RU2528986C1 - Способ получения ультранизкосернистых дизельных фракций - Google Patents

Способ получения ультранизкосернистых дизельных фракций Download PDF

Info

Publication number
RU2528986C1
RU2528986C1 RU2013125110/04A RU2013125110A RU2528986C1 RU 2528986 C1 RU2528986 C1 RU 2528986C1 RU 2013125110/04 A RU2013125110/04 A RU 2013125110/04A RU 2013125110 A RU2013125110 A RU 2013125110A RU 2528986 C1 RU2528986 C1 RU 2528986C1
Authority
RU
Russia
Prior art keywords
moo
coo
nio
adsorption
sulfur
Prior art date
Application number
RU2013125110/04A
Other languages
English (en)
Inventor
Владимир Константинович Смирнов
Капитолина Николаевна Ирисова
Людмила Петровна Пашкина
Елена Львовна Талисман
Original Assignee
Общество с ограниченной ответственностью "Компания КАТАХИМ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Компания КАТАХИМ" filed Critical Общество с ограниченной ответственностью "Компания КАТАХИМ"
Priority to RU2013125110/04A priority Critical patent/RU2528986C1/ru
Application granted granted Critical
Publication of RU2528986C1 publication Critical patent/RU2528986C1/ru

Links

Images

Abstract

Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа получения ультранизкосернистых дизельных фракций путем гидрооблагораживания при повышенных температурах и давлениях на алюмокобальт(или никель)молибденовых катализаторах. Процесс гидрооблагораживания проводят при температуре 360÷400°C, давлении не менее 30 ати, объемной скорости не более 1 час-1, соотношении водород: сырье не менее 300 нм33, а катализатор получают адсорбцией активных компонентов из низкопроцентных водных растворов солей на поверхности алюмооксидных носителей в две стадии с промежуточной сушкой: на первой вносят MoO3, на второй CoO(NiO)·MoO3 или CoO(NiO). Технический результат - получение ультранизкосернистых дизельных фракций. 1 з.п. ф-лы, 2 ил., 7 табл., 3 пр.

