RU2527140C2 - Способ калибровки инерциальных датчиков - Google Patents

Способ калибровки инерциальных датчиков Download PDF

Info

Publication number
RU2527140C2
RU2527140C2 RU2011142833/28A RU2011142833A RU2527140C2 RU 2527140 C2 RU2527140 C2 RU 2527140C2 RU 2011142833/28 A RU2011142833/28 A RU 2011142833/28A RU 2011142833 A RU2011142833 A RU 2011142833A RU 2527140 C2 RU2527140 C2 RU 2527140C2
Authority
RU
Russia
Prior art keywords
inertial
temperature
equipment
working
sensors
Prior art date
Application number
RU2011142833/28A
Other languages
English (en)
Other versions
RU2011142833A (ru
Inventor
Дэмиен ДУША
Original Assignee
Лэйка Геосистемс Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009905218A external-priority patent/AU2009905218A0/en
Application filed by Лэйка Геосистемс Аг filed Critical Лэйка Геосистемс Аг
Publication of RU2011142833A publication Critical patent/RU2011142833A/ru
Application granted granted Critical
Publication of RU2527140C2 publication Critical patent/RU2527140C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/183Compensation of inertial measurements, e.g. for temperature effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Operation Control Of Excavators (AREA)
  • Numerical Control (AREA)
  • Gyroscopes (AREA)
  • Stored Programmes (AREA)

Abstract

Предложенное изобретение относится к средствам калибровки инерциальных датчиков, в частности, в полевых условиях. Предложенный способ калибровки инерциальных датчиков, установленных на рабочем оборудовании, включает в себя сбор данных от одного или более инерциальных датчиков и одного или более температурных датчиков, расположенных вблизи инерциальных датчиков, в период, когда оборудование не работает, и корректировку математической модели температурной систематической ошибки для инерциальных датчиков на основе собранных данных от инерциальных датчиков и температурных датчиков, при этом сбор данных начинают через заранее установленное время после выключения рабочего оборудования, при этом на инерциальные датчики и температурные датчики, образующие сенсорную подсистему, периодически подают питание для сбора данных в период, когда рабочее оборудование не работает. Инерциальное измерительное устройство, реализующее указанный способ, включает сенсорную подсистему, содержащую один или более инерциальных датчиков, один или более температурных датчиков, связанных с инерциальными датчиками, маломощный блок дискретизации, выполненный с возможностью сбора данных от инерциальных датчиков и температурных датчиков, блок обработки, имеющий запоминающее устройство для хранения математической модели температурной систематической ошибки инерциальных датчиков, и регулятор мощности, выполненный с возможностью избирательной подачи питания на сенсорную подсистему для сбора данных от инерциальных датчиков и температурных датчиков во время, когда рабочее оборудование, в котором установлено инерциальное и

