RU2531840C2 - Контур подачи топлива для авиационного двигателя - Google Patents
Контур подачи топлива для авиационного двигателя Download PDFInfo
- Publication number
- RU2531840C2 RU2531840C2 RU2012118663/06A RU2012118663A RU2531840C2 RU 2531840 C2 RU2531840 C2 RU 2531840C2 RU 2012118663/06 A RU2012118663/06 A RU 2012118663/06A RU 2012118663 A RU2012118663 A RU 2012118663A RU 2531840 C2 RU2531840 C2 RU 2531840C2
- Authority
- RU
- Russia
- Prior art keywords
- pump
- fuel
- outlet
- high pressure
- hydraulic distributor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/263—Control of fuel supply by means of fuel metering valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/236—Fuel delivery systems comprising two or more pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/30—Control of fuel supply characterised by variable fuel pump output
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/36—Control of fuel supply characterised by returning of fuel to sump
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Изобретение относится к контуру для подачи топлива для авиационного двигателя, содержащему систему нагнетания высокого давления для подачи топлива под высоким давлением к форсункам камеры сгорания, упомянутая система нагнетания высокого давления имеет первый и второй шестеренчатые насосы прямого вытеснения, которые одновременно приводятся в движение двигателем. Элемент гидравлического переключения вставлен между соответствующими выходами насосов. Этот элемент делает возможным в одном положении объединять потоки сброса из двух насосов, чтобы подать топливо под высоким давлением к форсункам камеры сгорания, и в другом положении сбрасывать часть или весь поток сброса из первого насоса в линию подачи низкого давления, элемент электронного управления переключением служит для того, чтобы перемещать элемент гидравлического переключения из одного положения в другое. Технический результат изобретения - упрощение и повышение надежности подачи топлива для авиационного двигателя. 2 н. и 7 з.п. ф-лы, 2 ил.
Description
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Изобретение относится к контуру подачи топлива для авиационного двигателя, более точно к контуру, который доставляет топливо для подачи к форсункам камеры сгорания двигателя и, по выбору, для использования в качестве рабочей жидкости для управления исполнительными механизмами элементов двигателя с изменяемой геометрией.
Обычно контур подачи топлива для авиационного двигателя имеет систему нагнетания, состоящую из насоса низкого давления взаимодействующего с насосом высокого давления. Насос высокого давления, как правило, в форме шестеренчатого насоса прямого вытеснения с постоянным объемом цилиндра, который приводится в движение двигателем через коробку приводов агрегатов (AGB). Функцией насоса является подача топлива под высоким давлением к форсункам камеры сгорания и к исполнительным механизмам элементов двигателя с изменяемой геометрией.
В определенных контурах подачи топлива насос высокого давления является двухступенчатым насосом, то есть он представляет собой две разные ступени шестерней, которые одновременно приводятся в движение двигателем, и которые имеют разные объемы цилиндра. С таким типом насоса, одна из ступеней выделена специально для питания форсунок камеры сгорания, в то время как другая ступень выделена для питания исполнительных механизмов для привода в действие элементов двигателя с изменяемой геометрией.
Какая бы ни была выбрана конфигурация насоса высокого давления, скорость с которой доставляется топливо, не соответствует реальным потребностям двигателя и превышает эти потребности на широком диапазоне частоты вращения двигателя. Поток топлива, который не расходуется топливным контуром на этих частотах вращения двигателя и поэтому возвращается, выше по потоку от насоса высокого давления.
Такой принудительный возврат топлива дает увеличение, во-первых, механической силы предназначенной для привода в движение насоса высокого давления, мощность которого не вносит вклад в силу тяги двигателя, и во-вторых, увеличение температуры топлива. Такой нагрев топлива оказывает влияние на общую температуру двигателя, так как топливо является «холодной» жидкостью, в то время как масло является «горячей» жидкостью. В результате возможность для охлаждения посредством топлива снижается на столько, что тепло необходимо рассеивать в воздухе посредством воздушного/масляных теплообменников, наличие которых идет в ущерб весу, пространству для установки и лобовому сопротивлению.
ЦЕЛЬ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Основная цель настоящего изобретения, таким образом, состоит в том, чтобы уменьшить вышеупомянутые недостатки, предлагая контур подачи топлива для авиационного двигателя, который дает возможность простым и надежным образом подать топливо к форсункам камеры сгорания двигателя и к исполнительным механизмам двигателя с изменяемой геометрией при использовании цилиндров разных объемов.
Эта цель достигается посредством контура подачи топлива для авиационного двигателя, контур включает в себя систему нагнетания высокого давления для подачи топлива под высоким давлением к форсункам камеры сгорания с линии подачи низкого давления, система нагнетания высокого давления имеет первый и второй шестеренчатые насосы прямого вытеснения, одновременно приводящиеся в движение двигателем,
контур подачи топлива отличается тем что, дополнительно включает:
элемент гидравлического переключения, вставленный между соответствующими выходами насосов и позволяющий, в одном положении объединить выходные потоки из двух насосов, чтобы подать топливо под высоким давлением к форсункам камеры сгорания, и в другом положении, чтобы сбросить часть или весь выходной поток первого насоса до линии подачи низкого давления; и
элемент электрического управления для управления элементом гидравлического переключения, чтобы заставить его переходить из одного положения в другое.
