RU2542329C1 - Способ внутриконтурной пассивации стальных поверхностей ядерного реактора - Google Patents

Способ внутриконтурной пассивации стальных поверхностей ядерного реактора Download PDF

Info

Publication number
RU2542329C1
RU2542329C1 RU2013143712/07A RU2013143712A RU2542329C1 RU 2542329 C1 RU2542329 C1 RU 2542329C1 RU 2013143712/07 A RU2013143712/07 A RU 2013143712/07A RU 2013143712 A RU2013143712 A RU 2013143712A RU 2542329 C1 RU2542329 C1 RU 2542329C1
Authority
RU
Russia
Prior art keywords
passivation
coolant
oxygen
core
nuclear reactor
Prior art date
Application number
RU2013143712/07A
Other languages
English (en)
Inventor
Петр Никифорович Мартынов
Радомир Шамильевич Асхадуллин
Константин Дмитриевич Иванов
Александр Юрьевич Легких
Алексей Николаевич Стороженко
Александр Иванович Филин
Сергей Викторович БУЛАВКИН
Саид Мирфаисович ШАРИКПУЛОВ
Степан Артемович БОРОВИЦКИЙ
Original Assignee
Открытое Акционерное Общество "Акмэ-Инжиниринг"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to RU2013143712/07A priority Critical patent/RU2542329C1/ru
Application filed by Открытое Акционерное Общество "Акмэ-Инжиниринг" filed Critical Открытое Акционерное Общество "Акмэ-Инжиниринг"
Priority to PCT/RU2014/000171 priority patent/WO2015047131A1/ru
Priority to CN201480050892.4A priority patent/CN105556612B/zh
Priority to JP2016545716A priority patent/JP6374007B2/ja
Priority to HUE14846822A priority patent/HUE050408T2/hu
Priority to UAA201602285A priority patent/UA116667C2/ru
Priority to KR1020167007243A priority patent/KR101896029B1/ko
Priority to EA201600212A priority patent/EA032584B1/ru
Priority to CA2926597A priority patent/CA2926597C/en
Priority to EP14846822.6A priority patent/EP3054453B1/en
Priority to US15/022,834 priority patent/US10037822B2/en
Application granted granted Critical
Publication of RU2542329C1 publication Critical patent/RU2542329C1/ru
Priority to ZA2016/01865A priority patent/ZA201601865B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/70Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using melts
    • C23C22/72Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/03Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a coolant not essentially pressurised, e.g. pool-type reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/08Vessels characterised by the material; Selection of materials for pressure vessels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/243Promoting flow of the coolant for liquids
    • G21C15/247Promoting flow of the coolant for liquids for liquid metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/02Devices or arrangements for monitoring coolant or moderator
    • G21C17/022Devices or arrangements for monitoring coolant or moderator for monitoring liquid coolants or moderators
    • G21C17/0225Chemical surface treatment, e.g. corrosion
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Изобретение относится к области ядерной техники, а именно к способу внутриконтурной пассивации стальных поверхностей. Способ заключается в установке имитатора активной зоны, представляющего собой макет активной зоны, моделирующий ее форму, взаимное расположение элементов активной зоны, а также их массовые характеристики, на место, предназначенное для размещения штатной активной зоны. Далее заполняют реактор тяжелым жидкометаллическим теплоносителем, разогревают теплоноситель до температуры, обеспечивающей условия пассивации, и проводят внутриконтурную пассивацию в два этапа. Первый этап включает режим изотермической пассивации при соблюдении режимов, определенных для этого этапа, а второй режим включает неизотермическую пассивацию, проводимую при других режимах. После этого удаляют имитатор активной зоны и устанавливают на его место штатную активную зону. Способ обеспечивает коррозионную стойкость поверхностей стальных элементов в среде тяжелого жидкометаллического теплоносителя и позволяет снизить в начальный период эксплуатации ядерного реактора максимальные скорости потребления кислорода. 11 з.п. ф-лы.