Description

ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к способам калибровки инерциальных датчиков и к инерциальным измерительным устройствам. В частности, изобретение относится к способам автоматической калибровки инерциальных датчиков в полевых условиях, хотя возможны и другие применения.
УРОВЕНЬ ТЕХНИКИ
Точность измерений с использованием инерциальных датчиков существенно зависит от "углового пространственного положения" рабочего оборудования (т.е. от угла поворота рабочего оборудования относительно системы отсчета, обычно гипотетического уровня земной поверхности). В точных агротехнических измерениях знание углового пространственного положения сельскохозяйственного транспортного средства требуется для компенсации движений антенны GNSS-приемника (глобальной навигационной спутниковой системы) из-за неровностей поверхности Земли. При выполнении топографо-геодезических работ GNSS-антенны часто монтируют на мачте, при этом для точного определения положения основания мачты необходимо определить ее угловое пространственное положение.
К инерциальным датчикам относятся гироскопы, которые измеряют угловую скорость, и акселерометры, измеряющие линейное ускорение. Результаты измерений, выполненных с помощью инерциальных датчиков, включают систематическую ошибку и другие ошибки, которые следует компенсировать. Результат измерения инерциальным датчиком можно представить следующим уравнением:
Figure 00000001
,
где:
Figure 00000002
- значение измеряемой величины, полученное инерциальным датчиком;
K - масштабный коэффициент (чувствительность) датчика;
a - истинное значение измеряемой величины;
bt - случайная ошибка измерения, произвольно изменяющаяся во времени;
B(T) - температурная ошибка измерения;
ωn - собственные шумы датчика, принимаемые как белый и гауссовский шум.
Приведенное выше уравнение в равной степени применимо как к акселерометрам, так и к гироскопам, измеряющим соответственно ускорение и скорость вращения. Когда рабочее оборудование неподвижно, показания акселерометров включают составляющую, связанную с ускорением свободного падения, величина которой зависит от углового пространственного положения оборудования, а показания гироскопов включают составляющую, связанную со скоростью вращения Земли, при этом эти показания также зависят от углового пространственного положения оборудования. При использовании проградуированных в заводских условиях гироскопов вклад скорости вращения Земли достаточно мал по сравнению с ошибками другого происхождения. Для упрощения анализа такой вклад можно считать нулевым, и это не приведет к значительной погрешности. При достаточном количестве измерений при одной и той же температуре составляющая, связанная с собственными шумами датчика, мала и может быть включена в случайную ошибку. Соответственно, приведенное выше уравнение можно упростить:
Figure 00000003
,
где:
Figure 00000002
- значение измеряемой величины, полученное инерциальным датчиком;
Figure 00000004
- истинное значение измеряемой величины с учетом масштабного коэффициента;
ε - другие ошибки, представленные суммарно в виде отдельного слагаемого.
Основной ошибкой является температурная систематическая ошибка. Температурная ошибка не является величиной постоянной и меняется при изменении температуры в диапазоне рабочих температур инерциальных датчиков. Температурная ошибка не является постоянной величиной и для данной температуры, поскольку она медленно изменяется во времени в связи со старением датчика.
Для компенсации температурной ошибки некоторые проградуированные в заводских условиях гироскопы имеют исходную калибровку, включающую математическую модель упомянутой температурной систематической ошибки. Из-за нехватки времени и ограничения на издержки калибровка может учитывать только действительные (фактические) колебания температуры инерциального датчика в пределах ограниченного температурного диапазона, а не всего диапазона температур, в котором датчик в конечном счете может работать. По мере старения датчика математическая модель температурной ошибки должна корректироваться. Такая корректировка обычно выполняется ежегодно путем калибровки в заводских условиях или путем калибровки с помощью других датчиков (например, с использованием множества GPS-антенн). Однако такие подходы увеличивают расходы и усложняют получение от инерциальных датчиков точных значений углового пространственного положения объекта.
Когда рабочее оборудование, например транспортное средство, работает, трудно отличить изменения сигнала инерциального датчика, вызванные движением машины и вибрацией, от изменений сигнала, обусловленных изменением температуры. Поэтому полезно оценивать выходной сигнал инерциального датчика в период, когда транспортное средство неподвижно.
В патентах US 6374190, US 657795 и US 5297028 описан процесс автоматической калибровки инерциальных датчиков в полевых условиях, при этом использовали выборочные значения сигналов отдельного инерциального датчика и температурного датчика для каждого инерциального датчика, полученные в то время, когда транспортное средство неподвижно, но находится в исправном состоянии и готово к работе. В патенте US 5527003 описан процесс автоматической калибровки в полевых условиях, осуществляемый в течение так называемого "периода, предшествующего выруливанию самолета". В этот период замеряют уход гироскопа во всем температурном диапазоне. Способы автоматической калибровки на месте эксплуатации, изученные по предшествующим патентным документам, в сущности, не свободны от проблем точности измерения, так как полученные во время испытаний сигналы инерциальных датчиков включают погрешности, вызванные вибрацией двигателей транспортных средств. Кроме того, отсчеты берут в ограниченном температурном диапазоне.
Цель настоящего изобретения состоит в попытке преодолеть или, по меньшей мере, ослабить одну или более описанных выше проблем и/или предоставить потребителю полезный или коммерчески выгодный ассортимент возможностей.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Одним из объектов изобретения является способ калибровки инерциальных датчиков, установленных на рабочем оборудовании. Способ включает сбор данных от одного или более инерциальных датчиков и одного или более температурных датчиков, расположенных вблизи инерциальных датчиков, в период, когда оборудование не работает, и корректировку математической модели температурной систематической ошибки для инерциальных датчиков на основе собранных данных от инерциальных датчиков и температурных датчиков.
В предпочтительном варианте при осуществлении способа дополнительно определяют, работает оборудование или нет.
Рабочим оборудованием может быть транспортное средство, при этом работает транспортное средство или не работает, определяют тем, включено оно или выключено.
Рабочим оборудованием может быть топографо-геодезическое оборудование, при этом работает оно или не работает, определяют тем, включено это оборудование или выключено.
В предпочтительном варианте при осуществлении способа дополнительно определяют, испытывает ли рабочее оборудование вибрацию или нежелательные движения в период, когда рабочее оборудование не работает, после чего любые данные, собранные в условиях вибрации или движения, отбрасывают.
Способ может включать корректировку математической модели температурной систематической ошибки, осуществляемую путем ее аппроксимации к собранным данным и корректировки математической модели температурной систематической ошибки за счет коэффициентов функции, описывающей в виде кривой математическую модель температурной систематической ошибки.
Корректировка математической модели температурной систематической ошибки включает сравнение данных, собранных в течение одного цикла, когда рабочее оборудование не работало, с собранными данными предшествовавшего цикла, когда рабочее оборудование не работало, и присвоение большего веса данным, собранным в течение более позднего цикла.
При осуществлении способа на инерциальные датчики и температурные датчики, образующие сенсорную подсистему, периодически подают питание для сбора данных в период, когда рабочее оборудование не работает.
Предпочтительно сбор данных начинают через заранее установленное время после того, как будет выключено рабочее оборудование.
Другим объектом группы изобретений является инерциальное измерительное устройство, включающее сенсорную подсистему, содержащую один или более инерциальных датчиков, один или более температурных датчиков, связанных с инерциальными датчиками, маломощный блок дискретизации, выполненный с возможностью сбора данных от инерциальных датчиков и температурных датчиков, блок обработки, имеющий запоминающее устройство для хранения математической модели температурной систематической ошибки инерциальных датчиков, и регулятор мощности, выполненный с возможностью избирательной подачи питания на сенсорную подсистему для сбора данных от инерциальных датчиков и температурных датчиков во время, когда рабочее оборудование, в котором установлено инерциальное измерительное устройство, не работает.
В предпочтительном варианте осуществления изобретения инерциальное измерительное устройство содержит таймер, который в период, когда оборудование не работает, включает регулятор мощности для периодической подачи энергии на сенсорную подсистему.
В предпочтительном варианте осуществления изобретения маломощный блок дискретизации включает маломощный процессор, а блок обработки включает основной процессор, который потребляет относительно больше энергии, чем маломощный процессор.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Предпочтительные варианты осуществления изобретения будут описаны более полно со ссылкой на следующие чертежи.
На Фиг.1 показана структурная схема известного инерциального измерительного устройства.
На Фиг.2 представлена структурная схема одного из вариантов осуществления инерциального измерительного устройства в соответствии с настоящим изобретением.
На Фиг.3 представлен алгоритм способа калибровки инерциальных датчиков измерительного устройства с использованием математической модели температурной систематической ошибки.
На Фиг.4 представлен график изменения во времени температуры инерциального датчика в стадии охлаждения, когда температура датчика падает от значения рабочей температуры до температуры окружающей среды.
На Фиг.5 представлен график изменения во времени температуры инерциального датчика в ситуации, когда температура окружающей среды с течением времени меняется.
На Фиг.6 показана в виде кривой модель температурной систематической ошибки для инерциального измерительного устройства, представленного на Фиг.2.