Насосы топливного контура согласно изобретению имеют цилиндры разного объема. В частности, первый насос, предпочтительно, имеет производительность насоса большую, чем второй насос. Соответственно, в зависимости от рабочей точки двигателя возможно заставить элемент переключения обеспечить, чтобы подаваемый поток топлива поступал либо из обоих насосов, или, иначе, только из одного из них (конкретно из второго насоса). Например, при запуске двигателя, который требует высокого расхода топлива, элемент переключения может работать так, что подаваемые потоки топлива поступают из обоих насосов. В рабочих точках между холостым режимом и крейсерским режимом, точки, которые не требуют такого высокого расхода, элемент переключения работает так, что подаваемый поток топлива поступает только из второго насоса. Наконец, для рабочих точек за пределами точек крейсерского режима, элемент переключения работает так, что подаваемый поток топлива поступает из обоих насосов.
По сравнению с известными решениями предшествующего уровня техники топливный контур согласно изобретению, таким образом, представляет значительные улучшения как в показателях теплотворности (посредством ограничения количества топлива, давление которого было поднято до высокого, и затем, впоследствии, возвращено), так и в показателях величины механической силы, которая была отобрана (где такой механический отбор, который не вносят вклад в тягу двигателя, может быть уменьшен).
Более того, контур прост для реализации, так как он требует предоставления только элемента гидравлического переключения и элемента электрического управления. Нет никакого влияния на другие детали топливного контура, и, в частности, нет влияния на регулирующий клапан или регулятор подачи топлива.
Топливный контур изобретения также представляет большую гибкость в использовании. В частности, для рабочих точек в пределах от холостого режима до крейсерского режима и, в которых только один насос активен, при условиях обледенения, которые требуют, чтобы топливо было подогрето, можно воздействовать на элемент переключения таким образом, чтобы задействовать другой насос. Более того, в случае превышения допустимой частоты вращения, можно выключить первый насос при помощи электрического управления, чтобы снизить скорость, с которой впрыскивается топливо до скорости, которая соответствует максимальной крейсерской скорости.
В заключение, топливный контур изобретения имеет преимущество быть пригодным для оптимизации определения объема цилиндра второго насоса, чтобы получить дополнительные тепловые улучшения и дополнительные улучшения механического отбора.
Предпочтительно, элемент переключения включает в себя элемент гидравлического переключения, вставленный между соответствующими выходами насосов, и заключает в себе гидравлический распределитель, имеющий впускное отверстие, подсоединенное к выходу первого насоса, выпускное отверстие высокого давления, подсоединенное к выходу второго насоса, и выпускное отверстие низкого давления, подсоединенное к линии подачи низкого давления посредством топливной возвратной трубки, впускное отверстие имеет возможность подсоединения к выпускному отверстию высокого давления или к выпускному отверстию низкого давления, в зависимости от управляемого положения золотника гидравлического распределителя, чтобы объединять выходные потоки из двух насосов, или чтобы сбрасывать часть или весь выходной поток из первого насоса до линии подачи низкого давления.
Устройство электрического управления может содержать электромагнитный клапан, установленный на топливном патрубке, который соединен, во-первых, с возвратной трубкой и, во-вторых, с одной из пилотных камер гидравлического распределителя. При таких условиях, другая пилотная камера гидравлического распределителя подсоединена к выходу второго насоса, пилотные камеры гидравлического распределителя сообщаются между собой через диафрагму.
Альтернативно, электрический элемент для управления элементом переключения может содержать электромагнитный клапан, расположенный на топливной возвратной трубке. При таких условиях, электромагнитный клапан может быть клапаном двухпозиционного типа или типом регулятора расхода.
Изобретение также предусматривает авиационный двигатель, включающий в себя контур подачи топлива, как описано выше.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Другие характеристики и преимущества настоящего изобретения следуют из последующего описания, приведенного со ссылкой на прилагаемые чертежи, которые показывают варианты осуществления, не обладающие ограничивающим характером. На фигурах:
Фиг.1 и 1A показывают первый вариант осуществления контура подачи топлива в соответствии с изобретением; и
Фиг.2 и 2A показывают второй вариант осуществления контура подачи топлива в соответствии с изобретением.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Первый вариант осуществления контура подачи топлива в соответствии с изобретением описан ниже со ссылкой на фиг.1 и 1A в контексте применения к газотурбинному самолетному двигателю. Тем не менее, область применения изобретения распространяется на газотурбинные двигатели других летательных аппаратов, в частности вертолетов, и на авиационные двигатели отличные от газотурбинных.
