательности комплексных оцененных символов модуляции, таким образом, уменьшаются помехи между сотами. Слот содержит несколько символов DFTS-OFDM, т.е. каждый слот связан с множеством матриц, по одной для каждого символа DFTS-OFDM. Индекс слота указывает временной слот, в котором должна быть применена матрица или матрицы. Индекс символа DFTS-OFDM указывает символ DFTS-OFDM и, таким образом, сегмент или часть блочно расширенной последовательности комплексных оцененных символов модуляции, к которой должна быть применена матрица.
Затем пользовательское оборудование 10 передает блочно расширенную последовательность комплексных оцененных символов модуляции, которая была преобразована. Например, пользовательское оборудование 10 может дополнительно модулировать с OFDM и передать каждый преобразованный или предварительно закодированный сегмент или часть блочно расширенной последовательности в течение длительности времени одного символа DFTS-OFDM, т.е. символа DFTS-OFDM, который соответствует соответственному сегменту или части блочно расширенной последовательности комплексных оцененных символов модуляции. Этот процесс может называться преобразованной/предварительно кодированной OFDM-модуляцией.
В варианте этого варианта осуществления последовательность комплексных оцененных символов модуляции может быть разделена на множество частей, а каждая часть последовательности комплексных оцененных символов модуляции может быть передана во временном слоте.
Некоторые варианты осуществления, описанные в настоящем документе, могут относиться к передаче ACK/NACK на PUCCH в сети радиосвязи с использованием агрегирования множества сот, т.е. составляющих несущих, чтобы обеспечить поддержку полос пропускания, больших чем одна составляющая несущая, в то же время поддерживая обратную совместимость с предыдущими технологиями. В такой сети радиосвязи предоставлен формат PUCCH, в соответствии с вариантами осуществления, описанными в настоящем документе, который может переносить большее число битов, чем предоставлено с помощью существующих форматов PUCCH, таким образом, чтобы дать возможность сигнализации ACK/NACK для каждой из множества составляющих несущих.
Варианты осуществления, описанные в настоящем документе, дают возможность передач PUCCH с высокой полезной нагрузкой, требуемых для такой сигнализации, с помощью предоставления формата передачи блочно расширенного DFTS-OFDM. В соответствии с этим форматом, всю информацию ACK/NACK из всех составляющих несущих одного пользовательского оборудования совместно кодируют в кодовом слове. Это кодовое слово, соответствующее блоку битов управляющей информации восходящей линии связи, в некоторых вариантах осуществления затем может быть скремблировано для того, чтобы уменьшить помехи между сотами, и отображено в символы, такие как последовательность комплексных оцененных символов модуляции. Мультиплексирование пользовательских оборудований обеспечивается с помощью блочного расширения, т.е. один и тот же сигнал в виде кодового слова, возможно, скремблированный с помощью другой последовательности, или в виде символов, если кодовое слово отображено в символы до блочного расширения, расширяют или повторяют посредством символов DFTS-OFDM слота или подкадра, но символы взвешивают с помощью другого скалярного или весового коэффициента из расширяющей последовательности для каждого символа DFTS-OFDM с подкадре или временном слоте. Последовательность символов каждого символа DFTS-OFDM затем преобразуют или предварительно кодируют с помощью матрицы, например, модифицированной матрицы предварительного кодирования, и передают в течение длительности времени символа DFTS-OFDM. Для того чтобы уменьшить помехи, дополнительно еще модифицируют матрицу модифицированного модулятора DFTS-OFDM псевдослучайным способом, например, с помощью перестановки элементов матрицы. Преобразование или предварительное кодирование может быть модифицированной модуляцией с DFT-OFDM, где операция DFT объединена с операцией циклического сдвига или операцией скремблирования.
Варианты осуществления, описанные в настоящем документе, предоставляют формат, упомянутый как формат 3 PUCCH, который обеспечивает гибкость в том, что некоторые решения могут быть приспособлены к требуемой увеличивающейся полезной нагрузке управляющей информации восходящей линии связи. Он также вводит средства для того, чтобы улучшить подавление помех между сотами. Этими средствами являются скремблирование с помощью кода скремблирования, выбор матрицы или циклический сдвиг элементов матрицы с помощью шаблона циклического сдвига, или комбинация этого. Выбор кода скремблирования и/или шаблона циклического сдвига может зависеть от ID соты и/или символа DFTS-OFDM/слота/подкадра/номера радиокадра случайным образом, чтобы выполнить рандомизацию помех между сотами. Кроме того, формат или структура допускает компромисс полезной нагрузки и/или выигрыша кодирования и/или подавления помех между сотами относительно пропускной способности мультиплексирования. Низкая скорость кода означает множество закодированных битов относительно битов информации и, если закодированные биты скремблированы, то чем длиннее скремблированная последовательность, тем лучше подавление помех между сотами. Длина расширяющей последовательности определяет пропускную способность мультиплексирования.
Фиг.11 вместе с фиг.12 изображает один вариант осуществления процесса в пользовательском оборудовании 10 для блочного расширения последовательности комплексных оцененных символов модуляции. Фиг.11 изображает то, как последовательность ACK/NACK а, которая является примером блоков битов, соответствующих управляющей информации восходящей линии связи, передается в одном символе DFTS-OFDM. Последовательность а представляет ACK/NACK из всех агрегированных составляющих несущих. В качестве альтернативы отдельные биты также могут представлять логическое соединение И отдельных битов ACK/NACK. Эта последовательность а может не только представлять ACK/NACK, но также могут быть закодированы состояния прерывистой передачи (DTX), например, если для определенных составляющих несущих не принято назначение планирования.
На первом этапе последовательность а может быть закодирована в модуле 111 кодирования с коррекцией ошибок, чтобы сделать ее более надежной по отношению к ошибкам передачи. Используемая схема кодирования с коррекцией ошибок может быть блочными кодами, сверточными кодами и т.д. Модуль 111 кодирования с коррекцией ошибок, возможно, также может содержать функциональное средство перемежителя, располагающее блок битов таким образом, что ошибки могут случаться более равномерно распределенным образом, чтобы увеличить производительность.
Для того чтобы выполнить рандомизацию помех соседних сот, скремблирование, характерное для соты, с кодом с может быть применено в модуле скремблирования, что обеспечивает в результате скремблированную последовательность, т.е. скремблированный блок битов. Скремблированная последовательность затем отображается в символы модуляции с использованием QPSK, например, в модуле 112 отображения символов, что дает в результате последовательность комплексных оцененных символов модуляции x, и модулируется и передается с помощью модулятора 113 DFTS-OFDM, что дает в результате последовательность v символов для передачи. Последовательность v является цифровым сигналом, таким образом, он может быть подан в цифро-аналоговый преобразователь, модулирован в радиочастоту, усилен, подан в антенну, а затем передан.
Модулятор 113 DFTS-OFDM является модифицированным модулятором DFTS-OFDM, который содержит матрицу G 114, а также может содержать модуль 115 IFFT и генератор 116 циклического префикса. Таким образом, последовательность v передают через символ DFTS-OFDM или в течение длительности символа DFTS-OFDM. Однако чтобы обеспечить возможность мультиплексирования разных пользователей или пользовательских оборудований, блок битов должен быть передан через несколько символов DFTS-OFDM в базовую радиостанцию 12. Матрица G 114 содержит элементы матрицы, и матрица может соответствовать операции DFT вместе с операцией циклического сдвига строк или столбцов элементов матрицы или может соответствовать операции DFT вместе с операцией скремблирования элементов матрицы.
Например, модуль 112 отображения символов отображает блок битов в последовательность комплексных оцененных символов модуляции, х. Блочно расширенную последовательность последовательности комплексных оцененных символов модуляции
Figure 00000005
получают после блочного расширения, где
Figure 00000006
- расширяющая последовательность скалярных или весовых коэффициентов, причем эта расширяющая последовательность в некоторых вариантах осуществления может содержать ортогональную последовательность. Затем выполняют модифицированную модуляцию DFTS-OFDM отдельно для каждой взвешенной копии или экземпляра символов модуляции
Figure 00000007
. Передачу также выполняют отдельно, например, выполняют OFDM (предварительно закодированный
Figure 00000008
, OFDM (предварительно закодированный
Figure 00000009
и т.д. Таким образом, предварительное кодирование и передача могут быть выполнены таким образом, что одну взвешенную копию или экземпляр символов модуляции
Figure 00000010
предварительно кодируют и передают в каждом символе DFTS-OFDM для
Figure 00000011
, где
Figure 00000012
- число символов DFTS-OFDM, через которые символы модуляции блочно расширяют. Расширяющая последовательность, например ортогональная последовательность, обеспечивает разделение между пользовательскими оборудованиями и более конкретно среди передач восходящей линии связи, выполненных с помощью разных пользовательских оборудований.
Также следует понимать, что, если применяют скачкообразную перестройку частоты, вышеизложенные решения применяются к подкадру с соответствующим образом приспособленными параметрами. Число доступных символов DFTS-OFDM могло бы быть в этом случае 12 при допущении, что 2 символа DFTS-OFDM зарезервированы для опорных сигналов.
Если задействуется скачкообразная перестройка частоты, вышеизложенные решения могут быть применены к каждому слоту с разными кодами скремблирования и расширяющими последовательностями. В этом случае одинаковая полезная нагрузка была бы передана в обоих слотах. В качестве альтернативы скремблированная последовательность или символы модуляции, т.е. последовательность комплексных оцененных символов модуляции, разделяется на две части, и первую часть передают в первом слоте, а вторую часть - во втором слоте. В принципе, даже блок битов а мог бы быть разделен, и первая часть могла бы быть передана в первом слоте, а вторая часть - во втором слоте. Однако это является менее предпочтительным, поскольку в этом случае блок битов, обработанный и переданный в каждом слоте, является меньшим, например, половины размера до разделения, что дает в результате уменьшенный выигрыш кодирования.
Фиг.12 изображает вариант осуществления, в котором сигнал или блок битов блочно расширяют. Цепь обработки содержит модуль 111 кодирования с коррекцией ошибок. В простейшем случае один и тот же сигнал или блок битов блочно расширяют, т.е. повторяют несколько раз, и отображают в символы модуляции, т.е. последовательность комплексных оцененных символов модуляции, и каждую копию или экземпляр символов модуляции взвешивают с помощью скалярной величины
Figure 00000013
, также упомянутой как весовой коэффициент, из расширяющей последовательности. Следует заметить, что отображение может иметь место до блочного расширения. Если имеются
Figure 00000014
символов DFTS-OFDM, расширяющая последовательность имеет длину
Figure 00000015
, т.е.
Figure 00000016
,
Figure 00000017
. Затем могут быть составлены
Figure 00000018
ортогональных последовательностей расширения и, таким образом, могут быть мультиплексированы
Figure 00000019
пользователей. Таким образом, эти
Figure 00000020
ортогональных последовательностей используются в блочном расширении символов модуляции, т.е. последовательности комплексных оцененных символов модуляции. Это изображено на фиг.12, где каждый блок, обозначенный как Mod1-ModK, содержит модули 112-116, в соответствии с фиг.11. Эквивалентные реализации обеспечивают возможность применения весового коэффициента в других позициях, в любом месте после модуля 112 отображения символов, как проиллюстрировано на фиг.12, где весовой коэффициент
Figure 00000021
применен к соответственной v последовательности после модулятора 113 DFTS-OFDM соответственной цепи обработки для символов DFTS-OFDM
Figure 00000022
. Кроме того, это эквивалентно тому, чтобы отобразить первый блок битов в символы модуляции, например, комплексные оцененные символы модуляции, а затем повторить символы модуляции и повторить блок битов, а затем отобразить каждый повторенный блок битов в символы модуляции.