Description

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способам получения низкосернистых и ультранизкосернистых дизельных фракций.
Проблема получения низкосернистых и ультранизкосернистых дизельных фракций (с содержанием серы 10 ppm и менее) с температурой конца кипения 360°C и выше связана со специфическим распределением серусодержащих соединений, а именно преобладанием трудноудаляемой серы в составе алкилбензотиофенов и алкилдибензотиофенов, выкипающих в интервале температур 340-360°C. При вовлечении в процесс гидроочистки алкилбензолов скорость реакции обессеривания резко уменьшается. [1. Р.Г.Теляшев, А.Н.Обрывалина, Г.Г.Васильев и др. Пути решения проблемы получения малосернистого дизельного топлива, Мир нефтепродуктов, №12, 2011. Вестник нефтяных компаний, стр.20-23].
Для решения этой проблемы предлагаются различные способы удаления из состава сырья трудноудаляемых серусодержащих соединений. В частности, путем снижения температуры конца кипения дизельной фракции до 320-340°C. Главным недостатком этого способа является снижение объема целевой фракции.
Известен способ удаления полициклических соединений серы из предварительно гидроочищенной дизельной фракции путем их окисления с последующей адсорбцией продуктов [2. Патент СЩА №6171478, C10G 17/00, 09.01.2001; 3. В.Р.Нигматуллин, И.Р.Нигматуллин, А.Х.Шарипов и др. Получение дизельного топлива с низким содержанием серы. - Нефтепереработка и нефтехимия, №3, 2012, стр.14-17]. Недостатком: способа является сложное аппаратурное оформление, затрудняющее промышленное воплощение.
Известен способ селективного извлечения из дизельных фракций трудноудаляемых серусодержащих соединений жидкостной экстракцией [4. А.А.Гайле, Б.М.Сайфидинов, Л.Л.Колдобская. Экстракционная очистка дизельных фракций от сероорганических соединений и ароматических углеводородов. - Нефтепереработка и нефтехимия, №3, 2011, стр.11-15]. Недостатком способа являются невысокий выход рафинатов (75-85%) и проблемы утилизации отработанных экстрактов.
Предлагаются способы получения ультранизкосернистых дизельных фракций путем гидрооблагораживания на высокоэффективных катализаторах с применением двухреакторных и/или двухстадийных схем с введением свежего подпиточного водорода либо прямотоком, либо противотоком, и применением усовершенствованных внутренних устройств (распределительные устройства, системы подачи квенча и т.д.). [5. Н.Я Виноградова, Л.А. Гуляева, В.А. Хавкин «О современных технологиях глубокой гидроочистки дизельных топлив, - Технология нефти и газа, 2008, №1, стр.4-9]. Для получения целевого продукта с содержанием серы 10 ppm необходимо избыточное давление водорода 4,7-6,8 МПа, а при переработке сырья с высоким содержанием азоторганических соединений - выше 7,0 МПа. Это обстоятельство исключает возможность эффективного применения предлагаемых технологий на российских предприятиях, где давление водорода на установках переработки среднедистиллятных фракций составляет 3,0-4,0 МПа.
Наиболее близок по технической сущности и достигаемому эффекту к предлагаемому техническому решению ″Способ получения малосернистых среднедистиллятных фракций с улучшенными низкотемпературными характеристиками″ [пат. РФ №2311442, 10.05.2006 г.] путем обработки фракций, выкипающих в интервале 178-362°C в среде водорода под давлением 30-70 ати и температуре 320-380°C на оксидных алюмоникель(кобальт)молибденовых катализаторах гидрообессеривания при объемной скорости 2,0-4,0 час-1 для фракций с температурой конца кипения 210-280°C и при объемной скорости 1,5-3,0 час-1 в пересчете на катализатор обессеривания для фракций с началом кипения 210-280°C.
При реализации известного способа получены продукты с содержанием серы 10-60 ppm при переработке фракций с температурой конца кипения не выше 320°C. В продуктах с концом кипения 362°C содержание серы составляло 0,01-0,08 мас.% Как отмечено выше, это связано с особенностями серусодержащих соединений по их строению и количеству во фракциях 340-360°C. Ни один из этих продуктов не отвечает экологическим требованиям Евро-5 (не более 10 ppm).
Низкая эффективность известного способа в обессеривании связана с низкой эффективностью используемых катализаторов гидрообессеривания, синтезируемых путем введения в гидроксид алюминия водного раствора пероксомолибдофосфата аммония и нитрата никеля (или кобальта), перемешивания (гомогенизации), фильтрации, формования, сушки и прокаливания. В основе способа лежит усреднение состава гранул по всей их массе, без регулирования пористой структуры и распределения в ней активных компонентов. Последнее обстоятельство становится критично важным при сверхглубокой степени превращения серусодержащих, когда необходимо обеспечить контакт с активными центрами наиболее трудноудаляемых компонентов типа алкилбензотиофенов и алкилдибензотиофенов, выкипающих в интервале 340-360°C.