Контур 10 подачи топлива этого первого варианта осуществления изобретения содержит, стандартным образом, насос 12 низкого давления, топливно-масляный теплообменник 14, основной фильтр 16 топлива, систему 18 нагнетания высокого давления (положения теплообменника 14 и фильтра 16 показаны в виде примера; для этих элементов допускается расположение другим образом).
Насос 12 низкого давления подсоединен со стороны впуска к топливным бакам самолета (не показано), и со стороны выпуска к системе 18 накачивания высокого давления через линию 20 подачи низкого давления.
На выходе системы 18 нагнетания высокого давления контур 10 подачи топлива разделяется на множество отдельных топливных линий, а именно: топливная линия 22 для подачи топлива к форсункам 24 камеры сгорания, со скоростью, с которой топливо впрыскивается в форсунки, измеренной известным образом посредством регулятора 26 подачи топлива; другая топливная линия 28 для снабжения исполнительных механизмов элементов 30 двигателя с изменяемой геометрией; и линия 32 возврата топлива, предусмотренная для регулирующего клапана 34 для возврата неиспользованного потока топлива на линию 20 подачи низкого давления.
Система 18 нагнетания высокого давления является системой двухступенчатого типа, то есть, она состоит из двух шестеренчатых насосов 18а и 18b прямого вытеснения, которые одновременно приводятся в действие двигателем, и это дает разные объемы цилиндра. Более точно, первый насос 18a имеет объем цилиндра больше, чем у второго насоса 18b, то есть, в действии он допускает впрыск топлива со скоростью большей, чем скорость, с которой топливо впрыскивается вторым насосом в действии. Другими словами, первый насос 18a системы нагнетания высокого давления имеет производительность насоса большую, чем у второго насоса 18b.
Насос 12 низкого давления, а так же два насоса 18a и 18b системы 18 нагнетания высокого давления одновременно приводятся в движение валом высокого давления двигателя через AGB.
Согласно изобретению, контур 10 подачи топлива также включает элемент гидравлического переключения, который вставлен между соответствующими выходами 36a и 36b двух насосов 18a и 18b системы нагнетания высокого давления, вместе с элементом электрического управления для управления элементом переключения.
В первом варианте осуществления по фиг.1 и 1A, элемент переключения представлен в виде гидравлического распределителя 38. Под действием элемента электрического управления гидравлический распределитель 38 может принимать два разных положения: первое положение, в котором выходы 36a и 36b двух насосов 18a и 18b сообщаются друг с другом, чтобы объединить их потоки для подачи топлива под высоким давлением к форсункам 24 камеры сгорания и к исполнительным механизмам 30 с изменяемой геометрией (см. фиг.1); и второе положение, в котором выход первого насоса 18a сообщается с топливной возвратной трубкой 40 для сброса всего выходного потока с насоса 18a до линии 20 подачи низкого давления (см. фиг.1A).
Более точно, гидравлический распределитель 38 включает в себя впускное отверстие OA, подсоединенное к выходу 36a первого насоса 18a, выпускное отверстие U1 высокого давления, подсоединенное к выходу 36b второго насоса 18b, и выпускное отверстие U2 низкого давления, подсоединенное к топливной возвратной трубке 40.
Распределитель 38 также имеет золотник 42, линейно перемещаемый внутри цилиндра под действием элемента электрического управления. Положение золотника определяет два описанных выше положения: в первом положении, впускное отверстие OA подсоединено к выпускному отверстию U1 высокого давления таким образом, что выходы 36a и 36b двух насосов сообщаются друг с другом, и выпускное отверстие U2 низкого давления перекрыто (фиг.1); во втором положении, впускное отверстие OA сообщается с выпускным отверстием U2 низкого давления, так чтобы дать возможность топливу быть возвращенным на линию 20 подачи низкого давления через возвратную трубку 40, и выпускное отверстие U1 высокого давления перекрыто (фиг.1A)
Распределитель 38 так же имеет две пилотные камеры, а именно: первая пилотная камера P1 подсоединена к выходу 36b второго насоса 18b; и вторая пилотная камера P2 подсоединена к патрубку 44, который описан ниже, и в котором расположена пружина 46. Кроме того, пилотные камеры P1 и P2 сообщаются друг с другом посредством канала 48, проходящего прямо через золотник 42 и имеющего диафрагму 49, установленную в нем.
Элемент электрического управления для управления распределителем служит для воздействия на прилагаемое давление во второй пилотной камере P2, совместно с давлениями, прилагаемыми в пилотных камерах P1 и P2, которые действуют против друг друга для управления перемещением золотника 42 распределителя.
Для этой цели, элемент электрического управления распределителем содержит электромагнитный клапан 50 (например, электрически управляемый клапан), который расположен на патрубке 44, трубка подсоединена, во-первых, к топливной возвратной трубке 40 и, во-вторых, ко второй пилотной камере P2 распределителя.