В альтернативной установке сигнал или блок битов, переданный в
Figure 00000023
символах DFTS-OFDM, не является копией, если игнорируется масштабирование символов с помощью
Figure 00000024
, но каждый блок Mod1-ModK на фиг.12 действительно выполняет скремблирование с помощью разной последовательности скремблирования. Иначе фиг.11 по-прежнему является справедливой. В этом случае соответственная последовательность скремблирования может вдобавок к зависимости от ID соты зависеть также от DFTS-OFDM/слота/подкадра/номера радиокадра. Скремблирование и особенно то, что последовательность скремблирования может зависеть от ID соты и/или DFTS-OFDM/слота/подкадра/номера радиокадра, обеспечивает лучшую рандомизацию и уменьшение помех между сотами, чем передачи PUSCH DFTS-OFDM предшествующего уровня техники.
Например, при допущении, что имеется один опорный символ, также обозначаемый как опорный сигнал, на каждый слот,
Figure 00000025
могло бы быть равно шести при допущении обычного циклического префикса, в LTE. В качестве альтернативы, если не используют скачкообразную перестройку частоты,
Figure 00000026
могло бы быть равно 12 при допущении, что имеется один опорный сигнал на каждый слот. Точная конструкция опорных сигналов дополнительно не обсуждена.
В зависимости от числа выделенных блоков ресурса в модуляторе 113 DFTS-OFDM можно управлять числом закодированных битов и, следовательно, скоростью кода и/или размером полезной нагрузки, длиной последовательности ACK/NACK или блоком битов а. Например, если выделен только один блок ресурсов в частотной области, 24 закодированных бита являются доступными для каждого символа DFTS-OFDM, при допущении символов QPSK. Если это является недостаточным, число назначенных блоков ресурса может быть увеличено. Больше закодированных битов также предусматриваются для более длинного кода скремблирования с, что дает в результате более высокий выигрыш скремблирования.
Стоит упомянуть, что предложенная схема обеспечивает возможность мультиплексирования пользователей с разными выделениями блоков ресурса. На фиг.13 предоставлен пример, в котором мультиплексированы три пользовательских оборудования. Первое пользовательское оборудование 10 требует более высокой полезной нагрузки ACK/NACK и поэтому занимает два блока ресурса. Для остальных двух пользовательских оборудований является достаточным один блок ресурса, и они мультиплексируются с мультиплексированием с частотным разделением каналов (FDM). Поскольку пользовательские оборудования мультиплексируются с FDM, пользовательские оборудования могут повторно использовать одну и ту же расширяющую последовательность, но конечно они также могут использовать другие расширяющие последовательности. В этом примере коэффициент расширения равен 4. Пользовательское оборудование 10, назначающее два блока ресурса, использует код расширения [1 -1 1 -1], что дает в результате блочно расширенные последовательности комплексных оцененных символов модуляции через символы DFTS-OFDM, обозначенные как 121-124. Остальные пользовательские оборудования используют код расширения [1 1 1 1], что дает в результате блочно расширенные последовательности комплексных оцененных символов модуляции через символы DFTS-OFDM, обозначенные как 131-134 для второго пользовательского оборудования, и как 135-138 для третьего пользовательского оборудования.
Фиг.14 - блок-схема, в соответствии с вариантом осуществления, изображающая цепь обработки для передачи управляющей информации восходящей линии связи для одного символа DFTS-OFDM, такую как передатчик в пользовательском оборудовании 10. Пользовательское оборудование 10 может содержать модуль 111 кодирования с коррекцией ошибок, в котором блок битов а может быть закодирован, чтобы сделать его более надежным по отношению к ошибкам передачи. Для того чтобы выполнить рандомизацию помех соседних сот, может быть применено скремблирование, характерное для соты, с помощью кода с, что дает в результате скремблированную последовательность. Затем скремблированная последовательность может быть отображена в символы модуляции, т.е. последовательность комплексных оцененных символов модуляции, в модуле 112 отображения символов, которую затем блочно расширяют с помощью расширяющей последовательности (не изображена). Пользовательское оборудование 10 преобразует, например предварительно кодирует, для каждого символа DFTS-OFDM, блочно расширенную последовательность комплексных оцененных символов модуляции в модуляторе 113 DFTS-OFDM с помощью матрицы G 114, которая зависит от индекса символа DFTS-OFDM и/или индекса слота. В проиллюстрированном примере матрица G 114 соответствует операции 141 дискретного преобразования Фурье (DFT) вместе с операцией 142 циклического сдвига строк или столбцов. Пользовательское оборудование 10 также может содержать модуль 114 IFFT и генератор 116 циклического префикса. Таким образом, блочно расширенную последовательность комплексных оцененных символов модуляции модулируют и передают через символ DFTS-OFDM или в течение длительности одного символа DFTS-OFDM. Однако чтобы дать возможность мультиплексирования разных пользователей, закодированный блок битов с коррекцией ошибок должен быть передан через несколько символов DFTS-OFDM в базовую радиостанцию 12.
Вариантом вышеописанного варианта осуществления является, когда скремблированную последовательность отображают не в один символ DFTS-OFDM, а в несколько символов DFTS-OFDM. Фиг.15 изображает пример, в котором скремблированный блок битов s передают через два символа DFTS-OFDM или в течение длительности времени двух символов DFTS-OFDM. В этом примере скремблированную последовательность длиной 48 битов или блок битов s отображают в 24=2×12 символов QPSK и передают в двух символах DFTS-OFDM при допущении, что выделен один блок ресурса, и каждый символ DFTS-OFDM переносит 12 символов. Блок битов а может быть обработан в модуле 151 кодирования с коррекцией ошибок, который может соответствовать модулю 111 кодирования с коррекцией ошибок на фиг.11. Для того чтобы выполнить рандомизацию помех соседних сот, может быть применено скремблирование, характерное для соты, с помощью кода с в модуле 152 скремблирования битов, что дает в результате скремблированную последовательность s, т.е. скремблированный блок битов. Скремблированную последовательность расширяют через два разных символа DFTS-OFDM или разделяют на два разных символа DFTS-OFDM. Затем первую половину s отображают в символы, например, с использованием QPSK, в первом модуле 153 отображения символов и модулируют и передают с помощью первого модифицированного модулятора DFTS-OFDM. Первый модифицированный модулятор DFTS-OFDM содержит первую матрицу G 154 предварительного кодирования, а также может содержать первый модуль 155 IFFT и первый генератор 156 циклического префикса.
Затем вторую половину s отображают в символы, например, в комплексные оцененные символы модуляции, например, с использованием QPSK, во втором модуле 153', и модулируют и передают с помощью второго модифицированного модулятора DFTS-OFDM. Второй модифицированный модулятор 154' DFTS-OFDM содержит второй модуль 155' IFFT и второй генератор 156' циклического префикса.
Таким образом, первую половину блока битов передают через первый символ DFTS-OFDM, а вторую половину блока битов передают через второй символ DFTS-OFDM. Однако чтобы обеспечить возможность мультиплексирования разных пользователей, закодированный скремблированный блок битов s с коррекцией ошибок должен быть передан через несколько символов DFTS-OFDM в базовую радиостанцию 12.
Вариант осуществления соответствующим образом модифицированного процесса блочного расширения изображен на фиг.16. В этом примере изображено блочное расширение в случае, когда скремблированный блок битов s передают через два символа DFTS-OFDM. Каждый блок «Mod» содержит устройство, изображенное на фиг.15, исключая функциональное средство кодирования с коррекцией ошибок. Этот вариант дает возможность более высоких полезных нагрузок и выигрыша скремблирования по сравнению с основным случаем на фиг.11. Однако ценой этому является уменьшенная возможность мультиплексирования. Если допустить, что
Figure 00000027
символов DFTS-OFDM являются доступными для передачи, и
Figure 00000028
из них используются для одного экземпляра скремблированного блока битов, длина кода расширения или расширяющей последовательности и, следовательно, возможность мультиплексирования уменьшается до
Figure 00000029
. В этом примере возможность мультиплексирования уменьшена на коэффициент, равный 2, по сравнению со случаем, когда скремблированный блок битов s модулируют и передают через один символ DFTS-OFDM. Блок битов, соответствующий информации управляющей линии связи, такой как ACK/NACK, обрабатывают в модуле 161 кодирования с коррекцией ошибок, который может соответствовать модулю 111 кодирования с коррекцией ошибок на фиг.11. Определенное число модулей Mod1-ModK/2 на фиг.16 выполняет скремблирование с помощью разной последовательности скремблирования, где весовой коэффициент
Figure 00000030
применяют к соответственным блочно расширенным символам модуляции, т.е. соответственной блочно расширенной последовательности комплексных оцененных символов модуляции, после модулей Mod1-ModK/2.
В другом варианте осуществления, в котором последовательность операции скремблирования и отображения символов, которую выполняют, изменены, в соответствии с фиг.17. В данном варианте осуществления скремблирование применяют на уровне символов, а не на уровне битов, что означает, что отображение символов выполняют до скремблирования символов. Код скремблирования
Figure 00000031
может зависеть от ID соты, а также от индекса символа DFTS-OFDM/слота/подкадра/номера радиокадра. В данном варианте осуществления пользовательское оборудование 10 может содержать модуль 171 кодирования с коррекцией ошибок, в котором последовательность или блок битов а может быть закодирована, чтобы сделать ее более надежной по отношению к ошибкам передачи. Модуль 171 кодирования с коррекцией ошибок может соответствовать модулю 111 кодирования с коррекцией ошибок на фиг.11. Блок битов затем отображают в символы модуляции, т.е. последовательность комплексных оцененных символов модуляции в модуле 172 отображения символов. Для того чтобы выполнить рандомизацию помех соседних сот, скремблирование, характерное для соты, с помощью кода
Figure 00000031
может быть применено к символам в модуле 173 скремблирования символов, что дает в результате скремблированную последовательность s'. Затем скремблированную последовательность преобразуют с помощью дискретного преобразования Фурье в модуле 174 DFT. Модуль 173 скремблирования символов и модуль 174 DFT могут содержаться в матрице G 114. Таким образом, пользовательское оборудование 10 затем преобразует, например предварительно кодирует, для каждого символа DFTS-OFDM, блочно расширенные символы модуляции, т.е. блочно расширенную последовательность комплексных оцененных символов модуляции, с помощью матрицы G 114, которая зависит от индекса символа DFTS-OFDM и/или индекса слота. Пользовательское оборудование 10 также может содержать модуль 175 IFFT и генератор 176 циклического префикса. Таким образом, блочно расширенные символы модуляции, т.е. последовательность комплексных оцененных символов модуляции, передают через символ DFTS-OFDM или в течение длительности одного символа DFTS-OFDM. Однако чтобы дать возможность мультиплексирования разных пользователей, блок битов должен быть передан через несколько символов DFTS-OFDM в базовую радиостанцию 12.
В некоторых вариантах осуществления операция скремблирования математически может быть описана с помощью умножения с помощью диагональной матрицы С, диагональные элементы которой заменены элементами кода скремблирования
Figure 00000031
, причем
Figure 00000031
- последовательность скремблирования на символьном уровне. Следующая операция DFT может быть описана с помощью матрицы DFT F. Используя это замечание, для этих проиллюстрированных примеров объединенная операция может быть выражена с помощью матрицы G=FC. Операция скремблирования и DFT может быть выполнена в матрице G. В этом случае блочное расширение выполняют до операции скремблирования.