Description

Область техники, к которой относится изобретение
Изобретение относится к области ядерной техники, а именно к способу внутриконтурной пассивации стальных поверхностей ядерного реактора с тяжелым жидкометаллическим теплоносителем.
Предшествующий уровень техники
Известны различные способы пассивации поверхностей стальных труб.
Например, известен способ пассивации внутренних поверхностей котловых труб и энергоблока, заключающийся в том, что пассивацию производят газообразным окислителем (кислородом), который вводят в рабочую среду в процессе растопки котла при отключенной турбине с контролем выноса окислов железа из тракта. При этом с самого начала растопки котла рабочую среду непрерывно переводят в состояние пароводяной смеси путем снижения давления и температуры среды. Тепловыделение в топке котла повышают ступенчато с переходом на новую ступень тепловыделения после прекращения выноса окислов железа на данном этапе очистки. Подачу окислителя производят, начиная с уровня давления в пароперегревательной части котла 1,0-1,2 МПа, и после достижения в пароперегревательной части котла давления 2,0-3,0 МПа и прекращения на этом этапе выноса окислов железа повышают давление и температуру рабочей среды котла до параметров, соответствующих выводу рабочей среды в пароперегревательной части котла из состояния пароводяной смеси, поддерживая такой режим до завершения процесса пассивации (патент РФ RU 2232937, F22B 37/48, 20.07.2004).
Известен способ пассивации стальных труб путем обработки их кислородсодержащим агентом, согласно изобретению в качестве кислородсодержащего агента используют воздух с добавлением кислорода или азота до концентрации не более 1,2 г/л, а обработку производят в течение 0,5-50,0 минут при скорости потока агента 50-200 м/с и 300-500°C (патент РФ RU 2190699, C23G 5/00, 10.10.2002). Данный способ предназначен для защиты от коррозии стальных труб различного диаметра и протяженности, к которым предъявляются требования эффективной защиты от коррозии, в особенности их труднодоступной внутренней поверхности. Способ предназначен для предприятий, производящих стальные трубы для промышленности.
Известен также способ кислородной очистки и пассивации внутренних поверхностей котельных труб очищающим агентом, представляющим собой смесь кислорода с питательной водой, или с паром, или с водопаровой смесью, причем концентрацию кислорода в очищающем агенте поддерживают в пределах 10-15 г/кг, а очистку производят в течение 4,5-5,5 часов при температуре очищающего агента 90-450°C (Патент РФ RU 2303745, F22B 37/48, 27.07.2007). Как указано в описании изобретения, данный способ обеспечивает эффективную очистку и пассивацию внутренней поверхности труб при сокращении энергозатрат, времени простоя энергооборудования.
Вместе с тем, назначение данного способа - пассивация внутренних поверхностей труб путем пропускания через трубы смеси кислорода с питательной водой, или с паром, или с водопаровой смесью. Этот способ не подходит для пассивации стальных элементов ядерной установки, так как условия работы, в т.ч. температурные режимы, а также материалы, используемые в конструкции этих устройств, принципиально различаются. Кроме того, требования к надежности работы для ядерных реакторов существенно выше, чем для оборудования котельных.
В частности, для ядерных реакторов с тяжелым жидкометаллическим теплоносителем обычно используют следующие технологии обеспечения коррозионной стойкости конструкционных сталей в первом контуре:
- химическую или электрохимическую подготовку поверхности тепловыделяющего элемента (далее - ТВЭЛ);
- внеконтурную (заводскую) пассивацию (предварительное оксидирование) отдельных элементов и узлов в окислительных средах, например, в сплаве для элементов активной зоны, в углекислом газе для парогенераторов, в водяном паре для чехлов системы управления и защиты (СУЗ);
- отбраковку ТВЭЛов с оболочками из стали по результатам контроля толщины и качества предварительно сформированного на поверхности ТВЭЛов оксидного слоя.
Эти операции, как правило, производятся на заводе, производящем элементы первого контура ядерного реактора.
Предварительная подготовка и пассивация значительных поверхностей первого контура, как описано в указанном выше аналоге - RU 2190699, может существенно снизить интегральное потребление сталями растворенного кислорода и соответственно облегчить работу массообменных аппаратов или других средств поддержания кислородного потенциала теплоносителя, особенно на начальном этапе эксплуатации ядерного реактора.
Однако в ходе реализации внеконтурной (заводской) пассивации были выявлены существенные технические недостатки, касающиеся, в основном, режима предварительного внеконтурного оксидирования ТВЭЛов с оболочками из стали типа ЭИ в открытых ваннах эвтектикой типа свинец-висмут. Внеконтурная пассивация (оксидирование) изделий в газовых средах (CO2, водяной пар) усложняла заводские технологии. Вместе с тем, необходимо отметить, что на этапе заводской пассивации присутствовала операция отбраковки готовых изделий, которая оказалась, судя по результатам эксплуатации установок, достаточно эффективной. При этом в ходе двух этапов отбраковки (после предварительных режимов подготовки стали и после заводской пассивации) брак составлял ~ 10% и более. Для внеконтурной пассивации парогенераторов, изготовленных из перлитных сталей, использовались специальные режимы их обработки в углекислом газе при повышенных температурах, которые совмещались с режимами отжига сварных соединений.
Следует при этом отметить, что выбор температурного и кислородного режимов заводской пассивации не является оптимальным, так как при такой обработке на поверхности сталей формируются оксидные пленки, включающие в свой состав плюмбоферритные фазы, не обладающие защитными свойствами.
Как показала практика, предварительная подготовка стальных поверхностей первого контура быстрого ядерного реактора с тяжелым жидкометаллическим теплоносителем по указанным выше причинам не может гарантировать достаточный уровень пассивации, при котором при взаимодействии поверхностей первого контура с жидкометаллическим теплоносителем (например, свинец, эвтектика свинец-висмут) на этих поверхностях будут минимизированы окислительные процессы.
В связи с изложенным выше для быстрых ядерных реакторов обычно предусматривают помимо заводской (внеконтурной) еще и внутриконтурную пассивацию стальных поверхностей, производимую в начальный период эксплуатации ядерного реактора.
В качестве ближайшего аналога изобретения выбрано техническое решение, относящееся к внутриконтурной пассивации конструкций энергетических быстрых реакторов, оснащенных средствами защиты от коррозии тепловыделяющих элементов и элементов конструкции первого контура, контактирующих с жидкометаллическим (свинцовым) теплоносителем (патент РФ RU 2456686, G21C 1/03, 20.07.2012).