Этот электромагнитный клапан 50 является клапаном двухпозиционного типа: когда электрически запитан, электромагнитный клапан открыт, и топливо может течь в патрубок 44 между второй пилотной камерой P2 и топливной возвратной трубкой 40. Тем не менее, когда клапан не запитан электрически, он закрыт, и в патрубке нет потоков топлива. В отличающемся варианте осуществления, электромагнитный клапан может быть клапаном типа, который регулирует расход топлива.
Таким образом, когда электромагнитный клапан 50 не запитан, давление внутри первой камеры P1 эквивалентно высокому давлению PHP на выходе 36b второго насоса 18b. Так как патрубок 44 закрыт, давление, которое имеется во второй камере P2, эквивалентно давлению PHP (эта пилотная камера P2 сообщается с другой пилотной камерой P1 через канал 48) плюс давление, оказываемое пружиной 46. Таким образом, сила во второй камере P2 больше и золотник 42 гидравлического распределителя передвигается в первое положение (как показано на фиг.1, где выходы двух насосов сообщаются друг с другом).
Когда электромагнитный клапан 50 запитан, давление внутри первой камеры P1 остается эквивалентным высокому давлению PHP. Так как патрубок 44 теперь открыт, давление, которое имеется во второй камере P2 эквивалентно давлению PLP, которое имеется на выходе из насоса низкого давления (эта пилотная камера P2 сообщается с линией 20 подачи низкого давления через патрубок 40 и обратную трубку 44), плюс сила, воздействующая пружиной 46. Таким образом, давление в первой камере P1 больше и золотник 42 гидравлического распределителя передвигается во второе положение (как показано на фиг.1A, где поток, впрыснутый первым наосом, возвращен).
Электромагнитный клапан 50 управляется устройством (ECU) управления двигателем, которое доставляет электроэнергию необходимую, чтобы запитать клапан.
Кроме того, возможно представить себе модификации этого первого варианта осуществления. В частности, золотник гидравлического распределителя и электромагнитный клапан могут быть объединены в один компонент.
Со ссылкой на фиг.2 и 2A следует описание контура подачи топлива 10' во втором варианте осуществления изобретения.
Отличие контура 10' от контура первого варианта осуществления, в частности, в том, что гидравлический распределитель 38' имеет впускное отверстие OA, подсоединенное к выходу 36a первого насоса 18a и только одно выпускное отверстие U1, которое подсоединено к выходу второго насоса 18b.
Кроме того, элемент электрического управления для управления гидравлическим распределителем 38' содержит электромагнитный клапан 50', который расположен непосредственно в топливной возвратной трубке 40.
Еще со ссылкой на контур первого варианта осуществления, первая пилотная камера P1 гидравлического распределителя подсоединена к выходу 36b второго насоса 18b, и вторая пилотная камера P2 подсоединена к выходу 36a первого насоса 18a.
Работа гидравлического распределителя, таким образом, изложена ниже. В начале, сила от пружины 46 отрегулирована так, что золотник 42 распределителя имеет такое положение, что впускное отверстие OA сообщается с выпускным отверстием U1 высокого давления так, чтобы выходы двух насосов сообщались друг с другом. После этого, в зависимости от положения электромагнитного клапана 50 работа отличается.
Когда электромагнитный клапан 50' не запитан (клапан закрыт), давление внутри второй камеры P2 гидравлического распределителя эквивалентно высокому давлению на выходе 36a первого насоса плюс сила от пружины 46. Как результат, золотник 42 гидравлического распределителя остается в положении, в котором впускное отверстие OA сообщается с выпускным отверстием U1 высокого давления (как показано на фиг.2).
Когда электромагнитный клапан 50' запитан (клапан открыт), давление внутри первой камеры P1 гидравлического распределителя эквивалентно высокому давлению топлива на выходе 36b второго насоса, в то время как вторая камера P2 подсоединена к патрубку 40 (топливо под низким давлением). Таким образом, золотник гидравлического распределителя перемещается во второе положение, в котором впускное отверстие OA и выпускное отверстие U1 высокого давления перекрыты (как показано на фиг.2A, где поток, впрыснутый первым насосом, возвращен возвратной топливной трубкой 40).
Как и в первом варианте осуществления, электромагнитный клапан 50' управляется посредством ECU, который поставляет необходимую электроэнергию для управления клапаном.
Кроме того, электромагнитный клапан 50' может быть клапаном двухпозиционного типа или он может быть типом регулятора расхода. Если он представляет собой тип регулятора расхода, возвращаемый поток топлива, впрыснутый первым насосом 18a, может таким образом преимущественно регулироваться.
Кроме того, возможно представить себе модификации этого второго варианта осуществления. В частности, электромагнитный клапан может быть установлен на узле между выходом 36a первого насоса 18a и патрубком 44. Таким образом, становится возможным убрать золотник из гидравлического распределителя вместе с функцией, которую он выполняет, совершая регулирование давления электромагнитного клапана (который затем должен иметь вход, подсоединенный к выходу 36a первого насоса, и два выхода: один, подсоединенный к возвратной трубке 40, и другой, подсоединенный к выходу 36b второго насоса). Кроме того, наличие диафрагмы 49 в канале 48, проходящем через золотник 42 гидравлического распределителя, не является существенным в этом варианте осуществления.