На фиг.18 раскрыта блок-схема вариантов осуществлений, описанных в настоящем документе. Пользовательское оборудование 10, в качестве альтернативы может содержать модуль 181 кодирования с коррекцией ошибок, причем последовательность или блок битов а может быть закодирована таким образом, чтобы сделать ее более надежной по отношению к ошибкам передачи. Модуль 181 кодирования с коррекцией ошибок может соответствовать модулю 111 кодирования с коррекцией ошибок на фиг.11. Для того чтобы выполнить рандомизацию помех соседних сот, скремблирование, характерное для соты, с помощью кода с может быть применено, возможно, к закодированному блоку битов с коррекцией ошибок в модуле 182 скремблирования битов. Затем скремблированный блок битов s отображают в последовательность комплексных оцененных символов модуляции в модуле 183 отображения символов. Символы модуляции блочно расширяют с помощью расширяющей последовательности (не изображена). Затем пользовательское оборудование 10 преобразует, например предварительно кодирует, для каждого символа DFTS-OFDM, блочно расширенную последовательность комплексных оцененных символов модуляции с помощью матрицы G 114, которая зависит от индекса символа DFTS-OFDM и/или индекса слота. Пользовательское оборудование 10 также может содержать модуль 185 IFFT и генератор 186 циклического префикса. Блочно расширенные символы модуляции, т.е. блочно расширенная последовательность комплексных оцененных символов модуляции, модулируются и передаются через символ DFTS-OFDM или в течение длительности одного символа DFTS-OFDM. Однако чтобы дать возможность мультиплексирования пользователей, скремблированный блок битов s должен быть передан через несколько символов DFTS-OFDM в базовую радиостанцию 12.
Матрица G 114 в модуляторе DFTS-OFDM может изменяться с ID соты и/или индексом символа DFTS-OFDM/слотом/подкадром/номером радиокадра из-за зависимости от кода скремблирования.
Матрица G может быть произведением диагональной матрицы и матрицы DFT. Однако вместо произведения можно допустить обычную матрицу G. Чтобы выполнить рандомизацию помех, матрица G может зависеть от ID соты и/или индекса символа DFTS-OFDM/слота/подкадра/номера радиокадра. Для того чтобы смочь декодировать переданный сигнал управляющей информации восходящей линии связи в приемнике, минимальным требованием к G является то, что существует ее инверсия.
Может быть сконструирован более простой приемник, если матрица G является ортогональной, поскольку в этом случае ее инверсия является просто эрмитовой транспозицией матрицы G. В зависимости от применения низкой флуктуации огибающей переданного сигнала управляющей информации восходящей линии связи может представлять интерес малая кубическая метрика или отношение максимальной к средней мощности. В этом случае комбинация матрицы G и последующей операции IFFT дала бы в результате сигнал с малой кубической метрикой.
Одной такой матрицей может быть матрица DFT, строки или столбцы которой циклически сдвинуты, например, при допущении, что имеется М строк, строка 1 становится строкой n, строка 2 становится строкой (n+1) mod M и т.д. Эта операция дает в результате циклический сдвиг поднесущих или отображенных комплексных оцененных символов модуляции, см. фиг.14 для иллюстрации. Величина циклического сдвига или шаблон циклического сдвига может зависеть от ID соты и/или индекса символа DFTS-OFDM/слота/подкадра/номера радиокадра. Циклическое сдвигание поднесущих или комплексных оцененных символов модуляции, которое зависит от ID соты или также от индекса символа DFTS-OFDM/слота/подкадра/номера радиокадра, выполняет рандомизацию помех между сотами и уменьшает помехи между сотами. Это улучшает уменьшение помех между сотами по сравнению с передачами DFTS-OFDM предшествующего уровня техники. В некоторых вариантах осуществления матрица DFT может быть произведением матрицы DFT и диагональной матрицы скремблирования.
Общая перестановка строк и столбцов также является возможной, однако в этом случае увеличивается кубическая метрика.
Способы, обсужденные в настоящем документе, обеспечивают возможность, например, передач PUCCH с высокой полезной нагрузкой в некоторых вариантах осуществления. Кроме того, эти способы также обеспечивают гибкость для того, чтобы приспособить решение к требуемой полезной нагрузке. Эти способы также являются полезными в том, что они вводят средства для того, чтобы уменьшить помехи между сотами. Этими средствами являются либо скремблирование с помощью кода скремблирования, выбор матрицы G и/или циклическое сдвигание элементов матрицы с шаблоном циклического сдвига. Выбор кода скремблирования с или шаблона циклического сдвига может зависеть от ID соты и/или индекса символа DFTS-OFDM/слота/подкадра/номера радиокадра. Кроме того, варианты осуществления, описанные в настоящем документе, обеспечивают возможность изменения структуры формата PUCCH для того, чтобы осуществить компромисс полезной нагрузки и/или выигрыша кодирования и/или подавления помех между сотами относительно пропускной способности мультиплексирования.
Фиг.19 - схематическая блок-схема, изображающая вариант осуществления процесса передачи в пользовательском оборудовании 10. Блок битов, соответствующий управляющей информации восходящей линии связи, должен быть передан через радиоканал в базовую радиостанцию 12. Например, определенное число битов обратной связи HARQ может быть определено с помощью определенного числа сконфигурированных сот и режима передачи, например, составляющей несущей 1 (СС1), СС3: MIMO, СС2: не MIMO. Блок битов может быть закодирован с коррекцией ошибок в модуле 191 с упреждающей коррекцией ошибок (FEC). Кроме того, закодированный с коррекцией ошибок блок битов затем может быть скремблирован в модуле 192 скремблирования битов, который может соответствовать модулю 182 скремблирования битов на фиг.18. Пользовательское оборудование 10 дополнительно содержит определенное число модулей блока Mod0-Mod4. Каждый модуль блока содержит модуль отображения бита в символ, в котором блок битов отображается в последовательность комплексных оцененных символов модуляции. Кроме того, каждый модуль блока Mod0-Mod4 содержит модуль блочного расширения, сконфигурированный для того, чтобы вместе блочно расширять последовательность комплексных оцененных символов модуляции с помощью расширяющей последовательности ос1-ос4, например, ортогонально покрывать, чтобы мультиплексировать пользовательские оборудования. В каждом модуле блока блочное расширение является просто умножением на oci, где i=0,…,4. Модули блока Mod0-Mod4 вместе блочно расширяют последовательность комплексных оцененных символов модуляции с помощью [oc0, oc1, …, oc4]. Также блочно расширенную последовательность комплексных оцененных символов модуляции преобразуют для каждого символа DFTS-OFDM, т.е. каждый сегмент блочно расширенной последовательности комплексных оцененных символов модуляции преобразуется с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, т.е. изменяется с ними. Это может быть выполнено с помощью первого циклического сдвигания каждого сегмента блочно расширенной последовательности комплексных оцененных символов модуляции, таким образом, выполняется псевдослучайный циклический сдвиг, чтобы выполнить рандомизацию помех между сотами. Затем каждый циклически сдвинутый сегмент обрабатывают, например преобразуют в матрицу DFT. Затем циклически сдвинутый и преобразованный DFT сегмент преобразуют с IFFT, а блочно расширенную последовательность комплексных оцененных символов модуляции, которая была преобразована, передают через символы DFTS-OFDM или в течение длительности символов DFTS-OFDM.
Опорные сигналы (RS) также передают в соответствии с шаблоном в течение длительности символа DFTS-OFDM. Каждый RS преобразуют с IFFT до того, как он передан.
Различные варианты осуществления, описанные в настоящем документе, включают в себя способы кодирования и/или передачи сообщений сигнализации, в соответствии со способами, описанными выше, в усовершенствованном LTE или других беспроводных системах связи. Другие варианты осуществления включают в себя пользовательские оборудования или другие беспроводные узлы, сконфигурированные для выполнения одного или более из этих способов, включая мобильные станции, сконфигурированные для кодирования и/или передачи сообщений сигнализации, в соответствии с этими способами, и беспроводные базовые станции, например e-NodeB, сконфигурированные для приема и/или декодирования сигналов, переданных в соответствии с этими способами сигнализации. Несколько из этих вариантов осуществления могут содержать одну или более схем обработки, исполняющих сохраненные программные инструкции для выполнения способов сигнализации и потоков сигнализации, описанных в настоящем документе; при этом специалисты в данной области техники должны понимать, что эти схемы обработки могут содержать один или более микропроцессоров, микроконтроллеров или тому подобных, выполняющих программные инструкции, сохраненные в одном или более устройств памяти.
Конечно, специалисты в данной области техники должны понимать, что способы изобретения, обсужденные выше, не ограничены системами LTE или устройствами, имеющими физическую конфигурацию, идентичную конфигурации, предложенной выше, а должны понимать, что эти способы могут быть применены к другим телекоммуникационным системам и/или к другим устройствам.
Этапы способа в пользовательском оборудовании 10 для передачи управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал в базовую радиостанцию 12, в соответствии с некоторыми общими вариантами осуществления, теперь будут описаны со ссылкой на блок-схему последовательности этапов, изображенную на фиг.20. Этапы не обязательно должны браться в последовательности, указанной ниже, но могут быть взяты в любой подходящей последовательности. Радиоканал выполнен для переноса управляющей информации восходящей линии связи, а пользовательское оборудование 10 и базовая радиостанция 12 содержатся в сети радиосвязи. Управляющая информация восходящей линии связи содержится в блоке битов. В некоторых вариантах осуществления блок битов соответствует управляющей информации восходящей линии связи и содержит совместно закодированные подтверждения приема и отрицательные подтверждения приема. Радиоканал может быть PUCCH.
Этап 201. В некоторых вариантах осуществления пользовательское оборудование 10 может закодировать с коррекцией ошибок блок битов, как указано с помощью пунктирной линии. Например, блок битов может быть обработан с упреждающей коррекцией ошибок или аналогичным образом.
Этап 202. В некоторых вариантах осуществления пользовательское оборудование 10 может скремблировать блок битов до отображения блока битов в последовательность комплексных оцененных символов модуляции, как указано с помощью пунктирной линии.
Этап 203. Пользовательское оборудование 10 отображает блок битов в последовательность комплексных оцененных символов модуляции.
Этап 204. Пользовательское оборудование блочно расширяет последовательность комплексных оцененных символов модуляции через символы DFTS-OFDM с помощью применения расширяющей последовательности к последовательности комплексных оцененных символов модуляции для того, чтобы получить блочно расширенную последовательность комплексных оцененных символов модуляции.
Этап 205. Пользовательское оборудование преобразует, для каждого символа DFTS-OFDM, блочно расширенную последовательность комплексных оцененных символов модуляции с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, к последовательности комплексных оцененных символов модуляции. В некоторых вариантах осуществления матрица содержит элементы матрицы, и матрица соответствует операции DFT вместе с операцией циклического сдвига строк или столбцов элементов матрицы. В некоторых альтернативных вариантах осуществления матрица, которая содержит элементы матрицы, соответствует операции дискретного преобразования Фурье вместе с операцией скремблирования элементов матрицы.
Этап 206. Пользовательское оборудование 10 в некоторых вариантах осуществления, как указано с помощью пунктирной линии, может дополнительно модулировать с OFDM, для каждого символа DFTS-OFDM, блочно расширенную последовательность комплексных оцененных символов модуляции, которая была преобразована. Например, последовательность может быть преобразована в процессе IFFT, а циклический префикс может быть добавлен в процессе циклического префикса.
Этап 207. Пользовательское оборудование 10 передает блочно расширенную последовательность комплексных оцененных символов модуляции, которая была преобразована, через радиоканал в базовую радиостанцию 12. В некоторых вариантах осуществления передача содержит, чтобы передавать первую часть последовательности комплексных оцененных символов модуляции в первом временном слоте, а вторую часть последовательности комплексных оцененных символов модуляции - во втором временном слоте.
В зависимости от того, применена ли скачкообразная перестройка частоты на границах слотов, могут быть получены другие варианты.
В некоторых вариантах осуществления предоставлен способ в терминале для передачи управляющей информации восходящей линии связи в слоте в подкадре через канал в базовую станцию в беспроводной системе связи. Управляющая информация восходящей линии связи может содержаться в кодовом слове. Терминал отображает кодовое слово в символы модуляции. Затем терминал блочно расширяет символы модуляции посредством символов DFTS-OFDM с помощью повторения символов модуляции для каждого символа DFTS-OFDM и применения блочно расширяющей последовательности весовых коэффициентов к повторенным символам модуляции, причем повторенные символы модуляции включают в себя символы модуляции, в которые отображено кодовое слово, чтобы получить соответственную взвешенную копию символов модуляции для каждого символа DFTS-OFDM. Затем терминал преобразует, в некоторых вариантах осуществления с помощью предварительного кодирования или модуляции DFTS-OFDM, для каждого символа DFTS-OFDM, соответственную взвешенную копию символов модуляции с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, в соответственную взвешенную копию символов модуляции. Затем терминал 10 передает, на каждом или в каждом/в течение каждого символа DFTS-OFDM или в течение длительности символа, соответственную взвешенную копию символов модуляции, которые были преобразованы, в базовую станцию. В альтернативных вариантах осуществления кодовое слово может быть повторено для каждого символа DFTS-OFDM, а затем повторенные кодовые слова, включая кодовое слово, которое повторено, отображают в символы модуляции, т.е. в этих вариантах осуществления этапы повторения и отображения блочного расширения выполняют в обратной последовательности, а за ними следует этап взвешивания.
Канал может быть физическим управляющим каналом восходящей линии связи, а кодовое слово может быть определенным числом битов. Символы модуляции могут быть символами QPSK или символами BPSK. В некоторых вариантах осуществления блочно расширяющая последовательность может быть ортогональной последовательностью. В некоторых вариантах осуществления этап преобразования может содержать циклический сдвиг матрицы, причем матрица может быть матрицей дискретного преобразования Фурье.
Для того чтобы выполнить этапы способа, описанные выше для передачи управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал в базовую станцию 12, пользовательское оборудование 10 содержит устройства, изображенные на фиг.21. Радиоканал может содержать PUCCH или другие управляющие радиоканалы восходящей линии связи, и выполнен для переноса управляющей информации восходящей линии связи. Как указано выше, блок битов может соответствовать управляющей информации восходящей линии связи и содержит совместно закодированные подтверждения приема и отрицательные подтверждения приема.
В некоторых вариантах осуществления пользовательское оборудование 10 может содержать схему 211 кодирования с коррекцией ошибок, сконфигурированную для кодирования с коррекцией ошибок блока битов.
Кроме того, пользовательское оборудование может содержать схему 212 скремблирования, сконфигурированную для скремблирования блока битов до отображения блока битов в последовательность комплексных оцененных символов модуляции.
Пользовательское оборудование 10 содержит схему 213 отображения, сконфигурированную для отображения блока битов в последовательность комплексных оцененных символов модуляции.
Кроме того, пользовательское оборудование 10 содержит схему 214 блочного расширения, сконфигурированную для блочного расширения последовательности комплексных оцененных символов модуляции посредством символов DFTS-OFDM с помощью применения расширяющей последовательности к последовательности комплексных оцененных символов модуляции, тем самым, получая блочно расширенную последовательность комплексных оцененных символов модуляции.
Пользовательское оборудование 10 также содержит схему 215 преобразования, сконфигурированную для преобразования, для каждого символа DFTS-OFDM, блочно расширенной последовательности комплексных оцененных символов модуляции с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, к блочно расширенной последовательностью комплексных оцененных символов модуляции. В некоторых вариантах осуществления матрица может содержать элементы матрицы и соответствовать операции дискретного преобразования Фурье вместе с операцией циклического сдвига строк или столбцов элементов матрицы. Матрица, которая может содержать элементы матрицы, может соответствовать операции дискретного преобразования Фурье вместе с операцией скремблирования элементов матрицы.
Кроме того, пользовательское оборудование 10 содержит передатчик 217, сконфигурированный для передачи блочно расширенной последовательности комплексных оцененных символов модуляции, которая была преобразована, через радиоканал в базовую радиостанцию 12. В некоторых вариантах осуществления передатчик 217 может быть сконфигурирован для передачи первой части последовательности комплексных оцененных символов модуляции в первом временном слоте, а второй части последовательности комплексных оцененных символов модуляции - во втором временном слоте.
В некоторых вариантах осуществления пользовательское оборудование 10 дополнительно содержит модулятор 216 OFDM, который модифицирован или сконфигурирован для модуляции с OFDM, для каждого символа DFTS-OFDM, блочно расширенной последовательности комплексных оцененных символов модуляции, которая была преобразована. Например, каждый сегмент блочно расширенной последовательности комплексных оцененных символов модуляции в пределах символа DFTS-OFDM преобразуют с помощью применения матрицы к сегменту блочно расширенной последовательности комплексных оцененных символов модуляции в схеме 215 преобразования, а затем модулируют с OFDM в модуляторе 216 OFDM и передают в пределах символа DFTS-OFDM. Передатчик 217 может содержаться в модуляторе 216 OFDM.
Варианты осуществления, описанные в настоящем документе, для передачи управляющей информации восходящей линии связи через радиоканал в базовую радиостанцию 12 могут быть осуществлены посредством одного или более процессоров, таких как схема 218 обработки, в пользовательском оборудовании, изображенном на фиг.12, вместе с компьютерным программным кодом для выполнения функций и/или этапов способа вариантов осуществления, описанных в настоящем документе. Программный код, упомянутый выше, также может быть предоставлен как компьютерный программный продукт, например, в виде носителя данных, переносящего компьютерный программный код для выполнения настоящего решения, когда он загружен в пользовательское оборудование 10. Один такой носитель может быть в виде диска CD ROM. Однако это осуществимо с помощью других носителей данных, таких как карта памяти. Кроме того, компьютерный программный код может быть предоставлен как простой программный код в сервере, и может быть загружен в пользовательское оборудование 10.
Пользовательское оборудование 10 может дополнительно содержать память 219, сконфигурированную для того, чтобы использоваться для хранения данных, расширяющей последовательности, матрицы и приложения, чтобы выполнять способ, при их исполнении в пользовательском оборудовании 10 и/или аналогичном устройстве.
Этапы способа в базовой радиостанции 12 для приема управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал из пользовательского оборудования 10, в соответствии с некоторыми общими вариантами осуществления, теперь будут описаны со ссылкой на блок-схему последовательности этапов, изображенную на фиг.22. Этапы не обязательно должны браться в последовательности, указанной ниже, а могут быть взяты в любой подходящей последовательности. Радиоканал выполнен для переноса управляющей информации восходящей линии связи, а пользовательское оборудование 10 и базовая радиостанция 12 содержатся в сети радиосвязи. Управляющая информация восходящей линии связи содержится в блоке битов. В некоторых вариантах осуществления блок битов соответствует управляющей информации восходящей линии связи и содержит совместно закодированные подтверждения приема и отрицательные подтверждения приема. Радиоканал может быть PUCCH.
Этап 221. Базовая радиостанция 12 принимает последовательность комплексных оцененных символов модуляции.
Этап 222. Базовая радиостанция 12 демодулирует с OFDM последовательность комплексных оцененных символов модуляции.
Этап 223. Базовая радиостанция 12 затем преобразует, для каждого символа DFTS-OFDM, демодулированную с OFDM последовательность комплексных оцененных символов модуляции с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, к демодулированной с OFDM последовательности комплексных оцененных символов модуляции. Эта матрица может выполнять/давать в результате обратную операцию к операции матрицы G в пользовательском оборудовании 10. Обратная операция в некоторых вариантах осуществления может содержать операцию обратного дискретного преобразования Фурье, а обратная матрица к матрице G может содержать матрицу обратного дискретного преобразования Фурье.
Этап 224. Базовая радиостанция 12 также блочно сжимает последовательность комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, с помощью сжимающей последовательности, такой как ортогональная последовательность.
Этап 225. Базовая радиостанция 12 отображает сжатую последовательность комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, в блок битов, представляющих управляющую информацию восходящей линии связи.
Таким образом, базовая радиостанция 12 может декодировать принятую управляющую информацию восходящей линии связи.
Способ может быть выполнен с помощью базовой радиостанции 12. Фиг.23 - блок-схема базовой радиостанции 12 для приема управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал из пользовательского оборудования 10. Радиоканал выполнен для переноса управляющей информации восходящей линии связи.
Базовая радиостанция 12 содержит приемник 231, сконфигурированный для приема последовательности комплексных оцененных символов модуляции, и схему 232 демодуляции с OFDM, сконфигурированную для демодуляции с OFDM последовательности комплексных оцененных символов модуляции.
Кроме того, базовая радиостанция 12 содержит схему 233 преобразования, сконфигурированную для преобразования, для каждого символа DFTS-OFDM, демодулированной с OFDM последовательности комплексных оцененных символов модуляции с помощью применения матрицы, которая зависит от индекса символа DFTS-OFDM и/или индекса слота, к демодулированной с OFDM последовательности комплексных оцененных символов модуляции. Эта матрица может выполнять/давать в результате обратную операцию к операции матрицы G в пользовательском оборудовании 10. Обратная операция в некоторых вариантах осуществления может содержать операцию обратного дискретного преобразования Фурье, а обратная матрица к матрице G может содержать матрицу обратного дискретного преобразования Фурье.
Базовая радиостанция 12 также содержит схему 234 блочного сжатия, сконфигурированную для блочного сжатия последовательности комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, с помощью сжимающей последовательности.
Кроме того, базовая радиостанция 12 содержит схему 235 отображения, сконфигурированную для отображения сжатой последовательности комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, в блок битов, представляющих управляющую информацию восходящей линии связи.
Варианты осуществления, описанные в настоящем документе, для приема управляющей информации восходящей линии связи через радиоканал из пользовательского оборудования 10, могут быть осуществлены посредством одного или более процессоров, таких как схема 238 обработки, в базовой радиостанции 12, изображенной на фиг.23, вместе с компьютерным программным кодом для выполнения функций и/или этапов способа вариантов осуществления, описанных в настоящем документе. Программный код, упомянутый выше, также может быть предоставлен как компьютерный программный продукт, например, в виде носителя данных, переносящего компьютерный программный код для выполнения настоящего решения, когда он загружен в базовую радиостанцию 12. Один такой носитель может быть в виде диска CD ROM. Однако это осуществимо с помощью других носителей данных, таких как карта памяти. Кроме того, компьютерный программный код может быть предоставлен как простой программный код в сервере и может быть загружен в базовую радиостанцию 12.
Базовая радиостанция 12 может дополнительно содержать память 239, содержащую одно или более устройств памяти и сконфигурированную для того, чтобы использоваться для хранения данных, расширяющей последовательности, матрицы и приложения, чтобы выполнять способ при их исполнении в базовой радиостанции 12 и/или аналогичном устройстве.
На чертежах и в описании в настоящем документе раскрыты примерные варианты осуществления. Однако многие изменения и модификации могут быть сделаны в этих вариантах осуществления без отступления от принципов вариантов осуществления. Таким образом, несмотря на то, что использованы конкретные термины, они использованы только в обобщенном и описательном смысле, а не для целей ограничения, и объем изобретения определяется следующей формулой изобретения.

Claims (20)

1. Способ, в пользовательском оборудовании (10), для передачи управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал в базовую радиостанцию (12), причем пользовательское оборудование (10) и базовая радиостанция (12) содержатся в сети радиосвязи, при этом радиоканал выполнен для переноса управляющей информации восходящей линии связи, а управляющая информация восходящей линии связи содержится в блоке битов, причем способ содержит этапы, на которых
отображают (203) блок битов в последовательность комплексных оцененных символов модуляции,
блочно расширяют (204) последовательность комплексных оцененных символов модуляции посредством символов расширения дискретного преобразования Фурье - мультиплексирования с ортогональным частотным разделением каналов, DFTS-OFDM, с помощью применения расширяющей последовательности к последовательности комплексных оцененных символов модуляции для того, чтобы получить блочно расширенную последовательность комплексных оцененных символов модуляции,
преобразуют (205) для каждого символа DFTS-OFDM блочно расширенную последовательность комплексных оцененных символов модуляции с помощью применения матрицы, которая содержит элементы матрицы, причем элементы матрицы циклически сдвинуты в зависимости от индекса символа DFTS-OFDM и/или индекса слота к блочно расширенной последовательности комплексных оцененных символов модуляции, и
передают (207) блочно расширенную последовательность комплексных оцененных символов модуляции, которая была преобразована, через радиоканал в базовую радиостанцию (12).
2. Способ по п.1, в котором матрица соответствует операции дискретного преобразования Фурье вместе с операцией циклического сдвига строк или столбцов элементов матрицы.
3. Способ по любому из пп.1-2, дополнительно содержащий этапы, на которых
кодируют (201) с коррекцией ошибок блок битов, и
скремблируют (202) блок битов до отображения блока битов в последовательность комплексных оцененных символов модуляции.
4. Способ по любому из пп.1-2, дополнительно содержащий этап, на котором
модулируют (206) с OFDM для каждого символа DFTS-OFDM блочно расширенную последовательность комплексных оцененных символов модуляции, которая была преобразована.
5. Способ по любому из пп.1-2, в котором этап передачи содержит этап, на котором передают первую часть последовательности комплексных оцененных символов модуляции в первом временном слоте, а вторую часть последовательности комплексных оцененных символов модуляции во втором временном слоте.
6. Способ по любому из пп.1-2, в котором блок битов соответствует управляющей информации восходящей линии связи и содержит совместно закодированные подтверждения приема и отрицательные подтверждения приема.
7. Способ, в базовой радиостанции (12), для приема управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал из пользовательского оборудования (10), причем радиоканал выполнен для переноса управляющей информации восходящей линии связи, причем управляющая информация восходящей линии связи содержится в блоке битов, и причем пользовательское оборудование (10) и базовая радиостанция (12) содержатся в сети радиосвязи, причем способ содержит этапы, на которых
принимают (221) последовательность комплексных оцененных символов модуляции,
демодулируют (222) с мультиплексированием с ортогональным частотным разделением каналов, OFDM, последовательность комплексных оцененных символов модуляции,
преобразуют (223), для каждого символа расширения дискретного преобразования Фурье, DFTS, -OFDM последовательность комплексных оцененных символов модуляции, которая была демодулирована с OFDM, с помощью применения матрицы, которая содержит элементы матрицы, причем элементы матрицы циклически сдвинуты в зависимости от индекса символа DFTS-OFDM и/или индекса слота в демодулированную с OFDM последовательность комплексных оцененных символов модуляции,
блочно сжимают (224) последовательность комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована с помощью сжимающей последовательности, и
отображают (225) сжатую последовательность комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, в блок битов.
8. Пользовательское оборудование (10) для передачи управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал в базовую радиостанцию (12), причем радиоканал выполнен для переноса управляющей информации восходящей линии связи, а управляющая информация восходящей линии связи содержится в блоке битов, причем пользовательское оборудование (10) содержит
схему (213) отображения, сконфигурированную для отображения блока битов в последовательность комплексных оцененных символов модуляции,
схему (214) блочного расширения, сконфигурированную для блочного расширения последовательности комплексных оцененных символов модуляции посредством символов расширения дискретного преобразования Фурье - мультиплексирования с ортогональным частотным разделением каналов, DFTS-OFDM, с помощью применения расширяющей последовательности к последовательности комплексных оцененных символов модуляции для того, чтобы получить блочно расширенную последовательность комплексных оцененных символов модуляции,
схему (215) преобразования, сконфигурированную для преобразования, для каждого символа DFTS-OFDM, блочно расширенной последовательности комплексных оцененных символов модуляции с помощью применения матрицы, которая содержит элементы матрицы, причем элементы матрицы циклически сдвинуты в зависимости от индекса символа DFTS-OFDM и/или индекса слота в блочно расширенную последовательность комплексных оцененных символов модуляции, и
передатчик (217), сконфигурированный для передачи блочно расширенной последовательности комплексных оцененных символов модуляции, которая была преобразована, через радиоканал в базовую радиостанцию (12).
9. Пользовательское оборудование (10) по п.8, в котором матрица соответствует операции дискретного преобразования Фурье вместе с операцией циклического сдвига строк или столбцов элементов матрицы.
10. Пользовательское оборудование (10) по любому из пп.8-9, дополнительно содержащее
схему (211) кодирования с коррекцией ошибок, сконфигурированную для кодирования с коррекцией ошибок блока битов, и
схему (212) скремблирования, сконфигурированную для скремблирования блока битов до отображения блока битов в последовательность комплексных оцененных символов модуляции.
11. Пользовательское оборудование (10) по любому из пп.8-9, дополнительно содержащее
модулятор (216) OFDM, сконфигурированный для модуляции с OFDM, для каждого символа DFTS-OFDM, блочно расширенной последовательности комплексных оцененных символов модуляции, которая была преобразована.
12. Пользовательское оборудование (10) по любому из пп.8-9, в котором передатчик (217) сконфигурирован для передачи первой части последовательности комплексных оцененных символов модуляции в первом временном слоте, а второй части последовательности комплексных оцененных символов модуляции - во втором временном слоте.
13. Пользовательское оборудование (10) по любому из пп.8-9, в котором блок битов соответствует управляющей информации восходящей линии связи и содержит совместно закодированные подтверждения приема и отрицательные подтверждения приема.
14. Базовая радиостанция (12) для приема управляющей информации восходящей линии связи во временных слотах в подкадре через радиоканал из пользовательского оборудования (10), причем радиоканал выполнен для переноса управляющей информации восходящей линии связи, при этом управляющая информация восходящей линии связи содержится в блоке битов, и причем базовая радиостанция (12) содержит
приемник (231), сконфигурированный для приема последовательности комплексных оцененных символов модуляции,
схему (232) демодуляции с мультиплексированием с ортогональным частотным разделением каналов, OFDM, сконфигурированную для демодуляции с OFDM последовательности комплексных оцененных символов модуляции,
схему (233) преобразования, сконфигурированную для преобразования, для каждого символа расширения дискретного преобразования Фурье, DFTS, -OFDM, демодулированной с OFDM последовательности комплексных оцененных символов модуляции с помощью применения матрицы, которая содержит элементы матрицы, причем элементы матрицы циклически сдвинуты в зависимости от индекса символа DFTS-OFDM и/или индекса слота в демодулированную с OFDM последовательность комплексных оцененных символов модуляции,
схему (234) блочного сжатия, сконфигурированную для блочного сжатия последовательности комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, с помощью сжимающей последовательности, и
схему (235) отображения, сконфигурированную для отображения сжатой последовательности комплексных оцененных символов модуляции, которая была демодулирована с OFDM и преобразована, в блок битов.
15. Способ, в терминале, для передачи управляющей информации восходящей линии связи в слоте в подкадре через канал в базовую станцию в беспроводной системе связи, причем управляющая информация восходящей линии связи содержится в кодовом слове, причем способ содержит этапы, на которых
отображают кодовое слово в символы модуляции,
блочно расширяют символы модуляции посредством символов расширения дискретного преобразования Фурье, DFTS, мультиплексирования с ортогональным частотным разделением каналов, OFDM, с помощью повторения символов модуляции для каждого символа DFTS-OFDM и применения блочно расширяющей последовательности весовых коэффициентов к повторенным символам модуляции, чтобы получить соответственную взвешенную копию символов модуляции для каждого символа DFTS-OFDM,
преобразуют, для каждого символа DFTS-OFDM, соответственную взвешенную копию символов модуляции с помощью применения матрицы, которая содержит элементы матрицы, причем элементы матрицы циклически сдвинуты в зависимости от индекса символа DFTS-OFDM и/или индекса слота в соответственную взвешенную копию символов модуляции, и
передают, на каждом символе DFTS-OFDM, соответственную взвешенную копию символов модуляции, которые были преобразованы, в базовую станцию.
16. Способ по п.15, в котором канал является физическим управляющим каналом восходящей линии связи.
17. Способ по любому из пп.15-16, в котором кодовое слово является определенным числом битов.
18. Способ по любому из пп.15-16, в котором символы модуляции являются символами квадратурной фазовой манипуляции или символами двоичной фазовой манипуляции.
19. Способ по любому из пп.15-16, в котором блочно расширяющая последовательность является ортогональной последовательностью.
20. Способ по любому из пп.15-16, в котором преобразование содержит циклический сдвиг строк или столбцов матрицы, причем матрица является матрицей дискретного преобразования Фурье.
RU2012135496/08A 2010-01-18 2011-01-18 Базовая радиостанция и пользовательское оборудование и способы в них RU2554550C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29588510P 2010-01-18 2010-01-18
US61/295,885 2010-01-18
PCT/SE2011/050052 WO2011087448A1 (en) 2010-01-18 2011-01-18 Radio base station and user equipment and methods therein

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2015122121A Division RU2680752C2 (ru) 2010-01-18 2011-01-18 Базовая радиостанция и пользовательское оборудование и способы в них

Publications (2)

Publication Number Publication Date
RU2012135496A RU2012135496A (ru) 2014-02-27
RU2554550C2 true RU2554550C2 (ru) 2015-06-27

Family

ID=44010072

Family Applications (3)

Application Number Title Priority Date Filing Date
RU2015122121A RU2680752C2 (ru) 2010-01-18 2011-01-18 Базовая радиостанция и пользовательское оборудование и способы в них
RU2012135496/08A RU2554550C2 (ru) 2010-01-18 2011-01-18 Базовая радиостанция и пользовательское оборудование и способы в них
RU2019103715A RU2019103715A (ru) 2010-01-18 2019-02-11 Базовая радиостанция и пользовательское оборудование и способы в них

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2015122121A RU2680752C2 (ru) 2010-01-18 2011-01-18 Базовая радиостанция и пользовательское оборудование и способы в них

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2019103715A RU2019103715A (ru) 2010-01-18 2019-02-11 Базовая радиостанция и пользовательское оборудование и способы в них

Country Status (23)

Country Link
US (6) US8638880B2 (ru)
EP (2) EP3393075B1 (ru)
JP (2) JP5808757B2 (ru)
KR (1) KR101829740B1 (ru)
CN (2) CN105101434B (ru)
AU (1) AU2011205828C9 (ru)
BR (1) BR112012017856B8 (ru)
CA (1) CA2787391C (ru)
CL (1) CL2012001997A1 (ru)
DK (1) DK2526643T3 (ru)
ES (2) ES2825041T3 (ru)
HK (2) HK1180845A1 (ru)
HU (1) HUE050957T2 (ru)
IL (1) IL220813A (ru)
MA (1) MA33906B1 (ru)
MX (1) MX2012008312A (ru)
MY (2) MY186049A (ru)
NZ (1) NZ601291A (ru)
PL (2) PL2526643T3 (ru)
RU (3) RU2680752C2 (ru)
SG (1) SG182427A1 (ru)
TR (1) TR201810097T4 (ru)
WO (1) WO2011087448A1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2719294C1 (ru) * 2017-01-05 2020-04-17 Телефонактиеболагет Лм Эрикссон (Пабл) Устройство и узел в системе беспроводной связи для передачи управляющей информации восходящей линии связи
RU2736626C1 (ru) * 2017-08-10 2020-11-19 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Абонентское устройство, базовая станция и способ беспроводной связи
RU2763029C1 (ru) * 2020-10-29 2021-12-27 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Абонентское устройство, базовая станция и способ беспроводной связи

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10187133B2 (en) 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US9819403B2 (en) 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
AU2011204012A1 (en) 2010-01-11 2012-08-16 Electronics And Telecommunications Research Institute Carrier aggregation in wireless communication system
KR101733489B1 (ko) * 2010-01-17 2017-05-24 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
SG182427A1 (en) 2010-01-18 2012-08-30 Ericsson Telefon Ab L M Radio base station and user equipment and methods therein
JP5883845B2 (ja) * 2010-04-04 2016-03-15 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける制御情報の送信方法及び装置
KR101829831B1 (ko) 2010-05-06 2018-02-19 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2012022716A1 (en) * 2010-08-16 2012-02-23 Nokia Siemens Networks Oy Randomization of block spread signals
KR101285398B1 (ko) 2010-09-08 2013-07-10 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
CN102065054B (zh) * 2011-01-06 2014-06-04 大唐移动通信设备有限公司 一种加扰传输方法及其装置
KR20140053087A (ko) * 2011-07-27 2014-05-07 엘지전자 주식회사 무선통신시스템에서 시퀀스 매핑 방법 및 장치
US8964679B2 (en) 2011-12-23 2015-02-24 Blackberry Limited Method implemented in an eNodeB base station
US9088971B2 (en) 2011-12-23 2015-07-21 Blackberry Limited Method implemented in a user equipment
US9247563B2 (en) 2011-12-23 2016-01-26 Blackberry Limited Method implemented in a user equipment
US8929319B2 (en) 2011-12-23 2015-01-06 Blackberry Limited Updating scheduling request resources
US8964678B2 (en) 2011-12-23 2015-02-24 Blackberry Limited Method implemented in an eNodeB base station
US8989122B2 (en) 2011-12-23 2015-03-24 Blackberry Limited Method implemented in a user equipment UE for use in a wireless system
KR101616220B1 (ko) * 2011-12-23 2016-05-11 블랙베리 리미티드 Enodeb 기지국에서 구현되는 방법
KR102032851B1 (ko) 2012-01-30 2019-10-16 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
JP2015507307A (ja) 2012-02-21 2015-03-05 アイコニット リミテッド 読み取り可能マトリックスコード
GB2502603A (en) * 2012-05-31 2013-12-04 Renesas Mobile Corp Wireless communications wherein modulation schemes for dominant interfering devices are selected to both use real symbols or complex symbols
CN104885514B (zh) 2012-11-01 2019-05-21 英特尔公司 在LTE-A网络中发送QoS要求以及UE功率偏好的信号
US9270324B2 (en) * 2012-11-16 2016-02-23 Telefonaktiebolaget L M Ericsson (Publ) Efficient generation of spreading sequence correlations using lookup tables
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9923657B2 (en) * 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
US10547358B2 (en) 2013-03-15 2020-01-28 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
CN105359605B (zh) * 2013-07-25 2019-02-19 华为技术有限公司 带有自组织中继终端的蜂窝网络的基于贪婪算法的自主资源块分配方案的系统和方法
BR112016016939B1 (pt) * 2014-01-24 2024-01-02 Nokia Solutions And Networks Oy Método, aparelho e meio de armazenamento legível por computador não transitório
KR101881426B1 (ko) * 2014-01-29 2018-07-24 후아웨이 테크놀러지 컴퍼니 리미티드 업링크 액세스 방법, 장치, 및 시스템
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10371783B2 (en) 2014-08-18 2019-08-06 Mediatek Inc. Direction finding antenna format
MY190489A (en) 2015-01-29 2022-04-24 Panasonic Ip Corp America Wireless communication method and device
US10511427B2 (en) 2015-01-30 2019-12-17 Qualcomm Incorporated Uplink control channel for acknowledging increased number of downlink component carriers
KR20160139803A (ko) 2015-05-28 2016-12-07 정훈식 필기를 인지하고 저장하는 전자 펜
WO2017013728A1 (ja) * 2015-07-21 2017-01-26 富士通株式会社 送信装置、受信装置、無線通信システム、及び、処理方法
US10264580B2 (en) 2015-09-07 2019-04-16 Mediatek Inc. HE SIG B common field formats and indication
US10594462B2 (en) 2015-09-28 2020-03-17 Mediatek Inc. Structured resource allocation signaling
US10187124B2 (en) 2015-10-01 2019-01-22 Mediatek Inc Beam-change indication for channel estimation enhancement
US10211948B2 (en) 2015-10-12 2019-02-19 Mediatek Inc. LDPC tone mapping schemes for dual-sub-carrier modulation in WLAN
US10164752B2 (en) * 2015-10-23 2018-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic precoding of shared reference signals
US10686641B2 (en) 2015-11-05 2020-06-16 Mediatek Inc. Signaling and feedback schemes of time-vary channels in high-efficiency WLAN
US11019559B2 (en) 2015-12-09 2021-05-25 Mediatek Inc. VHT operation information subfield design in WLAN
US10200228B2 (en) 2015-12-17 2019-02-05 Mediatek Inc. Interleaver design for dual sub-carrier modulation in WLAN
US10225122B2 (en) * 2016-02-04 2019-03-05 Mediatek Inc. Low PAPR dual sub-carrier modulation scheme for BPSK in WLAN
US10512065B2 (en) * 2016-05-31 2019-12-17 Qualcomm Incorporated Flexible control information reporting
CN109417411B (zh) * 2016-06-30 2022-08-05 松下电器(美国)知识产权公司 发送装置以及发送方法
CN109906572B (zh) * 2016-08-12 2022-02-08 瑞典爱立信有限公司 带有缩短传输时间间隔的pusch上的上行链路控制信令
CN106793105B (zh) * 2016-08-26 2018-08-10 北京展讯高科通信技术有限公司 上行控制信息的传输方法、装置和用户终端
WO2018059350A1 (zh) 2016-09-30 2018-04-05 华为技术有限公司 一种数据处理方法、装置和系统
KR20190062392A (ko) 2016-10-12 2019-06-05 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 데이터 전송 방법, 수신단 기기 및 송신단 기기
CN108206723B (zh) * 2016-12-16 2022-04-29 中兴通讯股份有限公司 信号发送、信息提取方法及装置、发射器、接收器
CN108242989B (zh) * 2016-12-27 2022-07-15 中兴通讯股份有限公司 数据传输方法、数据解调方法、装置及终端
CN110178324B (zh) * 2017-02-06 2021-05-07 苹果公司 新无线电系统中基于同步信号块的同步方法、下一代节点-b以及用户设备
CN106908780B (zh) * 2017-03-16 2019-09-13 北京理工大学 基于ofdm的无线电近感探测方法及探测智能化方法
GB2560760A (en) * 2017-03-24 2018-09-26 Tcl Communication Ltd Methods and devices for controlling a radio access network
CN111052661B (zh) * 2017-06-27 2023-01-17 Lg电子株式会社 在无线通信系统中发送和接收无线信号的方法和设备
US10667282B2 (en) * 2017-07-11 2020-05-26 Qualcomm Incorporated Uplink hopping pattern modes for hybrid automatic repeat request (HARQ) transmissions
CN110999237B (zh) * 2017-08-11 2022-05-27 中兴通讯股份有限公司 无线通信中的符号块处理和传输
US11212151B2 (en) * 2017-08-23 2021-12-28 Qualcomm Incorporated User multiplexing for uplink control information
US10686490B2 (en) * 2017-09-28 2020-06-16 Qualcomm Incorporated Modulation spreading for wireless communications
CN109981511B (zh) * 2017-12-27 2021-09-03 华为技术有限公司 基于非正交多址的数据传输
WO2019136697A1 (en) * 2018-01-12 2019-07-18 Zte Corporation Signal spreading techniques for multiple access in wireless networks
US10396940B1 (en) * 2018-04-09 2019-08-27 At&T Intellectual Property I, L.P. Scheduling downlink data with multiple slot feedback channel configuration in wireless communication systems
CN110557350A (zh) * 2018-06-04 2019-12-10 索尼公司 电子设备和通信方法
US10333763B1 (en) 2018-06-18 2019-06-25 Futurewei Technologies, Inc. System and method for hybrid transmitter
US11283547B2 (en) * 2018-09-12 2022-03-22 Qualcomm Incorporated Discrete Fourier transform-spread (DFT-S) based interlace physical uplink control channel (PUCCH) with user multiplexing
CN112703680B (zh) * 2018-09-13 2023-02-24 中兴通讯股份有限公司 用于发上行信号的系统和方法
EP3985933A4 (en) * 2019-06-13 2023-06-14 Ntt Docomo, Inc. COMMUNICATION DEVICE
CN116264867A (zh) * 2020-11-19 2023-06-16 Oppo广东移动通信有限公司 控制信道的传输及接收方法、装置、通信设备
WO2022239912A1 (ko) * 2021-05-13 2022-11-17 삼성전자 주식회사 통신 시스템에서 거의 일정한 포락선을 가지는 신호 생성을 위한 스펙트럼 성형 방법 및 이를 수행하는 송신기
CN113708881B (zh) * 2021-08-27 2022-05-24 哈尔滨工业大学 一种基于扩展加权分数傅里叶变换的时频完全平均化正交多址传输方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2262193C2 (ru) * 1999-07-29 2005-10-10 Квэлкомм Инкорпорейтед Способ и система управления энергией передачи в системе связи переменной скорости со стробированием
RU2336637C2 (ru) * 2004-02-13 2008-10-20 Нокиа Корпорейшн Эквалайзерная структура, работающая на уровне элементарной посылки или символа, для систем с множеством передающих и приемных антенн
US7593449B2 (en) * 1998-02-12 2009-09-22 Steve Shattil Multicarrier sub-layer for direct sequence channel and multiple-access coding

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6594318B1 (en) * 1999-12-02 2003-07-15 Qualcomm Incorporated Method and apparatus for computing soft decision input metrics to a turbo decoder
WO2003010984A1 (en) * 2001-06-27 2003-02-06 Nortel Networks Limited Communication of control information in wireless communication systems
US8116195B2 (en) * 2004-07-27 2012-02-14 Zte (Usa) Inc. Transmission and reception of reference preamble signals in OFDMA or OFDM communication systems
US8094638B2 (en) * 2006-08-22 2012-01-10 Texas Instruments Incorporated Adaptive selection of transmission parameters for reference signals
US8102896B2 (en) * 2006-10-04 2012-01-24 Nokia Corporation Method and apparatus for multiplexing control and data channel
US7630602B2 (en) 2006-12-04 2009-12-08 Electronics And Telecommunications Research Institute Optical filter module and method of manufacturing the same
WO2008098672A1 (en) * 2007-02-15 2008-08-21 Mitsubishi Electric Information Technology Centre Europe B.V. Sc-qostfbc codes for mimo transmitters
KR101049138B1 (ko) * 2007-03-19 2011-07-15 엘지전자 주식회사 이동 통신 시스템에서, 수신확인신호 수신 방법
JP4824612B2 (ja) * 2007-03-20 2011-11-30 株式会社エヌ・ティ・ティ・ドコモ 通信システム、ユーザ装置及び送信方法
US8111731B2 (en) * 2007-04-04 2012-02-07 Texas Instruments Incorported Block scrambling for orthogonal frequency division multiple access
CA2684364C (en) * 2007-04-30 2014-02-04 Nokia Siemens Networks Oy Coordinated cyclic shift and sequence hopping for zadoff-chu, modified zadoff-chu, and block-wise spreading sequences
US8369299B2 (en) * 2007-05-07 2013-02-05 Qualcomm Incorporated Method and apparatus for multiplexing CDM pilot and FDM data
US8750917B2 (en) * 2007-05-18 2014-06-10 Qualcomm Incorporated Multiplexing and power control of uplink control channels in a wireless communication system
US8036166B2 (en) * 2007-06-18 2011-10-11 Nokia Corporation Signaling of implicit ACK/NACK resources
PL3429120T3 (pl) * 2007-07-16 2020-02-28 Samsung Electronics Co., Ltd. Kodowanie obrazu z wykorzystaniem dużych jednostek przekształcenia
US8503375B2 (en) * 2007-08-13 2013-08-06 Qualcomm Incorporated Coding and multiplexing of control information in a wireless communication system
JP4728301B2 (ja) * 2007-08-14 2011-07-20 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置、送信方法、及び通信システム
KR101516101B1 (ko) * 2007-10-29 2015-05-04 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 기지국 장치, 무선 통신 방법 및 집적 회로
JP5213414B2 (ja) 2007-10-30 2013-06-19 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局装置、ユーザ装置及び方法
WO2009057302A1 (ja) * 2007-10-30 2009-05-07 Panasonic Corporation 無線通信装置および系列制御方法
US8059524B2 (en) * 2008-01-04 2011-11-15 Texas Instruments Incorporated Allocation and logical to physical mapping of scheduling request indicator channel in wireless networks
US8630240B2 (en) * 2008-02-19 2014-01-14 Texas Instruments Incorporated Mapping between logical and physical uplink control resource blocks in wireless networks
JP5096208B2 (ja) * 2008-03-26 2012-12-12 パナソニック株式会社 Sc−fdma送信装置及びsc−fdma送信信号形成方法
US8259602B2 (en) * 2008-04-21 2012-09-04 Lg Electronics Inc. Method of transmitting control signal in wireless communication system
WO2009134082A2 (en) 2008-04-29 2009-11-05 Electronics And Telecommunications Research Institute Apparatus and method for transmitting data using multiple antenna for single carrier frequency division multiple access system
JP4990226B2 (ja) * 2008-06-10 2012-08-01 株式会社日立製作所 無線基地局及び無線通信システム
WO2009153810A2 (en) * 2008-06-18 2009-12-23 Centre Of Excellence In Wireless Technology Precoding for multiple transmission streams in multiple antenna systems
KR101417084B1 (ko) * 2008-07-02 2014-08-07 엘지전자 주식회사 상향링크 전송을 위한 기준신호 전송 방법
KR101603338B1 (ko) * 2008-08-11 2016-03-15 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
WO2010055387A2 (en) * 2008-11-12 2010-05-20 Telefonaktiebolaget L M Ericsson (Publ) System and method of single-carrier layer shifting for multiple-stream transmission facilitating sic implementation
US8908793B2 (en) * 2008-11-14 2014-12-09 Lg Electronics Inc. Method and apparatus for signal transmission in wireless communication system
EP3570615B1 (en) * 2008-12-08 2021-03-17 Wireless Future Technologies Inc. Uplink control signaling in cellular telecommunication system
KR20100091876A (ko) * 2009-02-11 2010-08-19 엘지전자 주식회사 다중안테나 전송을 위한 단말 동작
KR101731333B1 (ko) * 2009-03-25 2017-04-28 엘지전자 주식회사 Ack/nack을 전송하는 방법 및 장치
WO2010114252A2 (en) * 2009-03-29 2010-10-07 Lg Electronics Inc. Method for transmitting control information in wireless communication system and apparatus therefor
WO2010121641A1 (en) * 2009-04-20 2010-10-28 Nokia Siemens Networks Oy Method, apparatuses and computer program products
US8817726B2 (en) * 2009-07-26 2014-08-26 Lg Electronics Inc. Uplink transmission method and apparatus in wireless communication system
CA2773382C (en) * 2009-09-07 2015-12-01 Lg Electronics Inc. Method and apparatus for transmitting/receiving a reference signal in a wireless communication system
EP4287538A2 (en) * 2009-10-01 2023-12-06 InterDigital Patent Holdings, Inc. Uplink control data transmission
JP5172806B2 (ja) * 2009-10-05 2013-03-27 株式会社エヌ・ティ・ティ・ドコモ 無線通信制御方法、移動端末装置及び基地局装置
KR101782645B1 (ko) * 2010-01-17 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
SG182427A1 (en) 2010-01-18 2012-08-30 Ericsson Telefon Ab L M Radio base station and user equipment and methods therein
US8670410B2 (en) * 2010-09-17 2014-03-11 Qualcomm Incorporated Uplink control channel resource mapping for carrier aggregation
US8644378B2 (en) 2010-10-15 2014-02-04 Synaptics Incorporated Method and apparatus for de-spreading a spread-spectrum audio/video signal
US11178646B2 (en) * 2016-04-19 2021-11-16 Qualcomm Incorporated Beam reference signal based narrowband channel measurement and CQI reporting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593449B2 (en) * 1998-02-12 2009-09-22 Steve Shattil Multicarrier sub-layer for direct sequence channel and multiple-access coding
RU2262193C2 (ru) * 1999-07-29 2005-10-10 Квэлкомм Инкорпорейтед Способ и система управления энергией передачи в системе связи переменной скорости со стробированием
RU2336637C2 (ru) * 2004-02-13 2008-10-20 Нокиа Корпорейшн Эквалайзерная структура, работающая на уровне элементарной посылки или символа, для систем с множеством передающих и приемных антенн

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2719294C1 (ru) * 2017-01-05 2020-04-17 Телефонактиеболагет Лм Эрикссон (Пабл) Устройство и узел в системе беспроводной связи для передачи управляющей информации восходящей линии связи
US11032837B2 (en) 2017-01-05 2021-06-08 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device and a network node for a wireless communication system
RU2736626C1 (ru) * 2017-08-10 2020-11-19 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Абонентское устройство, базовая станция и способ беспроводной связи
RU2763029C1 (ru) * 2020-10-29 2021-12-27 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Абонентское устройство, базовая станция и способ беспроводной связи

Also Published As

Publication number Publication date
CN102884750A (zh) 2013-01-16
CN105101434B (zh) 2019-10-15
US20110261858A1 (en) 2011-10-27
EP3393075B1 (en) 2020-07-15
MA33906B1 (fr) 2013-01-02
AU2011205828B2 (en) 2015-09-24
RU2019103715A3 (ru) 2022-04-19
US11172473B2 (en) 2021-11-09
US20220061046A1 (en) 2022-02-24
HK1215120A1 (zh) 2016-08-12
CN102884750B (zh) 2015-08-19
US8638880B2 (en) 2014-01-28
US9088979B2 (en) 2015-07-21
MY186049A (en) 2021-06-17
IL220813A (en) 2017-06-29
EP2526643B1 (en) 2018-06-06
KR101829740B1 (ko) 2018-02-19
MY184042A (en) 2021-03-17
DK2526643T3 (en) 2018-08-13
KR20120124448A (ko) 2012-11-13
RU2015122121A (ru) 2015-12-20
EP2526643A1 (en) 2012-11-28
BR112012017856B1 (pt) 2022-02-15
CA2787391C (en) 2018-04-17
EP3393075A1 (en) 2018-10-24
BR112012017856A2 (pt) 2018-06-05
US10028261B2 (en) 2018-07-17
JP2016021770A (ja) 2016-02-04
NZ601291A (en) 2014-10-31
US11818719B2 (en) 2023-11-14
AU2011205828C9 (en) 2016-01-28
AU2011205828A1 (en) 2012-08-09
US10517079B2 (en) 2019-12-24
JP2013517675A (ja) 2013-05-16
AU2011205828C1 (en) 2015-12-24
BR112012017856B8 (pt) 2023-04-25
HUE050957T2 (hu) 2021-01-28
PL2526643T3 (pl) 2018-10-31
RU2019103715A (ru) 2020-08-11
HK1180845A1 (zh) 2013-10-25
CN105101434A (zh) 2015-11-25
ES2685486T3 (es) 2018-10-09
TR201810097T4 (tr) 2018-08-27
WO2011087448A1 (en) 2011-07-21
ES2825041T3 (es) 2021-05-14
JP6148303B2 (ja) 2017-06-14
RU2012135496A (ru) 2014-02-27
RU2015122121A3 (ru) 2018-12-05
US20200120666A1 (en) 2020-04-16
MX2012008312A (es) 2012-08-08
PL3393075T3 (pl) 2021-01-25
SG182427A1 (en) 2012-08-30
US20140185589A1 (en) 2014-07-03
US20150326358A1 (en) 2015-11-12
US20180324794A1 (en) 2018-11-08
JP5808757B2 (ja) 2015-11-10
RU2680752C2 (ru) 2019-02-26
CL2012001997A1 (es) 2012-11-23
CA2787391A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US11818719B2 (en) Radio base station and user equipment and methods therein
AU2011205828B9 (en) Radio base station and user equipment and methods therein
JP5791749B2 (ja) 無線通信システムにおけるharq実行方法及び装置
CN114189262B (zh) 基站、接收方法及集成电路
CN102474325B (zh) 在支持mimo天线的无线移动通信系统中发送上行链路数据和控制信息的方法和装置
RU2575013C2 (ru) Системы и способы разнесения передачи для предварительно кодированных посредством дискретного преобразования фурье каналов