Как указано в RU 2456686, при использовании свинцового теплоносителя возникают проблемы, связанные с коррозией элементов конструкции первого контура реактора. Изобретение согласно RU 2456686 направлено на подавление коррозии элементов конструкции первого теплового контура, в первую очередь элементов конструкции, установленных в активной зоне ядерного реактора за счет образования устойчивых пассивных карбидных пленок. Кроме того, изобретение обеспечивает защиту от механических повреждений антикоррозионных оболочек ТВЭЛов и защитных покрытий, образуемых на элементах конструкции первого контура. Решение данных задач связано с тем, что наиболее подвержены коррозии корпусные оболочки ТВЭЛов, находящиеся в сложных условиях эксплуатации, а именно в области горячего пятна, контактирующего со свинцовым теплоносителем в высокотемпературной части первого контура реактора. Существенное значение имеет так называемая динамическая коррозия, которая возникает и развивается вследствие циркуляции теплоносителя между участками первого контура, имеющими различную температуру. Чтобы обеспечить защиту от коррозии оболочек ТВЭЛ и элементов первого контура быстрого ядерного реактора со жидкометаллическим (свинцовым) теплоносителем, в теплоноситель введена пассивирующая добавка, в качестве которой использован углерод. При выполнении защитной оболочки корпусов ТВЭЛов из ванадия или ниобия (либо их сплава) происходит взаимодействие жидкометаллического теплоносителя (сплава свинец-углерод) с материалом защитной оболочки корпуса ТВЭЛа, что приводит к цементации поверхностного слоя оболочки. В результате этого на поверхности защитной оболочки образуется пассивное карбидное покрытие.
Данный способ имеет ограниченное применение, поскольку предполагает использование ТВЭЛов, в состав которых входит не только герметичный корпус, но и защитная оболочка, выполненная из ванадия или ниобия либо из сплава на основе ванадия и/или ниобия, а в качестве теплоносителя используется свинец. Ближайший аналог направлен на создание карбидной пленки, в основном, на поверхности защитной оболочки ТВЭЛов, при этом пассивация остальных элементов первого контура ядерного реактора (насосов, поверхности парогенераторов и др.), по-видимому, происходит менее интенсивно (в описании не указано, что материал этих элементов содержит ванадий, ниобий либо сплав на их основе).
Раскрытие изобретения
Задачей изобретения является обеспечение надежной внутриконтурной пассивации стальных поверхностей элементов первого контура ядерного реактора с тяжелым жидкометаллическим теплоносителем за счет создания в начальный период эксплуатации ядерного реактора условий для развития окислительного процесса, который обеспечит требуемый уровень пассивации.
Учитывая имеющиеся физические ограничения известных средств по возможной интенсивности введения кислорода в теплоноситель, не исключается ситуация, в которой потребление кислорода вследствие окислительных реакций будет превышать скорость его введения в тяжелый жидкометаллический теплоноситель, что означает невозможность поддержания требуемого кислородного режима указанного теплоносителя. Наиболее проблемным в этом плане является начальный этап эксплуатации ядерного реактора. Ситуация осложняется и тем, что начальный этап формирования оксидных пленок, формирующихся на стальных изделиях, погруженных в тяжелый жидкометаллический теплоноситель, в настоящее время не может быть корректно рассчитан. Поэтому погрешности в оценках начальных скоростей окисления сталей велики, и их трудно сопоставлять с возможностями средств технологии тяжелого жидкометаллического теплоносителя.
Решение этих задач позволяет при дальнейшей работе ядерного реактора поддерживать сохранность пассивирующей пленки на поверхности стальных элементов исключительно за счет использования штатных средств массообмена, используемых в ядерном реакторе.
Технология внутриконтурной пассивации с применением ИАЗ позволяет получить следующе технические результаты:
- обеспечить коррозионную стойкость образцов сталей, не подвергавшихся какой-либо предварительной специальной подготовке к эксплуатации в среде тяжелого жидкометаллического теплоносителя;
- снизить в начальный период эксплуатации ядерного реактора максимальные скорости потребления кислорода, которые по мере оксидирования поверхностей первого контура снижаются;
- уменьшить производительность по растворенному кислороду технологических средств введения кислорода в теплоноситель, поддерживающих в начальный период эксплуатации ядерного реактора необходимый кислородный режим.
С учетом того, что ТВЭЛы могут быть предварительно запассивированы, расход кислорода на их окисление может быть дополнительно существенно снижен.
На указанные технические результаты оказывают влияние следующие существенные признаки способа внутриконтурной пассивации стальных поверхностей ядерного реактора.
Способ внутриконтурной пассивации стальных поверхностей ядерного реактора, заключающийся в том, что создают защитную пленку на поверхности элементов первого контура ядерного реактора за счет введения в теплоноситель первого контура вещества, взаимодействующего с материалом элементов первого контура с образованием защитной пленки, при этом при монтаже ядерного реактора до заполнения его теплоносителем первого контура на место, предназначенное для размещения активной зоны, устанавливают имитатор активной зоны, заполняют реактор теплоносителем, разогревают теплоноситель до температур, обеспечивающих условия пассивации, после чего удаляют имитатор активной зоны и монтируют на его месте штатную активную зону.
При этом в качестве теплоносителя первого контура используется жидкометаллический теплоноситель.
При этом внутриконтурную пассивацию проводят в два этапа, причем первый этап проводится в режиме изотермической пассивации, при которой в жидкометаллический теплоноситель вводят кислород, а второй этап проводится в режиме неизотермической пассивации.
При этом режим изотермической пассивации проводится при температуре T=300°C-330°C.
При этом в жидкометаллический теплоноситель вводят кислород с термодинамической активностью а=10-1÷10-3.
При этом термодинамическую активность кислорода а=10-1÷10-3 и температуру Т=300°C-330°C поддерживают в течение времени t=220 (±20) часов.
При этом режим неизотермической пассивации проводится при включенном насосе или насосах.
При этом уровень мощности насоса или насосов равен 30 и более процентам от номинального.
При этом поддерживают концентрацию кислорода на уровне Co2=(1-4)*10-6% масс.
При этом термодинамическую активность кислорода а повышают до a=10-2÷10-4.
При этом уровень мощности насоса или насосов, равный 30 и более процентам от номинального, концентрацию кислорода на уровне Co2=(1-4)*10-6% масс. и термодинамическую активность кислорода a=10-2÷10-4 поддерживают в течение времени t=550 (±50) часов.
При этом имитатор активной зоны представляет собой макет активной зоны, моделирующий ее форму, взаимное расположение элементов активной зоны, а также их массово-габаритные характеристики.
Как и в прототипе (RU 2456686), для внутриконтурной пассивации стальных поверхностей первого контура быстрого ядерного реактора создают защитную пленку на поверхности элементов первого контура реактора за счет введения в тяжелый жидкий теплоноситель первого контура ядерного реактора вещества, взаимодействующего с материалом элементов первого контура с образованием защитной пленки.
Отличием заявленного способа является то, что при монтаже ядерного реактора до заполнения его жидким теплоносителем первого контура на штатное место, предназначенное для размещения активной зоны, устанавливают имитатор активной зоны (далее - ИАЗ), представляющий собой макет активной зоны, моделирующий ее форму, взаимное расположение элементов активной зоны (в том числе тепловыделяющих сборок), а также их массовые характеристики.
Далее заполняют реактор тяжелым жидкометаллическим теплоносителем, разогревают теплоноситель до температур, обеспечивающих условия пассивации.
Внутриконтурную пассивацию проводят в два этапа, первый из которых включает режим изотермической пассивации при температуре T=300-330°C при выключенных насосах при повышенной термодинамической активности кислорода a=10-1÷10-3 и поддерживают указанную температуру и активность кислорода в течение t=220±20 часов, а второй этап предусматривает неизотермическую пассивацию при включенных насосах при уровне их мощности, равном или более 30% от номинального, в течение t=550±50 часов, при этом поддерживают концентрацию кислорода на уровне Co2=(1-4)*10-6% масс. при повышенной термодинамической активности кислорода a=10-2÷10-4, после чего удаляют имитатор активной зоны и монтируют на его месте штатную активную зону, при этом температура теплоносителя растет от T=300-330°C до уровня, необходимого для пассивации (T=410-420°C).
В дальнейшем при работе в штатном режиме в жидкометаллическом теплоносителе поддерживается достигнутая концентрация кислорода.
Использование полномасштабного ИАЗ в режиме горячей обкатки, обеспечивающего моделирование обтекания всех элементов первого контура ядерного реактора, позволяет повысить коррозионную стойкость конструкционных сталей в первом контуре с тяжелым жидкометаллическим теплоносителем путем оксидирования сталей в среде тяжелого жидкометаллического теплоносителя и снизить потребную концентрацию кислорода в «штатном» режиме концентрации кислорода не менее (Co2=(1-10)*10-6% масс.)
Предварительная (внеконтурная, например, заводская) пассивация таких элементов первого контура, как активная зона и парогенераторы, позволяет снизить интенсивность потребления кислорода примерно на 50% при работе в штатном режиме, при этом наибольший эффект достигается при пассивации парогенераторов (~30%) за счет того, что они имеют большую площадь поверхности, контактирующую с жидкометаллическим теплоносителем. Существенным преимуществом заявленного способа является то, что при соблюдении указанных режимов формируются тонкие сплошные и прочные защитные (от коррозии) оксидные пленки. Как показали исследования, в штатном (рабочем) режиме для эффективного снижения интенсивности окислительного взаимодействия сталей с теплоносителем достаточно на начальном этапе работы ядерного реактора сформировать пленки толщиной ~1-2 мкм.
При использовании заявленного способа повреждения оксидного слоя, сформировавшегося в потоке тяжелого жидкометаллического теплоносителя в процессе стендовых коррозионных испытаний незапассивированных образцов сталей первого контура, при выбранной концентрации кислорода, не происходили какие-либо коррозионные повреждения при продолжении испытаний, а наоборот происходило «залечивание» повреждений и формирование требуемой толщины, прочности и сплошности оксидного слоя.
В обоснование заявленного способа внутриконтурной пассивации был выполнен значительный комплекс экспериментальных исследований. В частности, применительно к наиболее ответственным элементам первого контура - ТВЭЛам (сталь ЭП-823), при повышенных температурах (t=620-650°C), на базе 1000-5000 часов с хорошей статистикой (десятки кампаний) было показано, что предварительное оксидирование в расплаве обеспечивает надежную антикоррозионную защиту всей поверхности стали. Последнее обстоятельство является существенным, поскольку на образцах-свидетелях, выполненных без какой-либо защиты, в том числе без предварительного оксидирования, в ходе этих же испытаний время от времени со статистическим разбросом обнаруживались очаги коррозии питтингового характера.
Осуществление изобретения
Исходя из экспериментальных данных, наиболее приемлемым режимом является внутриконтурная пассивация с температурой 410-420°C при повышенной концентрации кислорода (Co2~1*10-5% масс.), что позволяет совместить режим пассивации, длящийся от 2 до 4 недель, с другими пусконаладочными работами и не приводит к неоправданному затягиванию пуска реакторной установки в эксплуатацию.
Реализация технологии внутриконтурной пассивации стальных поверхностей с использованием имитатора активной зоны быстрого ректора с тяжелым жидкометаллическим теплоносителем осуществляется в виде отдельных этапов и предусматривает обязательное выполнение следующих технологические операций:
- установку ИАЗ на штатное место активной зоны реакторной установки;
- заполнение реактора тяжелым жидкометаллическим теплоносителем;
- разогрев теплоносителя до температур, обеспечивающих условия пассивации;
- внутриконтурную пассивацию, которая включает режимы изотермической пассивации (T=300-330°C, t~220 часов) и режимы неизотермической пассивации (при уровне мощности насосов, более или равном 30% от номинального, в течение t~550 часов) при повышенной термодинамической активности кислорода (a=10-1÷10-3 в изотермическом режиме и a=10-2÷10-4 в неизотермическом режиме);
- удаление ИАЗ.
Далее после установки вместо ИАЗ штатной активной зоны при эксплуатации быстрого ядерного реактора в рабочем режиме постоянно поддерживают необходимую концентрацию кислорода, что обеспечивает непрерывную пассивацию стальных деталей, которая протекает при штатных параметрах по температуре теплоносителя, но менее интенсивно, чем при осуществлении заявленного способа с использованием ИАЗ.

Claims (12)

1. Способ внутриконтурной пассивации стальных поверхностей ядерного реактора, заключающийся в том, что создают защитную пленку на поверхности элементов первого контура ядерного реактора за счет введения в теплоноситель первого контура вещества, взаимодействующего с материалом элементов первого контура с образованием защитной пленки, при этом при монтаже ядерного реактора до заполнения его теплоносителем первого контура на место, предназначенное для размещения активной зоны, устанавливают имитатор активной зоны, заполняют реактор теплоносителем, разогревают теплоноситель до температур, обеспечивающих условия пассивации, после чего удаляют имитатор активной зоны и монтируют на его месте штатную активную зону.
2. Способ по п.1, отличающийся тем, что в качестве теплоносителя первого контура используется жидкометаллический теплоноситель.
3. Способ по п.2, отличающийся тем, что внутриконтурную пассивацию проводят в два этапа, причем первый этап проводится в режиме изотермической пассивации, при которой в жидкометаллический теплоноситель вводят кислород, а второй этап проводится в режиме неизотермической пассивации.
4. Способ по п.3, отличающийся тем, что режим изотермической пассивации проводится при температуре T=300°C-330°C.
5. Способ по п.4, отличающийся тем, что в жидкометаллический теплоноситель вводят кислород с термодинамической активностью a=10-1÷10-3.
6. Способ по п.5, отличающийся тем, что термодинамическую активность кислорода a=10-1÷10-3 и температуру T=300°C-330°C поддерживают в течение времени t=220(±20) часов.
7. Способ по п.3, отличающийся тем, что режим неизотермической пассивации проводится при включенном насосе или насосах.
8. Способ по п.7, отличающийся тем, что уровень мощности насоса или насосов равен 30 и более процентам от номинального.
9. Способ по п.7, отличающийся тем, что поддерживают концентрацию кислорода на уровне Co2=(1-4)*10-6% масс.
10. Способ по п.7, отличающийся тем, что термодинамическую активность кислорода а повышают до a=10-2÷10-4.
11. Способ по п.7, отличающийся тем, что уровень мощности насоса или насосов, равный 30 и более процентам от номинального, концентрацию кислорода на уровне Co2=(1-4)*10-6% масс. и термодинамическую активность кислорода a=10-2÷10-4 поддерживают в течение времени t=550(±50) часов.
12. Способ по п.1, отличающийся тем, что имитатор активной зоны представляет собой макет активной зоны, моделирующий ее форму, взаимное расположение элементов активной зоны, а также их массово-габаритные характеристики.
RU2013143712/07A 2013-09-30 2013-09-30 Способ внутриконтурной пассивации стальных поверхностей ядерного реактора RU2542329C1 (ru)

Priority Applications (12)

Application Number Priority Date Filing Date Title
RU2013143712/07A RU2542329C1 (ru) 2013-09-30 2013-09-30 Способ внутриконтурной пассивации стальных поверхностей ядерного реактора
CN201480050892.4A CN105556612B (zh) 2013-09-30 2014-03-19 一种核反应堆钢表面的原位钝化方法
JP2016545716A JP6374007B2 (ja) 2013-09-30 2014-03-19 原子炉の鋼表面のパッシベーションを現場で行うための方法
HUE14846822A HUE050408T2 (hu) 2013-09-30 2014-03-19 Eljárás atomreaktor acélfelületeinek in situ passziválására
PCT/RU2014/000171 WO2015047131A1 (ru) 2013-09-30 2014-03-19 Способ внутриконтурной пассивации стальных поверхностей ядерного реактора
UAA201602285A UA116667C2 (ru) 2013-09-30 2014-03-19 Способ внутриконтурной пассивации стальных поверхностей ядерного реактора
KR1020167007243A KR101896029B1 (ko) 2013-09-30 2014-03-19 원자로의 강 표면의 인시츄 부동태화 방법
EA201600212A EA032584B1 (ru) 2013-09-30 2014-03-19 Способ внутриконтурной пассивации стальных поверхностей ядерного реактора
CA2926597A CA2926597C (en) 2013-09-30 2014-03-19 Method for the in situ passivation of the steel surfaces of a nuclear reactor
EP14846822.6A EP3054453B1 (en) 2013-09-30 2014-03-19 Method for the in situ passivation of the steel surfaces of a nuclear reactor
US15/022,834 US10037822B2 (en) 2013-09-30 2014-03-19 Method for the in situ passivation of the steel surfaces of a nuclear reactor
ZA2016/01865A ZA201601865B (en) 2013-09-30 2016-03-15 Method for the in situ passivation of the steel surfaces of a nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013143712/07A RU2542329C1 (ru) 2013-09-30 2013-09-30 Способ внутриконтурной пассивации стальных поверхностей ядерного реактора

Publications (1)

Publication Number Publication Date
RU2542329C1 true RU2542329C1 (ru) 2015-02-20

Family

ID=52744080

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143712/07A RU2542329C1 (ru) 2013-09-30 2013-09-30 Способ внутриконтурной пассивации стальных поверхностей ядерного реактора

Country Status (12)

Country Link
US (1) US10037822B2 (ru)
EP (1) EP3054453B1 (ru)
JP (1) JP6374007B2 (ru)
KR (1) KR101896029B1 (ru)
CN (1) CN105556612B (ru)
CA (1) CA2926597C (ru)
EA (1) EA032584B1 (ru)
HU (1) HUE050408T2 (ru)
RU (1) RU2542329C1 (ru)
UA (1) UA116667C2 (ru)
WO (1) WO2015047131A1 (ru)
ZA (1) ZA201601865B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747969C1 (ru) * 2020-07-21 2021-05-18 Акционерное Общество "Нииэфа Им. Д.В. Ефремова" Устройство для формирования антикоррозионных слоев на поверхности тепловыделяющих элементов

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473184B (zh) * 2018-11-13 2020-03-17 中国核动力研究设计院 一种用于燃料辐照试验的嵌入式铅铋合金回路
CN114722740B (zh) * 2022-05-05 2023-07-18 西安交通大学 一种液态金属氧化腐蚀数值模拟计算方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2456686C1 (ru) * 2011-05-20 2012-07-20 Учреждение Российской академии наук Институт проблем безопасного развития атомной энергетики РАН Быстрый реактор с жидкометаллическим теплоносителем
US20120230459A1 (en) * 2011-03-10 2012-09-13 Westinghouse Electric Company Llc Method of improving wear and corrosion resistance of rod control cluster assemblies

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768637B2 (ja) * 1986-03-07 1995-07-26 株式会社日立製作所 配管内面に耐食性酸化皮膜を形成する方法及びその装置
US5108697A (en) * 1990-10-19 1992-04-28 Westinghouse Electric Corp. Inhibiting stress corrosion cracking in the primary coolant circuit of a nuclear reactor
JP2509981Y2 (ja) * 1991-06-06 1996-09-04 忠弘 大見 導電率測定用セル
JP4070362B2 (ja) * 1999-07-06 2008-04-02 株式会社東芝 金属注入方法
RU2190699C2 (ru) 2000-12-04 2002-10-10 Акционерное общество открытого типа "Всероссийский теплотехнический научно-исследовательский институт" Способ кислородной пассивации и очистки стальных труб
JP2003185788A (ja) * 2001-12-21 2003-07-03 Mitsui Eng & Shipbuild Co Ltd 液体金属中の溶解酸素濃度制御方法及び装置
JP3838909B2 (ja) * 2001-12-21 2006-10-25 三井造船株式会社 液体金属冷却材用構造材の腐食防止方法
RU2232937C1 (ru) 2003-05-20 2004-07-20 Общество с ограниченной ответственностью Научно-производственное предприятие "Энергетика и Наука" Способ очистки и пассивации тракта рабочей среды парового котла и паропроводов энергоблока
RU2303745C1 (ru) 2006-03-14 2007-07-27 Открытое акционерное общество "Всероссийский дважды ордена Трудового Красного Знамени теплотехнический научно-исследовательский институт" (ОАО "ВТИ") Способ кислородной очистки и пассивации внутренних поверхностей котельных труб
TWI411703B (zh) * 2006-10-02 2013-10-11 Ulvac Inc 鋁合金之表面處理法及鎂合金之表面處理法
CN100510134C (zh) * 2007-09-13 2009-07-08 上海大学 一种耐疖状腐蚀的改进型Zr-4合金及其制备方法
KR100964172B1 (ko) * 2008-04-08 2010-06-17 한국원자력연구원 니켈 금속 또는 니켈 합금의 도금에 의한 부식손상 결함방지 방법
JP2012172166A (ja) * 2011-02-18 2012-09-10 Mitsubishi Heavy Ind Ltd Fe−Cr合金部材の表面処理方法
CN202177558U (zh) * 2011-07-22 2012-03-28 中国科学院金属研究所 一种高温高压原位划伤及腐蚀磨损试验装置
JP2013164269A (ja) * 2012-02-09 2013-08-22 Hitachi-Ge Nuclear Energy Ltd 原子力プラント構成部材の線量低減方法及び原子力プラント
US9478319B2 (en) * 2013-01-28 2016-10-25 Areva Inc. Method of operating a power generator based on noble metal induced oxidation of a heat transfer surface

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120230459A1 (en) * 2011-03-10 2012-09-13 Westinghouse Electric Company Llc Method of improving wear and corrosion resistance of rod control cluster assemblies
RU2456686C1 (ru) * 2011-05-20 2012-07-20 Учреждение Российской академии наук Институт проблем безопасного развития атомной энергетики РАН Быстрый реактор с жидкометаллическим теплоносителем

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2747969C1 (ru) * 2020-07-21 2021-05-18 Акционерное Общество "Нииэфа Им. Д.В. Ефремова" Устройство для формирования антикоррозионных слоев на поверхности тепловыделяющих элементов

Also Published As

Publication number Publication date
EP3054453A4 (en) 2017-06-21
JP2016533509A (ja) 2016-10-27
US20160232990A1 (en) 2016-08-11
CA2926597C (en) 2019-04-23
UA116667C2 (ru) 2018-04-25
CN105556612B (zh) 2018-03-02
ZA201601865B (en) 2017-11-29
WO2015047131A1 (ru) 2015-04-02
EA032584B1 (ru) 2019-06-28
US10037822B2 (en) 2018-07-31
CA2926597A1 (en) 2015-04-02
CN105556612A (zh) 2016-05-04
KR20160064096A (ko) 2016-06-07
EP3054453B1 (en) 2020-05-06
EP3054453A1 (en) 2016-08-10
KR101896029B1 (ko) 2018-09-06
EA201600212A1 (ru) 2016-06-30
HUE050408T2 (hu) 2020-12-28
JP6374007B2 (ja) 2018-08-15

Similar Documents

Publication Publication Date Title
RU2542329C1 (ru) Способ внутриконтурной пассивации стальных поверхностей ядерного реактора
KR102455906B1 (ko) 원자력 발전소의 고온 기능 시험 동안 일차 계통 재료 부동태화를 위한 화학적 방법
KR101130829B1 (ko) 니켈-베이스 합금 원전 구조재의 1차 계통수 응력 부식 균열 개시 방지 방법
JP6450387B2 (ja) 原子炉の鋼表面の内輪郭不動態化方法
CN110991006B (zh) 一种基于裸露时间的压水堆大loca事故堆芯损伤评价方法
JP7132162B2 (ja) 炭素鋼配管の腐食抑制方法
JP2013164269A (ja) 原子力プラント構成部材の線量低減方法及び原子力プラント
Devendra et al. A Review on Noble Metals in Controlling Intergranular Stress Corrosion Cracking in BWRs
JP2004020411A (ja) 原子力発電プラントおよびその運転方法
RU2773222C1 (ru) Способ охлаждения и защиты корпуса ядерного реактора при его нагреве в аварийной ситуации и устройство для его осуществления
BR112016005701B1 (pt) Método para passivação no próprio local da superfície de aço de um reator nuclear
Little et al. Advanced Scale Conditioning Agent (ASCA) Applications: 2012 Experience Update
Blat-Yrieix et al. Feedback from Stainless Steels Corrosion related Issues during Maintenance Operation in Sodium Fast Reactor: SCC in caustic solution and Intergranular Corrosion by Acid Solution
JP2012225665A (ja) 原子力発電プラントの水質管理方法および水質管理装置並びに当該水質管理装置を具備した原子力発電プラント
Kim et al. A study on the Stress Corrosion Cracking reduction method of Steam Generator secondary side of KSNP
Cavagna et al. Phenix steam generator module repair: Sodium removal process, ultrasonic controls, and repair method
JPH0843586A (ja) 金属部品の表面における亀裂の発生又は成長を低減させるための方法
Saji et al. ICONE15-10556 PARADIGMS OF STRUCTURAL SAFETY OF AGED PLANTS: LESSONS LEARNED FROM RUSSIAN ACTIVITIES
Gane the text.
JPS61139676A (ja) 原子力プラントの腐食防止方法及び腐食防止装置