В более общем смысле, некоторые варианты применяют в обоих описанных выше вариантах осуществления.
В частности, возвратная топливная трубка 40 может вести к линии 20 подачи низкого давления, либо выше по потоку от теплообменника 12, как показано на фигурах, или между теплообменником 14 и основным топливным фильтром 16, или еще выше по потоку от основного топливного фильтра (выше по потоку от раздела между входами насосов 18a и 18b системы нагнетания высокого давления, или выше по потоку от входа первого насоса 18a).
Кроме того, в преимущественном предоставлении изобретения, которое является общим для обоих вариантов осуществления, обратный клапан 60 установлен на линии топлива, соединяя выпускное отверстие U1 высокого давления гидравлического распределителя 38, 38' с выходом 36b второго насоса 18b. В варианте осуществления по фиг.2, этот обратный клапан 60 должен быть расположен между топливной линией 28 для обеспечения исполнительных механизмов с изменяемой геометрией и выпускным отверстием U1 высокого давления. При таких обстоятельствах, обратный клапан, таким образом, служит для избегания паразитных потоков через возвратную топливную трубку 40 в линии низкого давления пока идет переключение.
Claims (9)
1. Контур (10, 10') подачи топлива для авиационного двигателя, контур содержит систему (18) нагнетания высокого давления для подачи топлива под высоким давлением к форсункам камеры сгорания (24) с линии (20) подачи низкого давления, система нагнетания высокого давления имеет первый и второй шестеренчатые насосы (18a, 18b) прямого вытеснения, которые одновременно приводятся в движение двигателем,
контур подачи топлива отличается тем, что дополнительно содержит:
элемент (38, 38') гидравлического переключения, вставленный между соответствующими выходами (36a, 36b) насосов и содержащий гидравлический распределитель (38, 38'), имеющий впускное отверстие (OA), подсоединенное к выходу (36a) первого насоса, выпускное отверстие (U1) высокого давления, подсоединенное к выходу (36b) второго насоса (18b), и выпускное отверстие (U2) низкого давления, подсоединенное к линии (20) подачи низкого давления посредством возвратной топливной трубки (40), впускное отверстие имеет возможность подсоединения в одном положении к выпускному отверстию высокого давления и в другом положении к выпускному отверстию низкого давления в зависимости от управляемого положения золотника гидравлического распределителя, чтобы объединять выходные потоки из двух насосов или чтобы сбрасывать часть или весь выходной поток из первого насоса до линии подачи низкого давления; и
элемент (50, 50') электрического управления для управления элементом гидравлического переключения, чтобы заставить его переходить из одного положения в другое.
контур подачи топлива отличается тем, что дополнительно содержит:
элемент (38, 38') гидравлического переключения, вставленный между соответствующими выходами (36a, 36b) насосов и содержащий гидравлический распределитель (38, 38'), имеющий впускное отверстие (OA), подсоединенное к выходу (36a) первого насоса, выпускное отверстие (U1) высокого давления, подсоединенное к выходу (36b) второго насоса (18b), и выпускное отверстие (U2) низкого давления, подсоединенное к линии (20) подачи низкого давления посредством возвратной топливной трубки (40), впускное отверстие имеет возможность подсоединения в одном положении к выпускному отверстию высокого давления и в другом положении к выпускному отверстию низкого давления в зависимости от управляемого положения золотника гидравлического распределителя, чтобы объединять выходные потоки из двух насосов или чтобы сбрасывать часть или весь выходной поток из первого насоса до линии подачи низкого давления; и
элемент (50, 50') электрического управления для управления элементом гидравлического переключения, чтобы заставить его переходить из одного положения в другое.
2. Контур по п.1, отличающийся тем, что элемент электрического управления содержит электромагнитный клапан (50), установленный на топливном патрубке (44), который соединен, во-первых, с возвратной трубкой (40) и, во-вторых, с одной из пилотных камер (P2) гидравлического распределителя.
3. Контур по п.2, отличающийся тем, что другая пилотная камера (P1) гидравлического распределителя соединена с выходом (36b) второго насоса (18b), пилотные камеры (P1, P2) гидравлического распределителя сообщаются друг с другом через диафрагму (49).
4. Контур по п.1, отличающийся тем, что электрический элемент для управления элементом переключения содержит электромагнитный клапан (50'), установленный на топливной возвратной трубке (40).
5. Контур по п.4, отличающийся тем, что электромагнитный клапан (50') является клапаном двухпозиционного типа.
6. Контур по п.4, отличающийся тем, что электромагнитный клапан (50') представляет собой тип регулятора расхода.
7. Контур по п.1, отличающийся тем, что обратный клапан (60) установлен между выпускным отверстием (U1) высокого давления гидравлического распределителя (38, 38') и выходом (36b) второго насоса (18b).