Условием такого контакта является протекание реакций гидрогенолиза серусодержащих соединений в пористой структуре катализаторов в кинетической области, т.е. в отсутствие диффузионных ограничений, а желательный результат - исчерпывающее превращение алкилбензотиофенов и алкилдибензотиофенов на высокоэффективных активных центрах.
К числу недостатков относится низкая прочность гранул катализатора - от 1,2 до 1,6 кг/мм диаметра. При этом прочность является одним из главных критериев применимости катализатора в промышленном масштабе при получении ультранизкосернистых дизельных фракций, требующем применения реакторов с загрузкой катализатора до 100 тонн.
Целью предлагаемого технического решения является разработка способа получения ультранизкосернистых дизельных фракций с содержанием серы 1÷10 ppm путем гидрооблагораживания при повышенных температуре и давлении на алюмоникель(кобальт)молибденовых катализаторах с высокой активностью и прочностью.
Поставленная цель достигается путем гидрооблагораживания дизельных фракций при температуре 360÷400°C и давлении водорода не менее 30 ати, объемной скорости не более 1,0 час-1, соотношении H2/сырье не менее 300 нм33 на алюмоникель(кобальт)молибденовых катализаторах, полученных путем адсорбции активных компонентов из низкопроцентных водных растворов солей на поверхность носителей в две стадии с промежуточной сушкой: на первой вносят MoO3, на второй -CoO(NiO)·MoO3 или CoO(NiO).
При этом концентрация однокомпонентных растворов составляет 5-13% MoO3 и 2,5-3,5% CoO(NiO), концентрация бинарных растворов составляет 2,5% CoO(NiO)-5% MoO3, объем адсорбционных растворов V=3Vпор, где Vпор - объем пор адсорбента.
При разработке способа получения катализатора использовано свойство поверхности алюмооксидных носителей адсорбировать MoO3 из водных растворов его соединений. Адсорбционное нанесение MoO3 на поверхность носителя создает благоприятные условия для синтеза активной фазы катализатора в оптимальной оксидной форме CoO(NiO):2MoO3 и распределения ее на поверхности пор внутри гранул катализатора. Это важно при сверхглубокой очистке дизельных фракций до очень низких остаточных концентраций трудноудаляемых серусодержащих соединений для обеспечения максимальной вероятности их контакта с наиболее активными центрами катализатора.
Предварительное нанесение путем адсорбции MoO3 на поверхность носителя, во-первых, обеспечивает однородность поверхности для последующей адсорбции комплексов CoO(NiO)-MoO3 или CoO(NiO) и синтеза активной фазы CoO(NiO)·MoO3 при прокаливании; во-вторых, создает прочное сцепление активной фазы с носителем через взаимодействие MoO3 с Al2O3 и тем самым обеспечивает термоустойчивость катализатора, т.е. способность выдерживать неоднократную окислительную регенерацию.
Ниже приведены примеры реализации способа приготовления катализатора и способа гидрооблагораживания на них дизельных фракций с получением ультранизкосернистых фракций с содержанием серы 1÷10 ppm.
Пример 1.
Получение полупродуктов катализаторов путем адсорбции MoO3 из водных растворов аммония молибденовокислого на алюмооксидные носители различного происхождения. Носители представляют собой экструдаты ⌀2,5-3,0 мм, полученные на основе гидроксида алюминия, произведенного
I - путем переосаждения гидраргиллита по нитратно-алюминатной схеме;
II - путем гидротермальной обработки продукта термохимической активации гидраргиллита при температуре 100-120°C;
III - то же, что II, но при температуре 140-160°C.
Таблица 1
Свойства носителей.
Прочность, кг/мм Удельная поверхность, Sуд., м2 pH водной суспензии Объем пор по воде, мл/г
I 1,6 300 6,28 70
II 3,0 200 5,8 59
III 1,8 230 6,0 60
Для приготовления раствора адсорбата использован аммоний молибденовокислый (NH4)6Mo7O24·4H2O, концентрацию по содержанию MoO3 задавали исходя из того, чтобы внести 5 мас.% MoO3 при заполнении пор носителя без избытка раствора. Объем раствора адсорбата в 3 раза превосходил объем пор порции носителя. Длительность контакта при перемешивании составляла 1 час с измерением концентрации и pH раствора исходного и через 0,5 и 1,0 часа.
Таблица 2
Характеристики процесса адсорбции MoO3 на носителях.
№№ п/п Носитель I Носитель II Носитель III
MoO3, г/л в растворе pH раствора МоО3, мас.% в полупродукте MoO3, г/л в растворе pH раствора MoO3, мас.% в полупродукте MoO3, г/л в растворе pH раствора MoO3, мас.% в полупродукте
Исх 69 5,14 - 86,5 5,24 - 81,0 5,16 -