На Фиг.7 показаны участки кривой температурной систематической ошибки, зарегистрированные в режиме дискретизации инерциального измерительного устройства, представленного на Фиг.2.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Как показано на Фиг.1, известное инерциальное измерительное устройство 1 содержит один или несколько инерциальных датчиков 2, блок обработки 3 и регулятор мощности 4, управляющий подачей питания на блок обработки 3, и инерциальные датчики 2. Блок обработки 3 содержит процессор 6 и запоминающее устройство 7. Модель температурной систематической ошибки хранится в запоминающем устройстве 7 для каждого инерциального датчика 2. Блок обработки 3 выполнен с возможностью вычисления углового пространственного положения транспортного средства, используя в качестве входных данных сигналы инерциальных датчиков, откорректированные в соответствии с моделью температурной систематической ошибки.
На Фиг.2 представлена структурная схема инерциального измерительного устройства 10, соответствующего одному из вариантов осуществления настоящего изобретения. Инерциальное измерительное устройство 10 в общем случае содержит регулятор мощности 12, блоки 14 инерциальных датчиков, маломощный блок дискретизации 16, блок обработки 18 и таймер 20. Блок 14 инерциальных датчиков и блок дискретизации 16 вместе образуют сенсорную подсистему 22. Инерциальное измерительное устройство 10 описано применительно к работе в составе транспортного средства, в котором оно установлено, однако это устройство может быть установлено в любом другом рабочем оборудовании, использующем инерциальные датчики, например в геодезическом оборудовании.
Регулятор мощности 12 управляет подачей энергии на блоки 14 инерциальных датчиков, блок дискретизации 16 и блок обработки 18. Регулятор мощности 12 выполнен с возможностью независимой подачи питания на сенсорную подсистему 22 и на блок обработки 18. Кроме того, регулятор мощности 12 выполнен с возможностью одновременной подачи питания на сенсорную подсистему 22 и на блок обработки 18 в случае, если инерциальное измерительное устройство 10 осуществляет измерение в то время, когда транспортное средство не работает. Транспортное средство считается работающим, когда оно включено. Регулятор мощности 12 выполнен с возможностью избирательной подачи питания на сенсорную подсистему 22 в режиме дискретизации сигналов инерциального измерительного устройства 10, когда транспортное средство не работает. Транспортное средство считается не работающим, когда оно выключено, и работающим, когда включено. Регулятор мощности 12 определяет, включено транспортное средство или выключено, благодаря тому, что он соединен с замком зажигания транспортного средства. Период между выключением и включением транспортного средства машины называют циклом. В течение каждого цикла транспортное средство обычно имеет определенное фиксированное угловое положение в пространстве, и при этом отсутствует вибрация.
Блоки 14 инерциальных датчиков имеют встроенные температурные датчики 24. В альтернативном варианте (на фигурах не показан) температурные датчики 24 не встроены в блоки 14 инерциальных датчиков, а установлены рядом с блоками 14 инерциальных датчиков. Блоки 14 инерциальных датчиков содержат инерциальные датчики 26, выполненные в виде либо гироскопов, либо акселерометров. Блоки 14 инерциальных датчиков выдают соответствующие сигналы от температурных датчиков 24 и от инерциальных датчиков 26. Сигналы с выходов блоков 14 инерциальных датчиков поступают в блок дискретизации 16.
Блок дискретизации 16 содержит процессор 30 с малым потреблением энергии, блок памяти 31 и накопитель 32. В качестве процессора 30 может быть использован, например, микропроцессор. Информация, содержащаяся в сигналах от инерциальных датчиков 14, записывается в режиме дискретизации инерциального измерительного устройства 10 и хранится в накопителе 32. Блок дискретизации 16 соединен с таймером 20, так что сохраненная в накопителе 32 информация имеет отметку времени о ее сохранении в накопителе 32. Накопитель 32 имеет таблицу соотношения "температура-ошибка", в которой для каждого инерциального датчика 26 в каждом цикле сохранены значения сигнала инерциального датчика и соответствующие значения температуры. Сигналы от инерциальных датчиков 14 передаются в блок обработки 18 через блок дискретизации 16 в режиме измерения инерциального измерительного устройства 10.
Блок обработки 18 содержит основной процессор 34, блок памяти 36 и накопитель 38. Модель температурной систематической ошибки хранится в блоке памяти 36 для каждого инерциального датчика 26. Значение этой ошибки в соответствии с принятой математической моделью рассчитывается основным процессором 34 с использованием хранящихся в накопителе 38 пакетов ранее полученных - старых данных для каждого из датчиков 26 в виде зависимости величины сигнала инерциального датчика от температуры. Старые данные накапливаются из пакетов данных, извлеченных из накопителя 32 блока дискретизации 16, как это описано более подробно ниже.
На Фиг.3 представлен алгоритм способа автоматической калибровки в полевых условиях инерциальных датчиков 26 инерциального измерительного устройства 10, осуществляемого с использованием математической модели температурной систематической ошибки. Автоматическая калибровка инерциальных датчиков 26 выполняется в реальных условиях эксплуатации транспортного средства. В соответствии с данным способом сначала (позиция 40) определяют, работает или не работает транспортное средство, на котором установлено измерительное устройство 10. Работает или не работает транспортное средство - определяется состоянием двигателя: включен он или выключен. Если двигатель выключен (позиция 42), то на инерциальное измерительное устройство (ИИУ) 10 подается питание, обеспечивающее его работу в режиме дискретизации (позиция 44). В режиме дискретизации (позиция 44) на сенсорную подсистему 22 подается питание, при этом на блок обработки 18 питание не подается (позиция 46). Сенсорная подсистема 22 собирает данные от температурных и инерциальных датчиков, поступающие от блоков 14 инерциальных датчиков (позиция 48). Собранные данные сохраняются в накопителе 32 блока дискретизации 16 (позиция 50).
Если транспортное средство работает (позиция 52), на инерциальное измерительное устройство 10 подается питание (позиция 54), обеспечивающее его работу в режиме измерения. В режиме измерения питание подается и на сенсорную подсистему 22, и на блок обработки 18 (позиция 56). Блок обработки 18 считывает данные, хранящиеся в накопителе 32 блока дискретизации 16 (позиция 58). Затем блок обработки 18 в соответствии с принятой математической моделью вычисляет величину температурной систематической ошибки для каждого датчика 26 с использованием данных, полученных из блока дискретизации 16, осуществляя таким образом калибровку датчиков 26 (позиция 60). Сигналы из блоков 14 инерциальных датчиков передаются на блок обработки 18 и корректируются путем учета рассчитанной на шаге 60 величины температурной ошибки (позиция 62).
В режиме измерения сенсорная подсистема 22 и блок обработки 18 включены, так что сигналы, генерируемые инерциальными датчиками 26 и температурными датчиками 24, передаются на блок обработки 18. Основной процессор 34 блока обработки 18 корректирует эти сигналы путем учета рассчитанной температурной ошибки. Одновременно основной процессор 34 выполняет и другие задачи, такие как управление и навигация, расчет пространственного положения и взаимодействие с блоком дискретизации 16. С учетом большого количества решаемых задач основной процессор 34 должен быть более мощным, чем маломощный процессор 30 блока дискретизации 16. Следовательно, потребность основного процессора 34 в энергии больше, чем у маломощного процессора 30 блока 16. Для определения пространственного положения транспортного средства используются откорректированные сигналы. Каждый раз, когда инерциальное измерительное устройство 10 меняет режим дискретизации на режим измерения, блок обработки 18 извлекает из накопителя 32 блока дискретизации 16 сохраненные в нем для этого цикла данные зависимости "сигнал инерциального датчика - температура" и сохраняет их вместе с извлеченными до этого данными в своем накопителе 38.
В режиме дискретизации инерционного измерительного устройства 10 питание подается избирательно на сенсорную подсистему 22, при этом на блок обработки 18 питание не подается. Благодаря этому инерциальное измерительное устройство 10 в режиме дискретизации потребляет минимальное количество энергии. На сенсорную подсистему 22 питание подается на стадии (во время) охлаждения блоков 14 инерциальных датчиков и периодически на стадии (во время) изменения температуры окружающей среды, которая следует за стадией охлаждения.
На Фиг.4 показано изменение температуры блоков 14 инерциальных датчиков на стадии охлаждения, когда их температура падает от рабочей до температуры окружающей среды. Стадия охлаждения наступает сразу же после выключения транспортного средства. Блок дискретизации 16 может задержать введение данных на заданный отрезок времени после выключения транспортного средства во избежание записи данных во время выхода оператора из транспортного средства. В альтернативном случае данные, записанные во время выхода оператора из транспортного средства, должны быть проигнорированы, поскольку могут содержать ошибку, связанную с вибрацией транспортного средства, вызванной выходом оператора. Оператор, выходя из транспортного средства, создает вибрации, поэтому любая информация, записанная в это время, будет непригодной для расчета температурной ошибки по математической модели. Обычно температура блоков 14 инерциальных датчиков снижается от рабочей температуры (которая может быть значительно выше температуры окружающей среды) до температуры окружающей среды в течение относительно короткого временного интервала. На стадии охлаждения блок дискретизации 16 осуществляет ввод данных непрерывно до тех пор, пока не истечет время работы системы или пока датчики температуры 24 не обнаружат прекращения существенных изменений температуры.
Как показано на Фиг.5, в течение того отрезка времени, когда блоки 14 инерциальных датчиков фиксируют изменение температуры окружающей среды, на сенсорную подсистему 22 периодически подается питание. Упомянутым отрезком времени, когда меняется температура окружающей среды, можно считать, например, ночной период, когда транспортное средство поставлено на стоянку. Поскольку температура окружающей среды изменяется во времени медленно, можно осуществлять сбор данных только периодически. Маломощный процессор 30 устанавливает в таймере 20 временные отметки для периодической подачи питания на сенсорную подсистему 22 через регулятор мощности 12. Благодаря периодичности подачи питания на сенсорную подсистему 22 минимизируется потребление мощности от батареи транспортного средства. Энергопотребление маломощным процессором 30 таково, что подсистема 22 может функционировать без существенного потребления энергии от батареи транспортного средства. Периодичность проводимых измерений (сбора данных) во время изменения температуры окружающей среды показана на Фиг.5 позициями 64. Выполнение дискретных измерений во время изменения температуры окружающей среды чрезвычайно полезно, так как предусматривает возможность ввода данных в более широком диапазоне температур, чем обычный, предусмотренный заводской калибровкой, или свойственный стадии охлаждения.
Известно, что существует проблема коррекции математической модели температурной ошибки для временного интервала, в течение которого инерциальные датчики 26 нагреваются от температуры окружающей среды до рабочей температуры, когда машина стартует, что связано с отсутствием данных в этом температурном диапазоне. Эта проблема особенно ощутима, если температура окружающей среды значительно ниже рабочей температуры. Некоторые транспортные средства (такие как воздушные летательные аппараты) требуют "периода разогрева", прежде чем можно будет использовать показания для вычислений. Преимущества настоящего изобретения очевидны для транспортных средств, при эксплуатации которых водитель может и не знать, что используются инерциальные датчики (например, в сельскохозяйственных машинах). Важно иметь данные для коррекции температурной ошибки во всем диапазоне как рабочей температуры, так и температуры окружающей среды. Изобретение предусматривает возможность обнаружения инерциальными датчиками 26 движения или вибраций в период дискретизации. Данные, полученные в этих условиях, будут проигнорированы, а подсистема 22 будет временно отключена от источника питания. Осуществление дискретизации каждый раз, когда транспортное средство не работает, обеспечивает для каждого цикла отличный от других пакет данных, загружаемых и хранящихся в накопителе 32 блока дискретизации 16.
На Фиг.6 изображена кривая температурной ошибки, вычисленной в соответствии с математической моделью для каждого инерциального датчика 26 и хранящейся в блоке памяти 36 блока обработки 18. Каждый инерциальный датчик 26 имеет свою индивидуальную кривую температурной ошибки, поэтому данные из блоков 14 инерциальных датчиков вводятся независимо для каждого инерциального датчика 26.
На Фиг.7 показаны участки упомянутой кривой температурной систематической ошибки, записанные в то время, когда инерциальное измерительное устройство 10 работает в режиме дискретизации. Каждый раз, когда транспортное средство ставят на стоянку, оно занимает различное угловое положение в течение различных циклов измерения, при этом данные, измеренные для акселерометра в режиме дискретизации, будут отклоняться от действительного значения ошибки. На Фиг.7 это показано линией "Отклонение, вызванное гравитацией". В разные периоды, когда инерциальное измерительное устройство 10 работает в режиме дискретизации, будут наблюдаться различные участки кривой температурной ошибки и почти наверняка при различных уровнях отклонения. Когда получено достаточное количество данных на основе сигналов инерциального датчика, может быть рассчитана истинная кривая температурной ошибки на основании нескольких разрозненных участков кривых, как описано ниже.
Предположим, что кривую температурной ошибки можно описать как полином n-го порядка, то есть:
B ( T ) = b 0 + b 1 T + b 2 T 2 + + b n T n
Figure 00000005
,
До начала расчета порядок полинома не известен и должен быть принят гипотетически. Как описано в разделе "Уровень техники", математическая модель измерения инерциальным датчиком представляет собой уравнение:
Figure 00000006
.
После нескольких циклов сбора данных от инерциального датчика в режиме дискретизации в блоке хранения 38 блока обработки 18 будет m пакетов данных от инерциального датчика. Каждый пакет содержит mk отсчетов различных значений температуры, различных результатов измерений инерциального датчика, различную шумовую составляющую и временные отметки. Поскольку параметр инерции будет величиной постоянной для каждого пакета данных благодаря фиксированному отклонению машины и отсутствию вибраций в течение измерительного цикла, каждая индивидуальная модель имеет вид:
Figure 00000007
.
Например, четвертое измерение второго пакета примет вид:
Figure 00000008
.
и тогда формальная запись с учетом вклада от величин инерции от других пакетов измерений будет:
Figure 00000009
.
Поскольку все частные кривые температурной ошибки будут иметь количественную компоненту, характеризующую физическую инерционность (за исключением случая, когда предполагается, что гироскоп принимает скорость вращения Земли равной нулю), для расчета параметра b0 требуется абсолютное измерение или оценка ошибки при частных значениях температур. Этого можно достичь несколькими способами, такими как:
- исходная заводская калибровка;
- последовательность (ряд) заранее предопределенных маневров транспортного средства;
- в случаях, когда применимы все 3 оси ускорения и вращения, ошибка может быть рассчитана для каждого датчика на основе, по меньшей мере, 6 величин;
- дополнительные датчики, такие как глобальная система позиционирования или многоэлементная антенна GPS.
Так как в этих случаях известны или ошибка при частных значениях температуры или ускорение, имеем i измерений ошибки, удовлетворяющих следующему уравнению:
Figure 00000010
.
После того, как учтен вклад от углового положения каждой группы частных кривых температурной ошибки, получаем:
Figure 00000011
.
Соответственно, группы измерений (включая абсолютные измерения) образуют систему линейных уравнений:
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018
Figure 00000019
Figure 00000020
Figure 00000021
Ошибки ε могут быть описаны как нулевое среднее, как дополнительное слагаемое, как белый и нормальный шум с ковариационной матрицей Σ. Эффект старения инерциального датчика можно учитывать путем увеличения меры ковариации измерений, опирающихся на прошлое измерение. Если использовать весовую характеристику, то более давние измерения будут менее выделены, при этом они будут использованы в более поздних измерениях. Это будет полезно, например, в случае, когда транспортное средство оказалось подвергнутым внезапной непогоде осенью. Последние записанные данные в диапазоне температур холодной погоды могут не наблюдаться в течение нескольких месяцев, однако они важны для такой ситуации, даже если имеются сомнения в их точности.
Система линейных уравнений может быть представлена в виде матрицы:
Figure 00000022
В сжатом виде матрицу можно записать в виде Xβ=y.
Значения β (и, следовательно, полиномиальных коэффициентов кривой температурной ошибки для каждого инерциального датчика 26) могут быть получены с использованием линейного расчета по методу наименьших квадратов. Когда полиномиальные коэффициенты определены, их используют в модели температурной систематической ошибки в режиме измерения инерциального измерительного устройства 10 для компенсации температурной ошибки инерциальных датчиков 26.
Заявитель предвидит, что в связи с техническими достижениями процессоры и запоминающие устройства будут потреблять меньше энергии. Тогда маломощный процессор 30 может быть выполнен достаточно производительным, чтобы вся обработка данных и их хранение могли выполняться полностью блоком дискретизации 16 без значительного энергопотребления от батареи транспортного средства в режиме дискретизации. Блок обработки 18 в этом случае будет не нужен.
Заявляемые способ и инерциальное измерительное устройство 10 в значительной степени облегчают автокалибровку инерциальных датчиков 26 без особых действий со стороны пользователя и без привлечения дополнительных датчиков или периодической заводской повторной калибровки.
Минус автокалибровки в полевых условиях, как это описано в известных патентах, состоит в том, что транспортные средства не выключают на время дискретизации сигналов инерциальных датчиков, так что транспортные средства подвержены вибрации из-за работы двигателя и оператора. Одной из особенностей настоящего изобретения является то, что ввод данных от инерциальных датчиков и соответствующих температурных датчиков осуществляется во время, когда рабочее оборудование не работает и двигатель отключен.
До недавнего времени инерциальные датчики и связанные с ними схемы обработки требовали для своего функционирования значительных энергетических затрат. Существовал риск, что батарея транспортного средства разрядится, если инерциальные датчики и связанные с ними электронные схемы обработки будут работать, когда транспортное средство выключено. Технические достижения в области датчиков и встроенных элементов вычислительной техники существенно понизили требования к потребляемой энергии, что позволило сенсорной подсистеме 22 функционировать в то время, когда транспортное средство поставлено на стоянку и обездвижено, как говорилось выше при описании чертежей. В ситуации, когда блок обработки 18 (потребляющий относительно большое количество энергии) отключен во время режима дискретизации, а на блок дискретизации (потребляющий относительно мало энергии) питание подается только в режиме дискретизации, инерциальное измерительное устройство 10 может работать без существенного потребления энергии от батареи транспортного средства.
Приведенное выше описание различных вариантов осуществления изобретения адресовано среднему специалисту в данной области. Описание не является исчерпывающим и не ограничивает изобретение каким-либо одним вариантом реализации. Как упоминалось выше, различные альтернативы и варианты могут быть очевидными для специалиста. Например, в описании говорится об использовании инерциального измерительного устройства 10 применительно к транспортному средству. Однако упомянутое измерительное устройство может быть применено для другого работающего оборудования, которое использует инерциальные датчики, такого как геодезическое мачтовое снаряжение GNSS, а также в устройствах, где измеряют угол подвижного устройства относительно транспортного средства (например, отвала бульдозера относительно бульдозера - тягача). Кроме того, инерциальное измерительное устройство 10 может быть использовано в инерциальных навигационных системах или в инерциальных навигационных системах в сочетании с глобальной системой позиционирования, в роботах, в частности в промышленных роботах. Некоторые варианты осуществления изобретения были детально описаны, другие варианты очевидны или могут быть разработаны специалистами в данной области. Таким образом, данное изобретение охватывает все альтернативы, модификации и варианты, которые не представлены в описании, но находятся в рамках сущности изобретения.

Claims (12)

1. Способ калибровки инерциальных датчиков, установленных на рабочем оборудовании, включающий сбор данных от одного или более инерциальных датчиков и одного или более температурных датчиков, расположенных вблизи инерциальных датчиков, в период, когда оборудование не работает, и корректировку математической модели температурной систематической ошибки для инерциальных датчиков на основе собранных данных от инерциальных датчиков и температурных датчиков, при этом сбор данных начинают через заранее установленное время после выключения рабочего оборудования, при этом на инерциальные датчики и температурные датчики, образующие сенсорную подсистему, периодически подают питание для сбора данных в период, когда рабочее оборудование не работает.
2. Способ по п.1, характеризующийся тем, что дополнительно определяют, работает оборудование или нет.
3. Способ по п.2, характеризующийся тем, что рабочим оборудованием является транспортное средство, при этом работает транспортное средство или не работает, определяют тем, включено оно или выключено.
4. Способ по п.2, характеризующийся тем, что рабочим оборудованием является транспортное средство, при этом работает оно или не работает, определяют тем, работает двигатель транспортного средства или не работает.
5. Способ по п.2, характеризующееся тем, что рабочим оборудованием является топографо-геодезическим оборудованием, при этом работает оно или не работает, определяют тем, включено это оборудование или выключено.
6. Способ по п.1, характеризующийся тем, что дополнительно определяют, испытывает ли рабочее оборудование вибрацию или нежелательные движения в период, когда рабочее оборудование не работает, после чего любые данные, собранные в условиях вибрации или движения, отбрасывают.
7. Способ по п.1, характеризующийся тем, что корректировку математической модели температурной систематической ошибки осуществляют путем ее аппроксимации к собранным данным и корректировки математической модели температурной систематической ошибки за счет коэффициентов функции, описывающей в виде кривой математическую модель температурной систематической ошибки.
8. Способ по п.1, характеризующийся тем, что корректировка математической модели температурной систематической ошибки включает сравнение данных, собранных в течение одного цикла, когда рабочее оборудование не работало, с собранными данными предшествовавшего цикла, когда рабочее оборудование не работало, и присвоение большего веса данным, собранным в течение более позднего цикла.
9. Инерциальное измерительное устройство, включающее сенсорную подсистему, содержащую один или более инерциальных датчиков, один или более температурных датчиков, связанных с инерциальными датчиками, маломощный блок дискретизации, выполненный с возможностью сбора данных от инерциальных датчиков и температурных датчиков, блок обработки, имеющий запоминающее устройство для хранения математической модели температурной систематической ошибки инерциальных датчиков, и регулятор мощности, выполненный с возможностью избирательной подачи питания на сенсорную подсистему для сбора данных от инерциальных датчиков и температурных датчиков во время, когда рабочее оборудование, в котором установлено инерциальное измерительное устройство, не работает.
10. Инерциальное измерительное устройство по п.9, характеризующееся тем, что включает таймер, который в период, когда оборудование не работает, включает регулятор мощности для периодической подачи энергии на сенсорную подсистему.
11. Устройство по п.9, характеризующееся тем, что маломощный блок дискретизации включает маломощный процессор, а блок обработки включает основной процессор, который потребляет относительно больше энергии, чем маломощный процессор.
12. Устройство по п.9, характеризующееся тем, что оно выполнено с возможностью сбора данных от инерциальных датчиков и температурных датчиков с задержкой на заранее установленное время после выключения рабочего оборудования.
RU2011142833/28A 2009-10-26 2010-10-21 Способ калибровки инерциальных датчиков RU2527140C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2009905218A AU2009905218A0 (en) 2009-10-26 A method of calibrating inertial sensors
AU2009905218 2009-10-26
PCT/AU2010/001401 WO2011050395A1 (en) 2009-10-26 2010-10-21 A method of calibrating inertial sensors