8. Контур по п.1, отличающийся тем, что первый насос (18a) имеет производительность насоса большую, чем второй насос (18b).
9. Авиационный двигатель включает в себя контур (10, 10') подачи топлива по п.1.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0956950A FR2950863B1 (fr) | 2009-10-06 | 2009-10-06 | Circuit d'alimentation en carburant d'un moteur d'aeronef |
FR0956950 | 2009-10-06 | ||
PCT/FR2010/052063 WO2011042641A1 (fr) | 2009-10-06 | 2010-09-30 | Circuit d'alimentation en carburant d'un moteur d'aeronef |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012118663A RU2012118663A (ru) | 2013-11-20 |
RU2531840C2 true RU2531840C2 (ru) | 2014-10-27 |
Family
ID=42226595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012118663/06A RU2531840C2 (ru) | 2009-10-06 | 2010-09-30 | Контур подачи топлива для авиационного двигателя |
Country Status (9)
Country | Link |
---|---|
US (1) | US9500135B2 (ru) |
EP (1) | EP2486262B1 (ru) |
JP (1) | JP5539525B2 (ru) |
CN (1) | CN102575587B (ru) |
BR (1) | BR112012008031B1 (ru) |
CA (1) | CA2775829C (ru) |
FR (1) | FR2950863B1 (ru) |
RU (1) | RU2531840C2 (ru) |
WO (1) | WO2011042641A1 (ru) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8793971B2 (en) * | 2010-05-25 | 2014-08-05 | Hamilton Sundstrand Corporation | Fuel pumping system for a gas turbine engine |
FR2970303B1 (fr) | 2011-01-06 | 2014-06-13 | Snecma | Circuit de carburant de turbomachine aeronautique a vanne de regulation de pression de carburant |
US8893466B2 (en) | 2011-03-18 | 2014-11-25 | Hamilton Sundstrand Corporation | Dual pump fuel flow system for a gas turbine engine and method of controlling |
US8408233B2 (en) * | 2011-03-18 | 2013-04-02 | Hamilton Sundstrand Corporation | Flow control system and method for controlling two positive displacement pumps |
FR2974818B1 (fr) | 2011-05-05 | 2013-05-24 | Alchimer | Procede de depot de couches metalliques a base de nickel ou de cobalt sur un substrat solide semi-conducteur ; kit pour la mise en oeuvre de ce procede |
US8944793B2 (en) * | 2012-06-05 | 2015-02-03 | Hamilton Sundstrand Corporation | Flow and pressure ripple reduction with advance dual gear and bearing face cut |
US8951021B2 (en) * | 2013-01-18 | 2015-02-10 | General Electric Company | Dual pump/dual bypass fuel pumping system |
WO2015015129A1 (fr) * | 2013-08-02 | 2015-02-05 | Snecma | Circuit carburant d'un moteur d'aéronef à vanne de retour de carburant commandée par un différentiel de pression d'une pompe basse pression du système carburant |
FR3009280B1 (fr) * | 2013-08-02 | 2017-05-26 | Snecma | Circuit carburant d'un moteur d'aeronef a vanne de retour de carburant commandee par un differentiel de pression d'une pompe basse pression du systeme carburant |
FR3028245B1 (fr) * | 2014-11-06 | 2019-05-24 | Airbus Operations | Circuit d'alimentation en carburant d'un aeronef |
US20170051682A1 (en) * | 2015-08-20 | 2017-02-23 | General Electric Company | System and method for abatement of dynamic property changes with proactive diagnostics and conditioning |
GB201518619D0 (en) * | 2015-10-21 | 2015-12-02 | Rolls Royce Controls & Data Services Ltd | Gear Pump |
US10100747B2 (en) * | 2015-11-18 | 2018-10-16 | General Electric Company | Fuel supply system for use in a gas turbine engine and method of controlling an overspeed event therein |
CN106762184B (zh) * | 2015-11-24 | 2019-10-18 | 西安航空动力控制科技有限公司 | 一种用于主备份转换的泵控制装置 |
US10428816B2 (en) * | 2016-10-24 | 2019-10-01 | Hamilton Sundstrand Corporation | Variable speed multi-stage pump |
FR3062421B1 (fr) * | 2017-01-30 | 2021-04-16 | Safran Aircraft Engines | Dispositif d'entrainement d'une pompe a carburant pour turbomachine |
EP3399174B1 (en) * | 2017-05-04 | 2020-11-04 | Volvo Car Corporation | Fuel system for a vehicle, a vehicle comprising such a fuel system and a method for supplying fuel to a combustion engine |
FR3074533B1 (fr) * | 2017-12-06 | 2020-11-06 | Safran Aircraft Engines | Circuit de commande hydraulique et pneumatique pour turboreacteur a echangeur de chaleur carburant/air |