0,5 час 38 5,95 8,74 58,0 5,64 8,86 47,8 5,92 8,19
1,0 час 35 6,08 8,92* 35,8 5,8 9,04* 41,5 6,08 8,30*
* Эти полупродукты после сушки при температуре 120°C использовали для адсорбции и CoO(NiO)·MoO3 или CoO(NiO) из водных растворов с 3-х кратным превышением объема над объемом пор адсорбента.
Пример 2.
Получение катализаторов.
Характеристики процесса адсорбции CoO(NiO)·MoO3 на полупродукте и состав полученных катализаторов на носителе I приведены в таблице 3. Концентрация CoO(NiO) и MoO3 в растворах задана из расчета внесения 2,5 мас.% CoO(NiO) и 5 мас.% MoO3 при заполнении пор полупродукта раствором без избытка.
Таблица 3
Характеристики процесса адсорбции CoOMoO3 на полупродуктах носителя I.
№№ п/п Длительность, час Раствор pH Содержание в растворе, г/л Содержание в катализаторе, мас.%
MoO3 CoO MoO3 CoO
Кт I-1Co Исх. MoO3 4,0 78,5 47,0 8,92* -
0,5 1,0 CoO Вода 4.11 4,23 37,7 31,5 44,2 44,5 15,55 14,23 4,44 4,08
Кт I-2Со Исх. MoO3 1,1 82,5 49,2 8,92* -
0,5 1,0 СоО Н3РО4 2,22 2,37 71,75 71,0 47,2 48,8 14,43 13,52 4,39 3,58
Вода
Кт I-3Со Исх. MoO3 1,95 80,0 51,2 8,92* -
0,5 1,0 CoO HNO3 2,59 44,25 49,5 15,7 4,67
Вода 2,76 32,0 48,25 14,18 4,1
* - полупродукт носителя I.
Адсорбционный характер взаимодействия компонентов раствора с поверхностью носителя I и полупродукта по данным табл.2 и 3 приводит к изменению концентрации по MoO3 и pH растворов во времени, а также к установлению равновесного соотношения CoO:MoO3 активных компонентов, наносимых на поверхность полупродукта во всех случаях, на уровне 1,5:1,0, а в общем слое на поверхности катализатора на уровне 1:(1,9-5-2,5). Равновесие достигается практически в течение 1 часа перемещивания носителя с раствором.
Равновесный характер состава активных компонентов на поверхности алюмооксидного носителя при внесении их путем адсорбции из водных растворов при различных pH наблюдается и при раздельном внесении MoO3 и CoO (табл.4). Так, через 1 час соотношение CoO:MoO3=1:2,02; при этом в исходном растворе при пропитке полупродукта появляется MoO3. По-видимому, избыточное по сравнению с равновесным содержанием MoO3 переходит в раствор.
Таблица 4
Носитель час MoO3, г/л pH MoO3, мас.% CoO, г/л MoO3, г/л pH Содержание в катализаторе
MoO3 CoO
Al2O3 Исх. 194 5,24 полупродукт 49,5 - 4,78 - -
I 0,5 138 6,02 18,4 46 3,3 3,0 14,16 3,35
1,0 130 6,1 46 36,0 2,73 14,27 3,70
Аналогично были получены CoO MoO3 катализаторы на носителях II и III и катализаторы NiO MoO3 на носителях I, II и III.
Таблица 5
№№ п/п Прочность на раскалывание, кг/мм диаметра Мольное соотношение
CoO:MoO3 NiO:MoO3
Кт I-1 Co 1,8 1:1,82
Кт I-2 Со 2,2 1:1,96
Кт I-3 Со 1,9 1:1,79
Кт I-1 Ni 2,0 1:1,93
Кт I-2 Ni 2,3 1:1,96
Кт I-3 Ni 1:1,98
Кт II-1 Со 3,31 1:2,17
Кт II-2 Co 4,57 1:2,0
Кт II-3 Co 3,69 1:2,14
Кт II-1 Ni 3,1 1:2,1
Кт II-2 Ni 4,2 1:2,0
Кт II-3 Ni 3,2 1:2,19
Кт III-1 Со 2,45 1:2,44
Кт III-2 Co 3,66 1:2,51
Кт III-3 Co 2,28 1:2,46
Кт III-1 Ni 2,4 1:1,94
Кт III-2 Ni 2,8 1:2,32
Кт III-3 Ni 3,1 1:2,07
Катализатор по прототипу 1,6
Пример 3.
Гидрооблагораживание дизельной фракции на катализаторах по примеру 2.
Сырье - дизельная фракция 180-360°C, содержание серы 0,78 мас.%
Условия процесса гидрооблагораживания: давление водорода 30 ат, соотношение Н2: сырье 300÷400 нм33, температура 360-400°C, объемная скорость 0,3-1 час-1.
Анализ гидрогенизатов на содержание серы по методу Ni-Ренея [ГОСТ 13380-81].
На фиг.1 и 2 представлены данные по остаточному содержанию серы в гидрогенизатах на катализаторах Кт II-2Со и Кт II-2 Ni в сопоставлении с промышленным катализатором РК-231М Co. В табл.6 приведены данные по остаточному содержанию серы в гидрогенизатах катализаторов, синтезированных на носителях I и III, полученных в условиях табл.7.
Активность катализаторов, полученных путем адсорбции на носителях I и III, приведена в табл.6.
Таблица 6
Катализатор Содержание серы в гидрогенизате,ррт
Режим 1 Режим 2 Режим 3 Режим 4
Кт I-1 Со 16,5 6,7 3,4 8,0
Кт I-3 Co 10,8, 8,0
Кт I-2 Ni 9,8 7,8 5,9
Кт III-1 Ni 13,7 5,0 3,0 4,3
Кт III-2 Co 9,9 8,3 3,4
Кт III-3 Ni 14,5 8,4 4,7 7,3
Катализатор по [6] 172,6 104,1 93,0 53,9
Таблица 7
Давление водорода 30 ати Т, °C V, час-1 Н2:сырье, нм33
Режим 1 340 0,5 300,
Режим 2 360 0,5 300
Режим 3 380 0,8 350
Режим 4 400 1,0 400
Рассмотрение всего объема информации по активности и прочности катализаторов, приготовленных по предлагаемому способу приводит к выводу о высокой эффективности предлагаемого способа получения ультранизкосернистых дизельных фракций с содержанием серы менее 10 ppm при температуре 360-400°C, давлении не менее 30 ати, объемной скорости не более 1 час-1, соотношении водород: сырье не менее 300 нм33.

Claims (2)

1. Способ получения ультранизкосернистых дизельных фракций путем гидрооблагораживания при повышенных температурах и давлениях на алюмокобальт(или никель)молибденовых катализаторах, отличающийся тем, что процесс гидрооблагораживания проводят при температуре 360÷400°C, давлении не менее 30 ати, объемной скорости не более 1 час-1, соотношении водород: сырье не менее 300 нм33, а катализатор получают адсорбцией активных компонентов из низкопроцентных водных растворов солей на поверхности алюмооксидных носителей в две стадии с промежуточной сушкой: на первой вносят MoO3, на второй CoO(NiO)·MoO3 или CoO(NiO).
2. Способ по п.1 отличающийся тем, что концентрация однокомпонентных растворов составляет 5-13% MoO3 и 2,5-3,5% CoO(NiO), концентрация бинарных растворов CoO(NiO)·MoO3 при pH 1÷4 составляет 2,5% CoO(NiO)-5% MoO3; объем адсорбционных растворов V=3Vпор, где Vпор - объем пор адсорбента.
RU2013125110/04A 2013-05-30 2013-05-30 Способ получения ультранизкосернистых дизельных фракций RU2528986C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013125110/04A RU2528986C1 (ru) 2013-05-30 2013-05-30 Способ получения ультранизкосернистых дизельных фракций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013125110/04A RU2528986C1 (ru) 2013-05-30 2013-05-30 Способ получения ультранизкосернистых дизельных фракций

Publications (1)

Publication Number Publication Date
RU2528986C1 true RU2528986C1 (ru) 2014-09-20

Family

ID=51583161

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013125110/04A RU2528986C1 (ru) 2013-05-30 2013-05-30 Способ получения ультранизкосернистых дизельных фракций

Country Status (1)

Country Link
RU (1) RU2528986C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2793939C1 (ru) * 2019-03-15 2023-04-10 ЛАММУС ТЕКНОЛОДЖИ ЭлЭлСи Конфигурация производства олефинов
US11697778B2 (en) 2019-03-15 2023-07-11 Lummus Technology Llc Configuration for olefins production

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1774555A1 (ru) * 1990-11-11 1996-10-27 Электрогорский филиал Всесоюзного научно-исследовательского института по переработке нефти Способ получения катализатора для гидроочистки нефтяных дистиллятов
RU2311442C1 (ru) * 2006-05-10 2007-11-27 ООО "Компания Катахим" Способ получения малосернистых среднедистиллятных фракций с улучшенными низкотемпературными характеристиками
RU2342994C1 (ru) * 2007-08-15 2009-01-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления (варианты) и процесс гидрообессеривания дизельных фракций
RU2472583C1 (ru) * 2011-06-09 2013-01-20 Общество с ограниченной ответственностью Научно Производственная фирма "ОЛКАТ" Шариковый катализатор для гидроочистки нефтяных фракций и способ его приготовления
EP2586529A1 (en) * 2010-06-25 2013-05-01 JX Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1774555A1 (ru) * 1990-11-11 1996-10-27 Электрогорский филиал Всесоюзного научно-исследовательского института по переработке нефти Способ получения катализатора для гидроочистки нефтяных дистиллятов
RU2311442C1 (ru) * 2006-05-10 2007-11-27 ООО "Компания Катахим" Способ получения малосернистых среднедистиллятных фракций с улучшенными низкотемпературными характеристиками
RU2342994C1 (ru) * 2007-08-15 2009-01-10 Институт Катализа Им. Г.К. Борескова Сибирского Отделения Российской Академии Наук Катализатор, способ его приготовления (варианты) и процесс гидрообессеривания дизельных фракций
EP2586529A1 (en) * 2010-06-25 2013-05-01 JX Nippon Oil & Energy Corporation Hydrodesulfurization catalyst for hydrocarbon oil, production method for same, and hydrorefining method for hydrocarbon oil
RU2472583C1 (ru) * 2011-06-09 2013-01-20 Общество с ограниченной ответственностью Научно Производственная фирма "ОЛКАТ" Шариковый катализатор для гидроочистки нефтяных фракций и способ его приготовления

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2793939C1 (ru) * 2019-03-15 2023-04-10 ЛАММУС ТЕКНОЛОДЖИ ЭлЭлСи Конфигурация производства олефинов
US11697778B2 (en) 2019-03-15 2023-07-11 Lummus Technology Llc Configuration for olefins production
US11840673B2 (en) 2019-03-15 2023-12-12 Lummus Technology Llc Configuration for olefins production
RU2815696C2 (ru) * 2019-03-15 2024-03-20 ЛАММУС ТЕКНОЛОДЖИ ЭлЭлСи Конфигурация производства олефинов

Similar Documents

Publication Publication Date Title
KR101399700B1 (ko) 나프타 수소첨가탈황을 위한 고온 알루미나 지지체를 가진 선택적 촉매
EP3363878A1 (en) Hydroprocessing catalyst and method of making the same
RU2651269C2 (ru) Способ гидроочистки вакуумного дистиллята, использующий последовательность катализаторов
KR102277831B1 (ko) 수소화처리 촉매의 제조 방법
WO1993021283A1 (en) Demetallation catalyst
EP1702682A1 (en) Hydrogenation desulfurization catalyst for petroleum hydrocarbon and method of hydrogenation desulfurization using the same
JPS582998B2 (ja) 重質炭化水素の水素処理及び分解方法
JP2015508380A (ja) シリカ含有アルミナ担体、それから生じさせた触媒およびそれの使用方法
WO2011069150A2 (en) Method for making a hydroprocessing catalyst
JP2007152324A (ja) 炭化水素油の水素化処理触媒およびその製造方法、並びに炭化水素油の水素化処理方法
RU2639159C2 (ru) Катализатор, способ приготовления носителя, способ приготовления катализатора и способ гидроочистки углеводородного сырья
JPS5857221B2 (ja) スイソカシヨクバイ
JPS59132945A (ja) 重質炭化水素油の水素化処理方法
US4318801A (en) Supported nickel-molybdenum catalyst, preparation thereof, and hydrodesulfurization of hydrocarbon fractions using same
RU2528986C1 (ru) Способ получения ультранизкосернистых дизельных фракций
JP4576334B2 (ja) 軽油留分の水素化処理方法
JP4578182B2 (ja) 重質炭化水素油の水素化処理方法
KR20050008513A (ko) 가솔린 유분의 수소화 탈황 촉매 및 수소화 탈황방법
JP2005314657A (ja) 重質炭化水素油の水素化処理方法
RU2387475C1 (ru) Катализатор, способ его приготовления и процесс гидроочистки углеводородного сырья
JP4969754B2 (ja) 軽油留分の水素化脱硫方法及び水素化脱硫用反応装置
KR101514954B1 (ko) 가솔린 기재의 제조방법 및 가솔린
JPH03273092A (ja) 残油の水素化処理触媒
US10112182B2 (en) Catalytic adsorbent for the capture of arsenic and the selective hydrodesulfurization of gasolines
JP2003286493A (ja) 接触分解ガソリンの脱硫方法