Publications (2)

Publication Number Publication Date
RU2011142833A RU2011142833A (ru) 2013-12-10
RU2527140C2 true RU2527140C2 (ru) 2014-08-27

Family

ID=43921148

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011142833/28A RU2527140C2 (ru) 2009-10-26 2010-10-21 Способ калибровки инерциальных датчиков

Country Status (13)

Country Link
US (1) US9008988B2 (ru)
EP (1) EP2494312B1 (ru)
CN (1) CN102472632B (ru)
AR (1) AR078794A1 (ru)
AU (1) AU2010312307B2 (ru)
BR (1) BRPI1012099B1 (ru)
CA (1) CA2765095C (ru)
MX (1) MX2012003000A (ru)
NZ (1) NZ596007A (ru)
RU (1) RU2527140C2 (ru)
UA (1) UA106614C2 (ru)
WO (1) WO2011050395A1 (ru)
ZA (1) ZA201109248B (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670243C1 (ru) * 2015-10-13 2018-10-19 Шанхай Хуацэ Навигейшн Текнолоджи Лтд. Способ начального выравнивания устройства инерциальной навигации
RU2699328C2 (ru) * 2016-11-18 2019-09-04 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ для калибровки датчиков транспортного средства с использованием присоединенных к беспроводной сети датчиков, соответствующие транспортное средство и материальный машиночитаемый носитель
RU2751143C1 (ru) * 2020-07-29 2021-07-08 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ автоматизации калибровки датчиков бесплатформенной инерциальной системы роботизированного беспилотного летательного аппарата

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8731769B2 (en) * 2011-09-27 2014-05-20 Automotive Research & Testing Center Inertial sensor calibration method for vehicles and device therefor
CN102607542B (zh) * 2012-03-28 2014-12-10 昆明物理研究所 微机械陀螺自适应补偿的方法及装置
CN102721410B (zh) * 2012-06-20 2014-04-09 唐粮 一种基于gps/imu定位定向技术的海岛空中三角测量方法
US20140088906A1 (en) * 2012-09-25 2014-03-27 John M. Wilson Inertial Sensor Bias Estimation by Flipping
US9121866B2 (en) * 2013-03-15 2015-09-01 Autoliv Asp, Inc. System and method for inertial sensor offset compensation
US20150192440A1 (en) * 2014-01-07 2015-07-09 InvenSense, Incorporated Systems and Methods for Initiating Calibration of a Sensor
CN103808349B (zh) * 2014-02-17 2016-06-22 百度在线网络技术(北京)有限公司 矢量传感器的误差校正方法和装置
KR101551817B1 (ko) * 2014-05-22 2015-09-09 한국전자통신연구원 메모리 삭제 방법 및 이를 위한 장치
DE102014210767A1 (de) * 2014-06-05 2015-12-17 Continental Automotive Gmbh Verfahren zur Offsetkorrektur eines Sensorsignals eines Inertialsensors, insbesondere Beschleunigungs- und/oder Drehratensensors für ein Kraftfahrzeug
EP3578507B1 (en) 2015-04-20 2022-10-12 SZ DJI Technology Co., Ltd. Systems and methods for thermally regulating sensor operation
US11119112B2 (en) 2017-08-02 2021-09-14 Samsung Electronics Co., Ltd. Method for compensating gyroscope drift on an electronic device
EP3447445A1 (en) * 2017-08-21 2019-02-27 Tata Consultancy Services Limited Systems and methods for estimating errors in gyroscope sensors
CN108226980B (zh) * 2017-12-23 2022-02-08 北京卫星信息工程研究所 基于惯性测量单元的差分gnss与ins自适应紧耦合导航方法
JP2021056003A (ja) * 2018-02-07 2021-04-08 アルプスアルパイン株式会社 計測装置、球体、計測システム、制御方法、およびプログラム
JPWO2020071284A1 (ja) * 2018-10-04 2021-09-02 ソニーグループ株式会社 情報処理装置、情報処理方法およびプログラム
US11680823B2 (en) * 2019-08-01 2023-06-20 IvenSense, Inc. Method and system for mobile sensor calibration
CN110987002B (zh) * 2019-11-25 2022-02-01 中国工程物理研究院电子工程研究所 惯导数据优化方法、训练方法、模型、设备及存储介质
EP3957953A1 (en) * 2020-08-19 2022-02-23 Aptiv Technologies Limited System and method for self-test of inertial measurement unit (imu)
CN112254742B (zh) * 2020-10-13 2022-08-09 天津津航计算技术研究所 Mems惯性器件温度补偿参数在线拟合方法
CN112611482A (zh) * 2020-11-24 2021-04-06 甄十信息科技(上海)有限公司 一种校准智能设备的温度传感器的方法
CN112815980A (zh) * 2020-12-31 2021-05-18 天通盛邦通信科技(苏州)有限公司 一种动中收传感器自动校准方法
US11808780B1 (en) * 2022-05-20 2023-11-07 Honeywell International Inc. Inertial sensor error modeling and compensation, and system for lifetime inertial sensor calibration and navigation enhancement
US11951962B1 (en) * 2022-12-07 2024-04-09 Alstom Holdings Acceleration detection system for a vehicle and vehicle including a brake monitoring unit with acceleration detection system
CN117073728B (zh) * 2023-10-17 2024-01-23 天津易泰炬业科技有限公司 一种柔性电容式触觉传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527003A (en) * 1994-07-27 1996-06-18 Litton Systems, Inc. Method for in-field updating of the gyro thermal calibration of an intertial navigation system
RU2083954C1 (ru) * 1988-01-04 1997-07-10 Катюнин Валентин Владимирович Инерциальная навигационная система
US6175807B1 (en) * 1999-06-09 2001-01-16 Litton Systems, Inc. Temperature compensation method for strapdown inertial navigation systems
US6374190B2 (en) * 1998-06-29 2002-04-16 Siemens Aktiengesellschaft Method for calibrating an angle sensor and navigation system having an angle sensor
EP1221586A2 (en) * 2001-01-08 2002-07-10 Motorola, Inc. Position and heading error-correction method and apparatus for vehicle navigation systems
US6487480B2 (en) * 2000-04-06 2002-11-26 Robert Bosch Gmbh Method of calibrating of a system which operates depending on a sensor in a motor vehicle
US6834528B2 (en) * 2001-11-13 2004-12-28 Nokia Corporation Method, device and system for calibrating angular rate measurement sensors
RU2249793C2 (ru) * 2002-08-06 2005-04-10 Открытое акционерное общество Пермская научно-производственная приборостроительная компания Способ калибровки акселерометров
RU61789U1 (ru) * 2006-11-09 2007-03-10 Общество с ограниченной ответственностью "ТехГеоБур" Инклинометр

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286683A (en) * 1979-08-20 1981-09-01 Zemco, Inc. Stop/start control system for engine
US4693114A (en) * 1986-05-05 1987-09-15 Allied Corporation Gyrocompass navigation system for land vehicles
US5297028A (en) * 1991-08-27 1994-03-22 Zexel Corporation Daihatsu-Nissan Method and apparatus for correcting drift errors in an angular rate sensor
JPH0918224A (ja) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Bs追尾アンテナシステム
EP0952427B1 (en) * 1998-04-24 2004-03-03 Inco Limited Automated guided apparatus
SE528484C2 (sv) * 2005-04-11 2006-11-28 Advanced Inertial Measurement Kontrollsystem för fordon
US8239162B2 (en) * 2006-04-13 2012-08-07 Tanenhaus & Associates, Inc. Miniaturized inertial measurement unit and associated methods
JP2007024601A (ja) * 2005-07-13 2007-02-01 Xanavi Informatics Corp 車両用角速度測定装置
US7920981B2 (en) * 2005-09-02 2011-04-05 Continental Teves Ag & Co., Ohg Method of calibrating a sensor, in particular a yaw rate sensor
US7505364B2 (en) 2006-06-22 2009-03-17 Northrop Grumman Corporation Underwater navigation by aided light sensor
CA2679376A1 (en) * 2007-03-23 2008-10-02 Qualcomm Incorporated Multi-sensor data collection and/or processing
RU2362173C1 (ru) 2008-03-21 2009-07-20 Государственное образовательное учреждение высшего профессионального образования "Военно-космическая академия имени А.Ф. Можайского" Способ измерения линейного ускорения в системах управления ракет и устройство для его осуществления

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2083954C1 (ru) * 1988-01-04 1997-07-10 Катюнин Валентин Владимирович Инерциальная навигационная система
US5527003A (en) * 1994-07-27 1996-06-18 Litton Systems, Inc. Method for in-field updating of the gyro thermal calibration of an intertial navigation system
US6374190B2 (en) * 1998-06-29 2002-04-16 Siemens Aktiengesellschaft Method for calibrating an angle sensor and navigation system having an angle sensor
US6175807B1 (en) * 1999-06-09 2001-01-16 Litton Systems, Inc. Temperature compensation method for strapdown inertial navigation systems
US6487480B2 (en) * 2000-04-06 2002-11-26 Robert Bosch Gmbh Method of calibrating of a system which operates depending on a sensor in a motor vehicle
EP1221586A2 (en) * 2001-01-08 2002-07-10 Motorola, Inc. Position and heading error-correction method and apparatus for vehicle navigation systems
US6834528B2 (en) * 2001-11-13 2004-12-28 Nokia Corporation Method, device and system for calibrating angular rate measurement sensors
RU2249793C2 (ru) * 2002-08-06 2005-04-10 Открытое акционерное общество Пермская научно-производственная приборостроительная компания Способ калибровки акселерометров
RU61789U1 (ru) * 2006-11-09 2007-03-10 Общество с ограниченной ответственностью "ТехГеоБур" Инклинометр

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2670243C1 (ru) * 2015-10-13 2018-10-19 Шанхай Хуацэ Навигейшн Текнолоджи Лтд. Способ начального выравнивания устройства инерциальной навигации
RU2670243C9 (ru) * 2015-10-13 2018-12-04 Шанхай Хуацэ Навигейшн Текнолоджи Лтд. Способ начального выравнивания устройства инерциальной навигации
RU2699328C2 (ru) * 2016-11-18 2019-09-04 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ для калибровки датчиков транспортного средства с использованием присоединенных к беспроводной сети датчиков, соответствующие транспортное средство и материальный машиночитаемый носитель
RU2751143C1 (ru) * 2020-07-29 2021-07-08 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ автоматизации калибровки датчиков бесплатформенной инерциальной системы роботизированного беспилотного летательного аппарата

Also Published As

Publication number Publication date
BRPI1012099A2 (pt) 2018-03-13
NZ596007A (en) 2013-11-29
WO2011050395A1 (en) 2011-05-05
US20120203488A1 (en) 2012-08-09
EP2494312B1 (en) 2020-04-08
MX2012003000A (es) 2012-04-19
US9008988B2 (en) 2015-04-14
CN102472632B (zh) 2015-07-08
AU2010312307B2 (en) 2013-07-11
CN102472632A (zh) 2012-05-23
ZA201109248B (en) 2015-05-27
UA106614C2 (uk) 2014-09-25
AR078794A1 (es) 2011-12-07
RU2011142833A (ru) 2013-12-10
EP2494312A4 (en) 2014-03-26
BRPI1012099B1 (pt) 2019-10-08
CA2765095A1 (en) 2011-05-05
CA2765095C (en) 2017-02-07
EP2494312A1 (en) 2012-09-05
AU2010312307A1 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
RU2527140C2 (ru) Способ калибровки инерциальных датчиков
US7421343B2 (en) Systems and methods for reducing vibration-induced errors in inertial sensors
US8718963B2 (en) System and method for calibrating a three-axis accelerometer
US7307585B2 (en) Integrated aeroelasticity measurement system
CN101334294B (zh) 基于gps的车辆中传感器校准算法
US9297650B2 (en) Method and arrangement for determining altitude
EP2519803B1 (en) Technique for calibrating dead reckoning positioning data
US8401788B2 (en) Angular velocity sensor correcting apparatus and method
JP5074950B2 (ja) 航法装置
US20040111212A1 (en) Method for determining a track of a geographical trajectory
US6374190B2 (en) Method for calibrating an angle sensor and navigation system having an angle sensor
KR101106048B1 (ko) 센서오차의 작동 중 자동교정 방법과 이를 이용한 관성항법장치
US20100071439A1 (en) Method of Aligning an Axisymmetric Vibrating Sensor Inertial Navigation System and Corresponding Inertial Navigation System.
EP3076133A1 (en) Vehicle navigation system with adaptive gyroscope bias compensation
JP2019060620A (ja) 移動状態判別装置、電子時計、移動状態判別方法及びプログラム
JP5119967B2 (ja) 測位方法、プログラム及び測位装置
CN109557559B (zh) 卫星电波接收装置、电子表、定位控制方法以及记录介质
JP5116572B2 (ja) 精度予測装置、精度予測方法及び精度予測プログラム
JP2019060617A (ja) 衛星電波受信装置、電子時計、測位制御方法及びプログラム
JP6992360B2 (ja) 位置計測装置、電子時計、位置補正方法及びプログラム
TWI636236B (zh) 利用估計濾波器決定系統的狀態的方法、用於決定物體之位置的裝置以及無人航空載具
KR20020003970A (ko) 온도 보정 기능을 갖는 비접촉식 차량 항법 장치 및 온도보정 방법
JP2024126166A (ja) 移動体速度計測装置、移動体速度計測方法、および、移動体速度計測プログラム
CN112269201A (zh) 一种gnss/ins紧耦合时间分散滤波方法
JPH10132589A (ja) ナビゲーション装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201022