JP6892017B2 (ja) * | 2018-08-31 | 2021-06-18 | 株式会社Ihi | 流体供給システム |
CN109250062B (zh) * | 2018-11-14 | 2024-03-15 | 北京空天高科技有限公司 | 一种平流层飞艇姿态调整装置 |
US11060461B2 (en) * | 2018-12-13 | 2021-07-13 | Hamilton Sundstrand Corporation | Fuel systems having reduced bypass flow |
US11603802B2 (en) | 2019-08-27 | 2023-03-14 | Pratt & Whitney Canada Corp. | Methods and systems for starting a gas turbine engine |
US20220403785A1 (en) * | 2019-08-30 | 2022-12-22 | Kawasaki Jukogyo Kabushiki Kaisha | Gas turbine engine |
US11649768B2 (en) * | 2021-08-20 | 2023-05-16 | Hamilton Sundstrand Corporation | Pump system for a gas turbine engine |
CN114109613A (zh) * | 2021-11-05 | 2022-03-01 | 中国航发西安动力控制科技有限公司 | 一种航空发动机两级齿轮泵载荷平衡装置 |
CN114033590B (zh) * | 2021-11-05 | 2023-08-04 | 中国航发西安动力控制科技有限公司 | 一种用于组合泵供油切换的开环调节控制装置 |
US11725585B2 (en) | 2021-11-30 | 2023-08-15 | Hamilton Sundstrand Corporation (HSC) | Fuel delivery pump selection |
US20230383736A1 (en) * | 2022-05-26 | 2023-11-30 | Hamilton Sundstrand Corporation | Dual pump fuel systems |
US11976599B1 (en) * | 2022-12-20 | 2024-05-07 | Hamilton Sundstrand Corporation | Pumps with backup capability |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5463863A (en) * | 1983-10-06 | 1995-11-07 | Rolls-Royce Plc | Fuel control system |
FR2764336A1 (fr) * | 1997-06-05 | 1998-12-11 | Hydraulique Chateaudun L | Dispositif d'alimentation en carburant d'un moteur rotatif a combustion |
EP1557546A1 (en) * | 2004-01-21 | 2005-07-27 | Goodrich Control Systems Ltd | Fuel supply system |
EP1715161A2 (en) * | 2005-04-22 | 2006-10-25 | Goodrich Control Systems Limited | Fuel system |
WO2007044020A2 (en) * | 2004-11-19 | 2007-04-19 | Goodrich Pump & Engine Control Systems, Inc. | Two-stage fuel delivery for gas turbines |
RU2364738C1 (ru) * | 2008-01-21 | 2009-08-20 | Открытое акционерное общество "Омское машиностроительное конструкторское бюро" | Система топливопитания газотурбинного двигателя |
RU2368794C1 (ru) * | 2008-03-26 | 2009-09-27 | Открытое акционерное общество "Омское машиностроительное конструкторское бюро" | Система топливоподачи газотурбинного двигателя |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1439764A (en) * | 1972-08-23 | 1976-06-16 | Lucas Industries Ltd | Fuel control systems for gas turbine engines |
US5245819A (en) * | 1990-07-09 | 1993-09-21 | General Electric Company | Gas turbine engine fuel and hydraulic fluid pumping system |
US6385960B1 (en) * | 1999-10-14 | 2002-05-14 | General Electric Company | Methods and apparatus for operation of gas turbines |
GB0023727D0 (en) * | 2000-09-27 | 2000-11-08 | Lucas Industries Ltd | Control system |
US6651441B2 (en) * | 2002-01-22 | 2003-11-25 | Hamilton Sundstrand | Fluid flow system for a gas turbine engine |
US6810674B2 (en) * | 2002-07-18 | 2004-11-02 | Argo-Tech Corporation | Fuel delivery system |
US7185485B2 (en) * | 2003-05-29 | 2007-03-06 | Honeywell International Inc. | Method and system for failure accommodation of gas generator fuel metering system |
US7624564B2 (en) * | 2004-07-23 | 2009-12-01 | Power Systems Mfg., Llc | Apparatus and method for providing an off-gas to a combustion system |
US7845177B2 (en) * | 2004-09-16 | 2010-12-07 | Hamilton Sundstrand Corporation | Metering demand fuel system |
US7401461B2 (en) * | 2005-05-27 | 2008-07-22 | Honeywell International Inc. | Reduced-weight fuel system for gas turbine engine, gas turbine engine having a reduced-weight fuel system, and method of providing fuel to a gas turbine engine using a reduced-weight fuel system |
GB0700511D0 (en) * | 2007-01-11 | 2007-02-21 | Goodrich Control Sys Ltd | Fuel System |
EP1959143B1 (en) * | 2007-02-13 | 2010-10-20 | Yamada Manufacturing Co., Ltd. | Oil pump pressure control device |
GB0705850D0 (en) * | 2007-03-27 | 2007-05-02 | Goodrich Control Sys Ltd | Fuel system |
US8172551B2 (en) * | 2009-03-25 | 2012-05-08 | Woodward, Inc. | Variable actuation pressure system for independent pressure control |
US8793971B2 (en) * | 2010-05-25 | 2014-08-05 | Hamilton Sundstrand Corporation | Fuel pumping system for a gas turbine engine |
US8991152B2 (en) * | 2011-01-24 | 2015-03-31 | Hamilton Sundstrand Corporation | Aircraft engine fuel system |
-
2009
- 2009-10-06 FR FR0956950A patent/FR2950863B1/fr not_active Expired - Fee Related
-
2010
- 2010-09-30 BR BR112012008031-8A patent/BR112012008031B1/pt active IP Right Grant
- 2010-09-30 RU RU2012118663/06A patent/RU2531840C2/ru active
- 2010-09-30 CN CN201080045387.2A patent/CN102575587B/zh active Active
- 2010-09-30 CA CA2775829A patent/CA2775829C/fr active Active
- 2010-09-30 WO PCT/FR2010/052063 patent/WO2011042641A1/fr active Application Filing
- 2010-09-30 EP EP10776769.1A patent/EP2486262B1/fr active Active
- 2010-09-30 US US13/500,499 patent/US9500135B2/en active Active
- 2010-09-30 JP JP2012532646A patent/JP5539525B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5463863A (en) * | 1983-10-06 | 1995-11-07 | Rolls-Royce Plc | Fuel control system |
FR2764336A1 (fr) * | 1997-06-05 | 1998-12-11 | Hydraulique Chateaudun L | Dispositif d'alimentation en carburant d'un moteur rotatif a combustion |
EP1557546A1 (en) * | 2004-01-21 | 2005-07-27 | Goodrich Control Systems Ltd | Fuel supply system |
WO2007044020A2 (en) * | 2004-11-19 | 2007-04-19 | Goodrich Pump & Engine Control Systems, Inc. | Two-stage fuel delivery for gas turbines |
EP1715161A2 (en) * | 2005-04-22 | 2006-10-25 | Goodrich Control Systems Limited | Fuel system |
RU2364738C1 (ru) * | 2008-01-21 | 2009-08-20 | Открытое акционерное общество "Омское машиностроительное конструкторское бюро" | Система топливопитания газотурбинного двигателя |
RU2368794C1 (ru) * | 2008-03-26 | 2009-09-27 | Открытое акционерное общество "Омское машиностроительное конструкторское бюро" | Система топливоподачи газотурбинного двигателя |
Also Published As
Publication number | Publication date |
---|---|
CA2775829A1 (fr) | 2011-04-14 |
US9500135B2 (en) | 2016-11-22 |
JP2013506794A (ja) | 2013-02-28 |
BR112012008031A2 (pt) | 2016-03-01 |
CA2775829C (fr) | 2017-02-28 |
CN102575587A (zh) | 2012-07-11 |
CN102575587B (zh) | 2015-07-29 |
US20120260658A1 (en) | 2012-10-18 |
JP5539525B2 (ja) | 2014-07-02 |
EP2486262A1 (fr) | 2012-08-15 |
EP2486262B1 (fr) | 2013-06-26 |
BR112012008031B1 (pt) | 2020-09-01 |
FR2950863B1 (fr) | 2012-03-02 |
RU2012118663A (ru) | 2013-11-20 |
FR2950863A1 (fr) | 2011-04-08 |
WO2011042641A1 (fr) | 2011-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2531840C2 (ru) | Контур подачи топлива для авиационного двигателя | |
RU2532081C2 (ru) | Контур подачи топлива для авиационного двигателя | |
US9617923B2 (en) | Engine fuel control system | |
CA2740743C (en) | Fuel delivery and control system including a variable displacement actuation pump supplementing a fixed displacement main pump | |
US8196385B2 (en) | Turbomachine control system | |
US8127548B2 (en) | Hybrid electrical/mechanical turbine engine fuel supply system | |
US7966995B2 (en) | Dual level pressurization control based on fuel flow to one or more gas turbine engine secondary fuel loads | |
CA2740619C (en) | Fuel delivery and control system including a positive displacement actuation pump with a variable pressure regulator supplementing a fixed displacement main fuel pump | |
US20170306856A1 (en) | Engine fuel control system | |
US7201128B2 (en) | Fuel supply system for internal combustion engine with direct fuel injection | |
US6675570B2 (en) | Low-cost general aviation fuel control system | |
US8869509B2 (en) | Accessory flow recovery system and method for thermal efficient pump and control system | |
JP2016503861A (ja) | 複式ポンプ/複式バイパス燃料ポンプシステム | |
KR20070012393A (ko) | 연료 시스템 열 이득을 가지는 엔진 오버-트러스트 보호에사용되는 2가지-배기량 설정의 가변 배기량 펌프 | |
CN107074374B (zh) | 用于流体分配系统的泵权限切换装置 | |
JP3910057B2 (ja) | 燃料計量ユニットによって制御される2レベル加圧バルブ | |
RU2324065C2 (ru) | Система регулирования подачи топлива в газотурбинный двигатель | |
GB2450973A (en) | Steam power cycle control | |
RU2413856C1 (ru) | Система топливоподачи газотурбинного двигателя |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |