RU2520783C2 - Электрическая водонагревательная система - Google Patents

Электрическая водонагревательная система Download PDF

Info

Publication number
RU2520783C2
RU2520783C2 RU2011139970/06A RU2011139970A RU2520783C2 RU 2520783 C2 RU2520783 C2 RU 2520783C2 RU 2011139970/06 A RU2011139970/06 A RU 2011139970/06A RU 2011139970 A RU2011139970 A RU 2011139970A RU 2520783 C2 RU2520783 C2 RU 2520783C2
Authority
RU
Russia
Prior art keywords
water
heating system
electric water
cathode
electric
Prior art date
Application number
RU2011139970/06A
Other languages
English (en)
Other versions
RU2011139970A (ru
Inventor
Итсен ВИЛСТРА
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2011139970A publication Critical patent/RU2011139970A/ru
Application granted granted Critical
Publication of RU2520783C2 publication Critical patent/RU2520783C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/04Controlling or regulating desired parameters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/06Constructional parts, or assemblies of cathodic-protection apparatus
    • C23F13/08Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
    • C23F13/10Electrodes characterised by the structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/142Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/201Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply
    • F24H1/202Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes using electric energy supply with resistances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/40Arrangements for preventing corrosion
    • F24H9/45Arrangements for preventing corrosion for preventing galvanic corrosion, e.g. cathodic or electrolytic means
    • F24H9/455Arrangements for preventing corrosion for preventing galvanic corrosion, e.g. cathodic or electrolytic means for water heaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Cookers (AREA)
  • Apparatus For Making Beverages (AREA)

Abstract

Изобретение относится к электрическим приборам, в которых нагревается вода. Электрическая водонагревательная система с ограниченным отложением накипи содержит емкость для приема воды, ограничивающую внутреннее накопительное пространство для нагреваемой воды. Воду, хранимую в упомянутом внутреннем накопительном пространстве, можно нагревать посредством электрического нагревательного элемента, присутствующего в этом внутреннем накопительном пространстве. Кроме того, предусмотрены анодный элемент и катодный элемент, соединенные или выполненные с возможностью соединения с источником питания постоянного тока для создания разности потенциалов между катодным элементом и анодным элементом. Катодный элемент находится во внутреннем накопительном пространстве рядом с нагревательным элементом. При таком выполнении уменьшается количество отложение накипи на частях электрической водонагревательной системы. Предложенная водонагревательная система может быть установлена в чайниках, кофеварках, утюгах и в моечных машинах. 6 н. и 9 з.п. ф-лы, 5 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится к электрической водонагревательной системе, содержащей емкость для воды, ограничивающую внутреннее накопительное пространство для нагреваемой воды, имеющую электрический нагревательный элемент для нагревания воды, хранящейся в упомянутом внутреннем накопительном пространстве, а также анодный элемент и катодный элемент, соединенные или выполненные с возможностью соединения с источником питания постоянного тока для создания разности потенциалов между катодным элементом и анодным элементом. Изобретение также относится к электрической водонагревательной системе, содержащей полый корпус для прохождения нагреваемой воды, имеющий внутреннюю стенку, электрический нагревательный элемент для нагревания воды, прикрепленный к упомянутой внутренней стенке, а также анодный элемент и катодный элемент, соединенные или выполненные с возможностью соединения с источником питания постоянного тока для создания разности потенциалов между катодным элементом и анодным элементом.
Изобретение также относится к чайнику, содержащему электрическую водонагревательную систему.
Изобретение также относится к кофеварке, содержащей электрическую водонагревательную систему.
Изобретение также относится к утюгу, содержащему электрическую водонагревательную систему.
Изобретение также относится к моечной машине, содержащей электрическую водонагревательную систему.
ИЗВЕСТНЫЙ УРОВЕНЬ ТЕХНИКИ
Как известно, в водонагревательных системах во время использования таких систем обычно образуется накипь, как правило - карбонат кальция. Основная химическая реакция, происходящая при этом, такова: Ca(HCO3)2→CaCO3+CO2+H2O. В частности, сильной тенденцией к образованию отложений накипи обладает вода высокой жесткости. Наиболее важными элементами, растворенными в воде и ответственными за жесткость, являются ионы Ca2+, ионы Mg2+ и ионы HCO3-. Суммарная жесткость воды (DH) определяется как суммарное количество миллимолей ионов Ca2+ и ионов Mg2+ на литр, умноженное на 5,6. Временная твердость определяется количеством миллимолей ионов HCO3- на литр, умноженным на 2,8.
Растворимость накипи в воде уменьшается с увеличением температуры. Поэтому покрытию накипью подвержены, в частности, горячие поверхности, подобные присутствующим в нагревательных элементах. Кроме того, накипь осаждается преимущественно на металлических поверхностях. Нагревательный элемент в типичных электрических водонагревательных системах выполнен из металла. Такой металлический водонагревательный элемент весьма подвержен осаждению накипи, поскольку при эксплуатации он объединяет металлическую поверхность и горячую поверхность. Отложение накипи на нагревательном элементе снижает термический кпд нагревательного элемента, а значит и общий кпд электрической водонагревательной системы.
В данной области техники предложены электрохимические подходы для предотвращения отложения накипи на нагревательном элементе. Например, в документе US 6871014 B2 описан электрический водонагреватель с так называемой катодной защитой. Катодная защита - это обычно употребляемое название концепции борьбы с коррозией металлической поверхности за счет того, что эту поверхность заставляют работать как катод электрохимического элемента. В контексте документа US 6871014 B2 катодная защита воплощается путем создания разности потенциалов между внутренней стенкой водонагревателя и нагревательным элементом, при этом внутренняя стенка водонагревателя действует как катодный элемент, а нагревательный элемент - как анодный элемент. При такой компоновке, в соответствии с документом US 6871014 B2, предотвращается коррозия внутренней стенки водонагревателя, поскольку электрохимические эффекты предотвращают возникновение коррозии в стенке водонагревателя. При этом на нагревательном элементе, действующем как анодный элемент, образуются ионы Н+, предотвращая образование накипи около нагревательного элемента. Вместе с тем нагревательный элемент в этой конфигурации подвержен окислению, делающему необходимым изготовление этого элемента из металлов, очень стойких к окислению.
Поскольку внутренняя стенка водонагревателя действует как катодный элемент, около этой внутренней стенки водонагревателя образуются ионы ОН-, что приводит к отложению накипи на внутренней стенке водонагревателя из-за превращения ионов НСО3- в ионы СО32-. Они приводят к уменьшению электрического кпд, поскольку накипь до некоторой степени электрически изолирует внутреннюю стенку водонагревателя, действующую как катодный элемент. Это требует регулярной надлежащей очистки, чтобы предотвратить данный эффект. Кроме того, отложившаяся накипь будет приводить к неопрятному внешнему виду внутренней стенки водонагревателя.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Задача изобретения состоит в том, чтобы разработать электрическую водонагревательную систему, содержащую емкость для приема воды, которая относится к типу, охарактеризованному в вводном абзаце, и в которой предотвращается отложение накипи как на нагревательном элементе, так и на внутренней стенке емкости.
Задача изобретения решается посредством электрической водонагревательной системы, охарактеризованной в п.1 формулы изобретения. В частности, в электрической водонагревательной системе, соответствующей изобретению, катодный элемент находится во внутреннем накопительном пространстве, рядом с нагревательным элементом.
При эксплуатации, у катода образуются ионы ОН-. При этом горячий нагревательный элемент вызывает появление структур турбулентного течения в воде, особенно вблизи нагревательного элемента. Поскольку катод находится рядом с нагревательным элементом, в области внутреннего накопительного пространства, где присутствует турбулентность, образуются ионы OH-. Это вызывает смешивание образующихся ионов OH- с нагретой водой. Образующиеся ионы OH- локально увеличивают pH, и по меньшей мере часть их превращает ионы HCO3- в ионы CO32-. Ионы CO32- реагируют с ионами Ca2+, присутствующими в воде, образуя накипь. Турбулентность приводит к хорошему распределению ионов ОН- в воде. Неожиданно, накипь образуется только в виде микрокристаллов. Эти микрокристаллы остаются в воде и не претерпевают интенсивное отложение. Благодаря своему малому размеру, микрокристаллы не портят воду. Кроме того, предотвращается покрытие нагревательного элемента или стенки емкости накипью.
Следует отметить, что анодный элемент может находиться в емкости для воды или на стенке емкости для воды, или даже может быть выполнен как единое целое со стенкой емкости. Однако анодный элемент не обязательно должен находиться между катодным элементом и нагревательным элементом, или быть предусмотренным на нагревательном элементе либо выполненным как единое целое с ним.
В предпочтительном варианте выполнения катодный элемент и нагревательный элемент расположены по существу в центре емкости, тем самым обеспечивая свободное протекание воды вокруг катодного элемента и нагревательного элемента без препятствий, мешающих конвекции посредством нее. Это вносит вклад в надлежащее смешивание c образующимися ионами OH-, а значит, и в дальнейшее предотвращение образование окалины.
Источнику питания постоянного тока можно придать конфигурацию, обеспечивающую подачу постоянной разности напряжений между катодным элементом и анодным элементом. Вместе с тем, хотя по всему тексту данной заявки источник питания постоянного тока определяется как устройство, которое поддерживает ориентацию разности напряжений между катодным элементом и анодным элементом постоянной, значение разности напряжений может быть зависимым от времени.
Электрические водонагревательные системы того типа, который соответствует данному изобретению, можно использовать как в бытовых приложениях, так и в промышленных приложениях, связанных с массовым производством.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, катодный элемент предусмотрен на нагревательном элементе. Это гарантирует образование ионов OH- в месте, где присутствует турбулентность из-за нагревания воды, а также вода, нагреваемая нагревательным элементом. Это дополнительно повышает эффективность образования микрокристаллов и тем самым уменьшает количество образующихся частиц накипи, имеющих бόльший размер, что приводит к еще лучшему предотвращению загрязнения воды и отложения накипи. Это также сокращает конструкторско-производственные усилия по правильному позиционированию катодного элемента относительно нагревательного элемента и снижает затраты на конструкторские работы по электрической водонагревательной системе и на ее производство.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, катодный элемент и нагревательный элемент объединены в один компонент, составляя тем самым единый узел. Благодаря этому объединению не требуется тратить усилия конструкторов на исследование надлежащего позиционирования катодного элемента относительно нагревательного элемента. Это снижает затраты на конструкторские работы. Помимо этого у нагревательного элемента образуются ионы OH-, дополнительно повышая эффективность образования микрокристаллов накипи.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, анодный элемент выполнен из углерода. Как известно из предшествующего уровня техники, см., например, документ US 6871014 B2, для формирования анодного элемента рекомендуется подложка из титана или ниобия со слоем платины. Эксперименты неожиданно показали, что при использовании углеродного анода предотвращение накипи эффективнее, чем при использовании альтернативных материалов анода.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, она содержит средство для внесения турбулентности в воду, окружающую нагревательный элемент и катодный элемент. Средство для внесения турбулентности в воду может быть, например, мешалкой или воздушным потоком, нагнетаемым в электрическую водонагревательную систему. Если средство для внесения турбулентности в воду находится в нижней части емкости, это означает, что средство для внесения турбулентности в воду находится в области емкости, которая, как правило, наполнена водой во время использования. При такой конфигурации средство для внесения турбулентности в воду во время использования при работе вносит дополнительную турбулентность в воду, помимо турбулентности, являющейся результатом конвекции нагретой воды. Эта дополнительная турбулентность, вносимая средством для внесения турбулентности в воду, вносит вклад в смешивание ионов OH- и воды, тем самым повышая эффективность образования микрокристаллов накипи и уменьшая количество образующихся частиц накипи, имеющих бόльший размер, что приводит к еще лучшему предотвращению загрязнения воды и отложения накипи. Кроме того, поскольку смешивание с ионами ОН- улучшается за счет внесения турбулентности в воду, обеспечивается формирование большего количества ионов ОН-, например, за счет приложения между анодным элементом и катодным элементом разности потенциалов, большей, чем была бы разность потенциалов в случае без внесения дополнительной турбулентности в воду. Поскольку в растворе получается больше ионов ОН-, повышается эффективность образования микрокристаллов накипи.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, она содержит блок управления для по существу одновременного переключения источника питания постоянного тока и нагревательного элемента между первым состоянием, в котором на нагревательный элемент подается электропитание для нагревания воды, а источник питания постоянного тока прикладывает разность напряжений к анодному элементу и катодному элементу, и вторым состоянием, в котором нагревательный элемент и источник питания постоянного тока выключены. В этом варианте выполнения разность напряжений не прикладывается между анодным элементом и катодным элементом, когда нагревательный элемент не используется. Когда нагревательный элемент не используется, турбулентность в воде станет меньшей или вообще будет отсутствовать. Когда при этих обстоятельствах между анодным элементом и катодным элементом прикладывается разность напряжений, образовавшиеся ионы OH- не станут распространяться через воду. Это приведет к повышенной концентрации ионов ОН-. Вследствие этого образуется накипь, которая вероятнее всего отложится на близлежащем нагревательном элементе. Кроме того, ограничение приложения разности напряжений между катодным элементом и анодным элементом приводит также к сниженной коррозии анодного элемента.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, анодный элемент и катодный элемент расположены так, что они создают по существу однородное электрическое поле во время эксплуатации. Такое однородное электрическое поле приводит к образованию ионов ОН- по существу в одинаковых количествах у разных частей катода. Поэтому ионы ОН- будут оптимально смешиваться с водой за счет ее турбулентности, приводя к эффективному образованию микрокристаллов накипи. Это эффективное образование микрокристаллов приводит к дальнейшему снижению отложения накипи. Кроме того, это эффективное образование микрокристаллов накипи приводит к получению микрокристаллов, которые не загрязняют воду.
Дополнительная задача изобретения состоит в том, чтобы разработать электрическую водонагревательную систему, содержащую полый корпус для прохождения воды, которая относится к типу, охарактеризованному во вводном абзаце, и в которой предотвращается отложение накипи как на нагревательном элементе, так и на внутренней стенке емкости.
Дополнительная задача изобретения решается посредством электрической водонагревательной системы, охарактеризованной в п.2 формулы изобретения. В частности, в электрической водонагревательной системе, соответствующей изобретению, катодный элемент прикреплен к внутренней стенке рядом с нагревательным элементом.
При использовании у катода образуются ионы ОН-. При этом горячий нагревательный элемент вызывает появление структур турбулентного течения в воде, особенно - вблизи нагревательного элемента. Поскольку катод находится рядом с нагревательным элементом, в области внутреннего резервуарного пространства, где присутствует турбулентность, образуются ионы OH-. Это вызывает смешивание образующихся ионов OH- с нагретой водой. Образующиеся ионы OH- локально увеличивают pH, и по меньшей мере часть их превращает ионы HCO3- в ионы CO32-. Ионы CO32- реагируют с ионами Ca2+, присутствующими в воде, образуя накипь. Турбулентность приводит к хорошему распределению ионов ОН- в воде. Неожиданно, накипь образуется только в виде микрокристаллов. Эти микрокристаллы остаются в воде, и их отложение либо не происходит совсем, либо происходит с трудом. Благодаря своему малому размеру, микрокристаллы не портят воду.
Следует отметить, что анодный элемент может находиться в полом корпусе или на внутренней стенке полого корпуса, или даже может быть выполненным как единое целое с внутренней стенкой полого корпуса. Однако анодный элемент не обязательно должен находиться между катодным элементом и нагревательным элементом, или быть предусмотренным на нагревательном элементе либо выполненным как единое целое с ним.
Источнику питания постоянного тока можно придать конфигурацию, обеспечивающую подачу постоянной разности напряжений между катодным элементом и анодным элементом. Вместе с тем, хотя по всему тексту данной заявки источник питания постоянного тока определяется как устройство, которое поддерживает ориентацию разности напряжений между катодным элементом и анодным элементом постоянной, значение разности напряжений может быть зависимым от времени.
Электрические водонагревательные системы того типа, который соответствует данному изобретению, можно использовать как в бытовых приложениях, так и в промышленных приложениях, связанных с массовым производством.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, катодный элемент предусмотрен на нагревательном элементе. Это гарантирует образование ионов OH- в месте, где присутствует турбулентность из-за нагревания воды, а также вода, нагреваемая нагревательным элементом. Это дополнительно повышает эффективность образования микрокристаллов и тем самым уменьшает количество образующихся частиц накипи, имеющих бόльший размер, что приводит к еще лучшему предотвращению загрязнения воды и отложения накипи. Это также сокращает конструкторско-производственные усилия по правильному позиционированию катодного элемента относительно нагревательного элемента и снижает затраты на конструкторские работы по электрической водонагревательной системе и на ее производство.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, катодный элемент и нагревательный элемент объединены в один компонент, составляя тем самым единый узел. Благодаря этому объединению не требуется тратить усилия конструкторов на исследование надлежащего позиционирования катодного элемента относительно нагревательного элемента. Это снижает затраты на конструкторские работы. Помимо этого у нагревательного элемента образуются ионы OH-, дополнительно повышая эффективность образования микрокристаллов накипи.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, катодный элемент, нагревательный элемент и внутренняя стенка объединены в один компонент, составляя тем самым единый узел. Благодаря этому объединению можно сконструировать компактную электрическую водонагревательную систему. Также не требуется тратить усилия проектировщиков на исследование надлежащего позиционирования катодного элемента относительно нагревательного элемента. Это снижает затраты на конструкторские работы. Помимо этого, у нагревательного элемента образуются ионы OH-, дополнительно повышая эффективность образования микрокристаллов накипи.
В альтернативном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, нагревательный элемент предусмотрен на стороне внутренней стенки, не контактирующей с водой, например, снаружи внутренней стенки. В таких вариантах выполнения внутренняя стенка будет нагреваться как целое и фактически действовать как нагревательный элемент по отношению к воде, протекающей через электрическую водонагревательную систему. При этой разновидности вариантов выполнения внутренняя стенка в целом действует как катодный элемент.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, анодный элемент выполнен из углерода. Как известно из предшествующего уровня техники, см., например, документ US 6871014 B2, для формирования анодного элемента рекомендуют подложку из титана или ниобия со слоем платины. Эксперименты неожиданно показали, что при использовании углеродного анода предотвращение накипи эффективнее, чем при использовании альтернативных материалов анода.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, она содержит блок управления для по существу одновременного переключения источника питания постоянного тока и нагревательного элемента между первым состоянием, в котором на нагревательный элемент подается электропитание для нагревания воды, а источник питания постоянного тока прикладывает разность напряжений к анодному элементу и катодному элементу, и вторым состоянием, в котором нагревательный элемент и источник питания постоянного тока выключены. В этом варианте выполнения разность напряжений не прикладывается между анодным элементом и катодным элементом, когда нагревательный элемент не используется. Когда нагревательный элемент не используется, турбулентность в воде станет меньшей или вообще будет отсутствовать. Когда при этих обстоятельствах между анодным элементом и катодным элементом прикладывается разность напряжений, образовавшиеся ионы OH- не станут распространяться через воду. Это приведет к повышенной концентрации ионов ОН-. Вследствие этого образуется накипь, которая вероятнее всего отложится на близлежащем нагревательном элементе. Кроме того, ограничение приложения разности напряжений между катодным элементом и анодным элементом приводит также к сниженной коррозии анодного элемента.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, анодный элемент и катодный элемент расположены так, что они создают по существу однородное электрическое поле во время эксплуатации. Такое однородное электрическое поле приводит к образованию ионов ОН- по существу в одинаковых количествах у разных частей катода. Поэтому ионы ОН- будут оптимально смешиваться с водой за счет ее турбулентности, приводя к эффективному образованию микрокристаллов накипи. Это эффективное образование микрокристаллов приводит к дальнейшему снижению отложения накипи. Кроме того, это эффективное образование микрокристаллов накипи приводит к получению микрокристаллов, которые не загрязняют воду.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, анодный элемент находится по существу на аксиально-ориентированной оси полого корпуса. Эту конструкцию легко воплотить, что уменьшает затраты на конструкторские работы по электрическому водонагревателю и на его производство.
В предпочтительном варианте выполнения электрической водонагревательной системы, соответствующей изобретению, анодный элемент находится по существу на центральной аксиально-ориентированной оси полого корпуса. При такой компоновке по существу однородное электрическое поле между анодным элементом и катодным элементом легко реализуется во время эксплуатации без значительных усилий конструкторов. Это снижает общие затраты на конструкторские работы по электрическому водонагревателю.
Как пояснялось выше, в обоих вариантах выполнения электрической водонагревательной системы, соответствующей изобретению, т.е. в варианте, описанном в п.1 формулы изобретения, и варианте, описанном в п.2 формулы изобретения, получаются аналогичные эффекты. Оба варианта основаны на одном и том же изобретательском замысле, а именно, на том, что катодный элемент находится рядом с нагревательным элементом, и на одном и том же принципе работы, а именно, на том, что образуются лишь микрокристаллы накипи, которые не выпадают в виде отложения на частях электрической водонагревательной системы или не загрязняют воду.
Дополнительная задача изобретения состоит в том, чтобы разработать чайник, содержащий вариант выполнения электрической водонагревательной системы, соответствующей изобретению.
Дополнительная задача изобретения состоит в том, чтобы разработать кофеварку, содержащую вариант электрической водонагревательной системы, соответствующей изобретению.
Дополнительная задача изобретения состоит в том, чтобы разработать утюг, содержащий вариант электрической водонагревательной системы, соответствующей изобретению.
Со ссылкой на формулу изобретения следует отметить, что изобретение также относится ко всем возможным комбинациям признаков и/или мер, охарактеризованных в различных пунктах формулы изобретения.
В типичном эксперименте, доказывающем эффект изобретения, химический стакан, действующий как емкость для приема воды и ограничивающий внутреннее накопительное пространство, наполняли 240 мл воды, подлежащей нагреву. Воду подготавливали в соответствии со стандартом 60734 Международной электротехнической комиссии (МЭК), а эта вода имела суммарную жесткость 16,8 и временную жесткость 11,2. pH составлял 8,25. В стакан вставляли змеевиковый электрический нагревательный элемент, который регулировали термостатом. Нагревательный элемент действовал как катодный элемент. В центр змеевика устанавливали L-образный электрод, действовавший как анодный элемент, причем делали это таким образом, что его нижняя часть втыкалась в центр змеевика. Во время эксперимента блок управления обеспечивал подачу электропитания на электрический нагревательный элемент и возбуждение источника питания постоянного тока на основании температуры воды и истекшего времени. Воду кипятили в течение десяти минут, при этом нагревательный элемент включали и выключали в прерывистом режиме в течение этого периода времени. Блок управления возбуждал источник питания постоянного тока только тогда, когда нагревательный элемент был включен. После эксперимента воде давали остыть до температуры окружающей среды. Воду визуально контролировали, чтобы оценить ее прозрачность. Кроме того, воду фильтровали, а оставшуюся воду тестировали на жесткость. Разность между жесткостью до и после кипения является приемлемым показателем количества накипи, которая отложилась или не прошла сквозь фильтр. Результаты эксперимента показаны в нижеследующей таблице.
Прикладываемая разность напряжений Жесткость Внешний вид воды
0 В 2,5 В 3,0 В 3,5 В DH Температура
0 сек 16,8 11,0
10 мин 10,6 4,4 Мутная
10 мин 13,3 6,5 Прозрачная
10 мин 14,1 7,6 Прозрачная
10 мин 14,3 7,5 Прозрачная
В первой строке указана жесткость воды до кипячения. Во второй строке указана в качестве опорного значения жесткость воды, кипяченой без приложения напряжения. Из резкого уменьшения жесткости воды очевидно, что какая-то накипь все же образовывалась. Это также проявилось в том, что кипяченая вода внешне была мутной.
Когда к анодному элементу и катодному элементу прикладывали разность напряжений 2,5 В или более, жесткость кипяченой воды приближалась к жесткости необработанной воды, указывая, что предотвращение образования накипи было эффективным. При этом вода оставалась прозрачной, а нагревательный элемент оставался чистым.
Напряжения, использовавшиеся в эксперименте согласно этому примеру, действительны лишь для этого конкретного эксперимента. При других настройках могут потребоваться другие напряжения. Имеют значение не только размеры катодного элемента и анодного элемента, но и, например, жесткость и pH воды. Во время других экспериментов наблюдалось, что при жесткой воде с относительно низким pH для получения прозрачной воды после кипячения необходимы более высокие напряжения. Более высокое напряжение необходимо для того, чтобы создавать больше ионов OH- с целью компенсации pH раствора. Вода с более высоким исходным pH требует меньшего напряжения, поскольку концентрация ионов OH-, необходимая для создания микрокристаллов накипи, достигается раньше.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Ниже приводится подробное описание изобретения. Это описание представлено в качестве неограничительного примера, который следует рассматривать со ссылкой на чертежи, при этом:
на фиг.1 показано схематическое сечение согласно первому варианту выполнения электрической водонагревательной системы, соответствующей изобретению и содержащей емкость для приема воды, рассматриваемое в соответствии с видом сбоку;
на фиг.2 показано схематическое сечение согласно второму варианту выполнения электрической водонагревательной системы, соответствующей изобретению и содержащей полый корпус для пропускания воды, рассматриваемое в соответствии с видом спереди;
на фиг.3 показано схематическое сечение согласно второму варианту выполнения электрической водонагревательной системы, показанной на фиг.2, рассматриваемое в соответствии с видом сбоку;
на фиг.4 показано схематическое сечение согласно третьему варианту выполнения электрической водонагревательной системы, соответствующей изобретению и содержащей полый корпус для пропускания воды, рассматриваемое в соответствии с видом спереди;
на фиг.5 показано схематическое сечение согласно третьему варианту выполнения электрической водонагревательной системы, показанной на фиг.4, рассматриваемое в соответствии с видом сбоку.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ВЫПОЛНЕНИЯ
На чертежах, иллюстрирующих один и тот же вариант выполнения или одни и те же его части, для одних и тех же частей используются одни и те же позиции.
На фиг.1 показана электрическая водонагревательная система 101. Электрическая водонагревательная система 101 содержит емкость 102, имеющую внутреннюю стенку 103. Эта емкость может быть цилиндрической емкостью или может иметь любую другую подходящую форму, такую как коробчатая. Внутренняя стенка 103 емкости ограничивает внутреннее накопительное пространство 110 емкости. Внутренняя стенка 103 может - целиком или частично - находиться в контакте с нагреваемой водой, в зависимости от количества воды, хранимой во внутреннем резервуарном пространстве емкости. Во внутреннем резервуарном пространстве емкости предусмотрен нагревательный элемент 104, который можно включать и выключать посредством блока 111 управления. На фиг.1 не показано, что блок 111 управления может быть соединен с переключателем, который приводит в действие потребитель, и/или может принимать сигнал из любого другого источника, например контроллера процесса, термостата или парового переключателя, указывающего кипение воды, причем такой сигнал указывает, что следует осуществить действие переключения. На фиг.1 также не показано, что блок управления может быть соединен с источником питания, например электросетью, или с аккумулятором запасенной энергии в какой-либо иной форме, таким как батарея. Когда блок управления включает нагревательный элемент 104, электропитание подключается к нагревательному элементу 104 через соединение 112. Нагревательный элемент 104 может быть электрическим нагревательным элементом любого типа, например, основанным на электрическом сопротивлении или электрической индукции. В этом примере нагревательный элемент является удлиненным элементом. Рядом с нагревательным элементом 104 находится катодный элемент 106. В варианте выполнения, показанном на фиг.1, катодный элемент 106 ориентирован по существу параллельно нагревательному элементу 104, проходя вдоль всей длины нагревательного элемента 104. В других вариантах выполнения катодный элемент 106 может проходить лишь вдоль части нагревательного элемента 104 и/или иметь другую ориентацию. Анодный элемент 105 находится на некотором расстоянии от катодного элемента 106. В этом примере анодный элемент 105 выполнен из углерода, в других вариантах выполнения анодный элемент 105 может быть выполнен из другого материала, главным образом известного сочетанием низкой скорости коррозии при использовании в качестве анодного элемента 105 в воде и низкой растворимости в воде, например, это может быть подложка из титана и ниобия со слоем платины, платина или так называемые смешанные оксиды металлов. Катодный элемент 106 может быть выполнен из любого материала, который обладает хорошей удельной электропроводностью и низкой растворимостью, такого как титан, платина, титан с покрытием из оксида металла или нержавеющая сталь обычных марок, известных как водостойкие.
В варианте выполнения, показанном на фиг.1, анодный элемент 105 ориентирован по существу параллельно катодному элементу 106 и находится около дна емкости. В других вариантах выполнения анодный элемент может быть выполнен как единое целое с внутренней стенкой 103 емкости или находиться в другом месте в пределах внутреннего резервуарного пространства, и/или быть ориентированным по существу не параллельно катодному элементу 106. Как анодный элемент 105, так и катодный элемент 106 соединены с источником 107 питания постоянного тока. Источник 107 питания постоянного тока во время эксплуатации прикладывает разность напряжений к катодному элементу 106 и анодному элементу 105. Источник 107 питания постоянного тока включается и выключается блоком 111 управления. Когда источник 107 питания постоянного тока включается, возбуждение источника 107 питания постоянного тока обеспечивается блоком 111 управления через соединение 113. Как правило, разность напряжений между катодным элементом 106 и анодным элементом 105 составляет 3,0 В, когда используется стандартизированная вода, охарактеризованная выше. В других вариантах выполнения разность напряжений может быть низкой, например 1,5 В, или превышающей 4,0 В, в зависимости от конкретной конфигурации электрической водонагревательной системы и характеристик нагреваемой воды.
В пределах внутреннего резервуарного пространства емкости 102 имеется мешалка 108, привод которой осуществляет средство 109 привода. Мешалка 108 с приводом перемешивает воду, тем самым создавая дополнительную турбулентность в нагреваемой воде. В других вариантах выполнения можно использовать другие способы внесения дополнительной турбулентности в воду, например, нагнетание воздушного потока в воду. Благодаря этой дополнительной турбулентности ионы OH-, образующиеся у катодного элемента 106, будут очень хорошо смешиваться с водой, что приведет к меньшей локальной концентрации ионов OH-. Следовательно, при этом формируется большое количество микрокристаллов накипи. Средство 109 привода может быть любым известным узлом привода, например электрическим двигателем. Соединение средства 109 привода с его источником питания на фиг.1 не показано.
Чтобы вскипятить воду без отложения накипи на частях электрической водонагревательной системы 101 или без загрязнения воды, потребитель наполняет емкость 102 водой в требуемом количестве и включает электрическую водонагревательную систему 101, приводя в действие двухпозиционный переключатель. Этот двухпозиционный переключатель не показан на фиг.1. Двухпозиционный переключатель посылает сигнал блоку 111 управления. Блок 111 управления оценивает этот сигнал вместе с другими сигналами, действующими как входные сигналы, например управляющими сигналами, из датчика температуры или датчика пара (оба они не показаны на фиг.1). Когда эта оценка приводит к выводу, что подача электропитания на водонагреватель 104 воды безопасна, блок 111 управления подает электропитание на водонагреватель 104. Одновременно или по меньшей мере по существу одновременно с этим блок 111 управления будет также возбуждать источник 107 питания постоянного тока. Запитанный водонагреватель 104 будет нагреваться и начнет передавать тепло воде, что, в конечном счете, приводит к кипячению воды. Возбужденный источник 107 питания постоянного тока будет создавать разность потенциалов между анодным элементом 105 и катодным элементом 106. Благодаря этой разности потенциалов будет иметь место электролиз воды. У катодного элемента 106 образуются ионы OH-, что приводит к локально повышенному значению pH. У анодного элемента 105 будут образовываться ионы H+, что приведет к локально пониженному pH. В областях с повышенным pH будет образовываться накипь. Во время эксплуатации, то есть, когда подается электропитание, нагревательный элемент 104 будет вызывать течение воды от себя, обычно - турбулентное. Поскольку катодный элемент 106 находится рядом с нагревательным элементом 104, он окажется в области турбулентного течения. Благодаря этой турбулентности образующиеся ионы OH- будут очень хорошо смешиваться с водой. Накипь образуется сначала на молекулярном уровне (например, CaCO3 и/или MgCO3). Различные молекулы накипи будут агрегироваться и образовывать микрокристалл. Когда количество ионов OH- окажется достаточным, такой микрокристалл будет в дальнейшем расти и достигнет размера, при котором становится различимым для человеческого глаза. Кроме того, вероятно, будет происходить отложение более крупных кристаллов накипи. Однако в электрической водонагревательной системе согласно изобретению, как показано в этом варианте выполнения, приемлемое распределение ионов OH- предотвращает рост кристаллов накипи за пределы размера микрокристаллов. Поэтому накипь остается невидимой в воде, а отложение не происходит. Для дальнейшего улучшения распределения ионов OH- в воде мешалка 108, приводимая в действие средством 109 привода, перемешивает воду. В предпочтительном варианте выполнения средство 109 привода также соединено с блоком 111 управления и включается и выключается по существу одновременно с нагревательным элементом 104 и источником 107 питания постоянного тока. Когда вода уже достигла заданной температуры или, например, своей температуры кипения, подходящий датчик пошлет сигнал в блок 111 управления, который, в свою очередь, отключит нагревательный элемент 104 и источник 107 питания постоянного тока. Потребитель сможет вылить воду из емкости и использовать нагретую воду, например, для приготовления чая или супа.
На фиг.2 и 3 показана электрическая водонагревательная система 201. Электрическая водонагревательная система 201 имеет трубчатую форму; сечение, показанное на фиг.2, проведено перпендикулярно оси трубы. Сечение, показанное на фиг.3, проведено в плоскости, включающей в себя ось трубы. Электрическая водонагревательная система 201 имеет полый корпус 202, имеющий внутреннюю стенку 203. Вместо поперечного сечения кругового цилиндра полый корпус может иметь любое подходящее поперечное сечение, такое как квадратное или треугольное перечное сечение. В целом, нагреватели, соответствующие этому принципу, известны как проточные нагреватели. К внутренней стенке 203 крепится нагревательный элемент 204. Как единое целое с нагревательным элементом 204 выполнен катодный элемент 206 (отдельно не виден на фиг.2). Около оси трубчатой электрической водонагревательной системы 201 расположен анодный элемент 205. Анодный элемент 205 удерживается на месте, например, с помощью концевых упоров, которые имеют отверстие, где можно закрепить анодный элемент. Анодный элемент 205 и катодный элемент 206 соединены с источником 207 питания постоянного тока, как показано на фиг.3. Как нагревательный элемент 204, так и источник 207 питания постоянного тока соединены с блоком 211 управления. На фиг.3 не показано, что блок 211 управления может быть соединен с переключателем, который приводит в действие потребитель, и/или что этот блок может принимать сигнал из любого другого источника, например контроллера процесса или датчика расхода, указывающего, что через электрическую водонагревательную систему 201 течет вода, причем такой сигнал указывает, что надо осуществить действие переключения. На фиг.3 также не показано, что блок управления может быть соединен с источником питания, например электросетью, или с аккумулятором запасенной энергии в какой-либо иной форме, таким как батарея. Когда блок 211 управления включает нагревательный элемент 204, электропитание подключается к нагревательному элементу 204 через соединение 212. Нагревательный элемент 204 может быть электрическим нагревательным элементом любого типа, например, основанным на электрическом сопротивлении или электрической индукции. В этом примере нагревательный элемент является удлиненным элементом. Как единое целое с нагревательным элементом 204 выполнен катодный элемент 206. В других вариантах выполнения, катодный элемент 206 может крепиться к нагревательному элементу 204 или даже быть отдельным от него. Анодный элемент 205 находится на некотором расстоянии от катодного элемента 206. В этом примере анодный элемент 205 выполнен из углерода, в других вариантах выполнения анодный элемент 205 может быть выполнен из другого материала, главным образом известного сочетанием низкой скорости коррозии при использовании в качестве анодного элемента 205 в воде и низкой растворимости в воде, например, это может быть подложка из титана и ниобия со слоем платины, платина или так называемые смешанные оксиды металлов. Катодный элемент 206 может быть выполнен из любого материала, который обладает хорошей удельной электропроводностью и низкой растворимостью, такого как титан, платина, титан с покрытием из оксида металла или нержавеющая сталь обычных марок, известных как водостойкие.
В варианте выполнения, показанном на фиг.2 и 3, анодный элемент 205 ориентирован по существу параллельно оси вращения трубчатой электрической водонагревательной системы 201. В других вариантах выполнения анодный элемент может иметь другую ориентацию и/или может находиться на некотором расстоянии от центральной аксиально-ориентированной оси полого корпуса. Как анодный элемент 205, так и катодный элемент 206 соединены с источником 207 питания постоянного тока. Во время эксплуатации источник 207 питания постоянного тока прикладывает разность напряжений к катодному элементу 206 и анодному элементу 205. Источник 207 питания постоянного тока включается и выключается блоком 211 управления. Когда источник 207 питания постоянного тока включается, возбуждение источника 207 питания постоянного тока обеспечивается блоком 211 управления через соединение 213. Как правило, разность напряжений между катодным элементом 206 и анодным элементом 205 составляет 3,0 В, когда используется стандартизированная вода, охарактеризованная выше. В других вариантах выполнения разность напряжений может быть низкой, например 1,5 В, или превышающей 4,0 В, в зависимости от конкретной конфигурации электрической водонагревательной системы и характеристик нагреваемой воды.
Во время эксплуатации, когда электрическая водонагревательная система 201 используется для нагрева или кипячения воды, протекающей через полый корпус 202, без отложения накипи на частях электрической водонагревательной системы 201 или загрязнения воды, блок 211 управления обеспечивает подачу электропитания на водонагреватель 204. Одновременно или по меньшей мере по существу одновременно с этим блок 211 управления будет также возбуждать источник 207 питания постоянного тока. Запитанный водонагреватель 204 будет нагреваться и начнет передавать тепло воде, что, в конечном счете, приводит к кипячению воды. Возбужденный источник 207 питания постоянного тока будет создавать разность потенциалов между анодным элементом 205 и катодным элементом 206. Благодаря этой разности потенциалов будет иметь место электролиз воды. У катодного элемента 206 образуются ионы OH-, что приводит к локально повышенному значению pH. У анодного элемента 205 будут образовываться ионы H+, что приведет к локально пониженному pH. В областях с повышенным pH будет образовываться накипь. Накипь образуется сначала на молекулярном уровне (например, CaCO3 и/или MgCO3). Различные молекулы накипи будут агрегироваться и образовывать микрокристалл. Когда количество ионов OH- окажется достаточным, такой микрокристалл будет в дальнейшем расти и достигнет размера, при котором становится различимым для человеческого глаза. Кроме того, вероятно, будет происходить отложение более крупных кристаллов накипи. Однако в электрической водонагревательной системе согласно изобретению, как показано в этом варианте выполнения, приемлемое распределение ионов OH- предотвращает рост кристаллов накипи за пределы размера микрокристаллов. Поэтому накипь остается невидимой в воде, а отложение не происходит. Когда дополнительных требований к нагретой или кипяченой воде нет, контроллер процесса или аналогичное устройство пошлет сигнал в блок 211 управления, который, в свою очередь, отключит нагревательный элемент 204 и источник 207 питания постоянного тока.
Вариант выполнения, показанный на фиг.4 и 5, отличается от варианта выполнения согласно фиг.2 и 3 тем, что нагревательный элемент, внутренняя стенка и катодный элемент объединены в один компонент. На фиг.4 и 5 показана электрическая водонагревательная система 401. Электрическая водонагревательная система 401 имеет трубчатую форму; сечение, показанное на фиг.4, проведено перпендикулярно оси трубы. Сечение, показанное на фиг.5, проведено в плоскости, включающей в себя ось трубы. Электрическая водонагревательная система 401 имеет полый корпус 402, имеющий внутреннюю стенку 403. Как единое целое с внутренней стенкой 403 выполнен нагревательный элемент 404. В этом конкретном варианте выполнения нагревательный элемент 404 находится по существу на внешней стороне внутренней стенки 403. На фиг.4 и 5 показана область, в которой находится нагревательный элемент 404 и которая ограничена пунктирной линией 414. Как единое целое с внутренней стенкой 403 выполнен катодный элемент 406 (отдельно не виден на фиг.4). Около оси трубчатой электрической водонагревательной системы 401 расположен анодный элемент 405. Анодный элемент 405 и катодный элемент 406 соединены с источником 407 питания постоянного тока, как показано на фиг.5. Как нагревательный элемент 404, так и источник 407 питания постоянного тока соединены с блоком 411 управления. Источник 407 питания постоянного тока и блок 411 управления работают аналогично источнику питания постоянного тока и блоку управления, показанным на фиг.2 и 3. Во время эксплуатации электрические водонагревательные системы 201 и 401 работают аналогично.
Хотя изобретение проиллюстрировано на чертежах и подробно описано в вышеизложенном описании, эти иллюстрации и описание следует считать носящими демонстрационный или пояснительный характер, а не ограничительный. Изобретение не ограничивается описанными вариантами выполнения. Следует отметить, что электрическая водонагревательная система, соответствующая изобретению, и все ее компоненты могут быть выполнены посредством применения процессов и материалов, которые сами по себе известны. В формуле изобретения и описании слово «содержащий(ая)» не исключает другие элементы, а признак единственного числа не исключает множество. Любые обозначения позиций в пунктах формулы изобретения не следует считать ограничивающими объем его притязаний. Также ясно, что все возможные комбинации признаков, описанные в формуле изобретения, являются частью этого изобретения.
ПЕРЕЧЕНЬ ССЫЛОЧНЫХ ПОЗИЦИЙ
101 Электрическая водонагревательная система
102 Емкость
103 Внутренняя стенка емкости
104 Нагревательный элемент
105 Анодный элемент
106 Катодный элемент
107 Источник питания постоянного тока
108 Мешалка
109 Средство привода
110 Внутреннее накопительное пространство емкости
111 Блок управления
112 Соединение между блоком управления и нагревательным элементом
113 Соединение между блоком управления и источником питания постоянного тока
201 Электрическая водонагревательная система
202 Полый корпус
203 Внутренняя стенка
204 Нагревательный элемент, выполненный как единое целое с катодным элементом
205 Анодный элемент
206 Катодный элемент
207 Источник питания постоянного тока
211 Блок управления
212 Соединение между блоком управления и нагревательным элементом
213 Соединение между блоком управления и источником питания постоянного тока
401 Электрическая водонагревательная система
402 Полый корпус
403 Внутренняя стенка
404 Нагревательный элемент, выполненный как единое целое с внутренней стенкой
405 Анодный элемент
406 Катодный элемент, выполненный как единое целое с внутренней стенкой
407 Источник питания постоянного тока
411 Блок управления
412 Соединение между блоком управления и нагревательным элементом
413 Соединение между блоком управления и источником питания постоянного тока
414 Граница между нагревательным элементом и остальной частью внутренней стенки.

Claims (15)

1. Электрическая водонагревательная система (101), содержащая
емкость (102) для приема воды, ограничивающую внутреннее наполнительное пространство для нагреваемой воды, имеющую
электрический нагревательный элемент (104) для нагревания воды, хранимой в упомянутом внутреннем наполнительном пространстве, и
анодный элемент (105) и катодный элемент (106), соединенные или выполненные с возможностью соединения с источником (107) питания постоянного тока для создания разности потенциалов между катодным элементом (106) и анодным элементом (105),
отличающаяся тем, что катодный элемент (106) находится во внутреннем накопительном пространстве рядом с нагревательным элементом (104).
2. Электрическая водонагревательная система (201, 401), содержащая
полый корпус (202, 402) для пропускания нагреваемой воды, имеющий
внутреннюю стенку (203, 403),
электрический нагревательный элемент (204, 404) для нагревания воды, прикрепленный к упомянутой внутренней стенке, и
анодный элемент (205, 405) и катодный элемент (206, 406), соединенные или выполненные с возможностью соединения с источником (207, 407) питания постоянного тока для создания разности потенциалов между катодным элементом (206, 406) и анодным элементом (205, 405),
отличающаяся тем, что катодный элемент (206, 406) прикреплен к внутренней стенке (203, 403) рядом с нагревательным элементом (204, 404).
3. Электрическая водонагревательная система (101, 201, 401) по п.1 или 2, отличающаяся тем, что катодный элемент (106, 206, 406) предусмотрен на нагревательном элементе (104, 204, 404).
4. Электрическая водонагревательная система (101, 201, 401) по п.1 или 2, отличающаяся тем, что катодный элемент (106, 206, 406) и нагревательный элемент (104, 204, 404) объединены в один компонент.
5. Электрическая водонагревательная система (201, 401) по п.2, отличающаяся тем, что катодный элемент (206, 406), нагревательный элемент (204, 404) и внутренняя стенка (203, 403) объединены в один компонент.
6. Электрическая водонагревательная система (101, 201, 401) по п.1 или 2, отличающаяся тем, что анодный элемент (105, 205, 405) выполнен из углерода.
7. Электрическая водонагревательная система (101) по п.1, отличающаяся тем, что она содержит средство (108) для внесения турбулентности в воду, находящееся в нижней части емкости для внесения турбулентности в воду, окружающую нагревательный элемент (104) и катодный элемент (106).
8. Электрическая водонагревательная система (101, 201, 401) по п.1 или 2, отличающаяся тем, что она содержит блок (111, 211, 411) управления для по существу одновременного переключения источника (107, 207, 407) питания постоянного тока и нагревательного элемента (104, 204, 404) между первым состоянием, в котором на нагревательный элемент (104, 204, 404) подается электропитание для нагревания воды, а источник (107, 207, 407) питания постоянного тока прикладывает разность напряжений к анодному элементу (105, 205, 405) и катодному элементу (106, 206, 406), и вторым состоянием, в котором нагревательный элемент (104, 204, 404) и источник питания постоянного тока (107, 207, 407) выключены.
9. Электрическая водонагревательная система (101, 201, 401) по п.1 или 2, отличающаяся тем, что анодный элемент (105, 205, 405) и катодный элемент (106, 206, 406) расположены так, что они создают по существу однородное электрическое поле во время эксплуатации.
10. Электрическая водонагревательная система (201, 401) по п.2, отличающаяся тем, что анодный элемент (205, 405) находится по существу на аксиально-ориентированной оси полого корпуса.
11. Электрическая водонагревательная система (201, 401) по п.2, отличающаяся тем, что анодный элемент (205, 405) находится по существу на центральной аксиально-ориентированной оси полого корпуса.
12. Чайник, содержащий электрическую водонагревательную систему по п.1 или по любому из пп.3-8.
13. Кофеварка, содержащая электрическую водонагревательную систему по любому из пп.1-11.
14. Утюг, содержащий электрическую водонагревательную систему по любому из пп.1-11.
15. Моечная машина, содержащая электрическую водонагревательную систему по любому из пп.1-11.
RU2011139970/06A 2009-03-02 2010-02-23 Электрическая водонагревательная система RU2520783C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09154069.0 2009-03-02
EP09154069A EP2226583A1 (en) 2009-03-02 2009-03-02 Electrical water heating system
PCT/IB2010/050786 WO2010100581A2 (en) 2009-03-02 2010-02-23 Electrical water heating system

Publications (2)

Publication Number Publication Date
RU2011139970A RU2011139970A (ru) 2013-04-10
RU2520783C2 true RU2520783C2 (ru) 2014-06-27

Family

ID=41665375

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011139970/06A RU2520783C2 (ru) 2009-03-02 2010-02-23 Электрическая водонагревательная система

Country Status (7)

Country Link
US (1) US20110299840A1 (ru)
EP (2) EP2226583A1 (ru)
JP (1) JP2012520435A (ru)
KR (1) KR101743768B1 (ru)
CN (1) CN102483262B (ru)
RU (1) RU2520783C2 (ru)
WO (1) WO2010100581A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724655C1 (ru) * 2018-10-31 2020-06-25 Магонтек Гмбх Электронагревательное устройство с нагревательным элементом с электрическим приводом и анодом для катодной защиты от коррозии

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2596294B1 (en) * 2010-07-22 2015-12-09 Koninklijke Philips N.V. Prevention or reduction of scaling on a heater element of a water heater
US10314110B2 (en) * 2013-04-02 2019-06-04 Koninklijke Philips N.V. Electrochemical descaling by pulsed signal reversal
PL3063477T3 (pl) * 2013-04-02 2019-11-29 Koninklijke Philips Nv Elektrochemiczne usuwanie kamienia za pomocą odwrócenia sygnału impulsowego
CN103835112B (zh) * 2014-02-27 2016-10-19 广东美的生活电器制造有限公司 挂烫机
DE102014224593A1 (de) * 2014-12-02 2016-06-02 BSH Hausgeräte GmbH Wasserführendes Haushaltsgerät mit zumindest einer Heizung
US10513812B2 (en) 2015-05-11 2019-12-24 Samsung Electronics Co., Ltd. Washing machine and method of controlling the same
KR102573776B1 (ko) * 2015-05-11 2023-09-04 삼성전자주식회사 세탁기 및 그 제어 방법
US10921025B2 (en) * 2015-07-22 2021-02-16 National Machine Group Hot water tank
CN115897148A (zh) * 2021-09-30 2023-04-04 无锡小天鹅电器有限公司 一种电解组件及衣物处理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508942A2 (de) * 1991-04-12 1992-10-14 Condair AG Verfahren und Einrichtung zur Regelung eines Dampferzeugers
RU2043442C1 (ru) * 1993-04-02 1995-09-10 Акционерное общество "Привод" Электроутюг с электронным управлением
US20030202786A1 (en) * 2002-04-26 2003-10-30 Christian Pierre Water treatment system and water heater with cathodic protection and method
UA21230U (en) * 2006-02-08 2007-03-15 Polaris Internat Ltd Electric water heater
RU65625U1 (ru) * 2007-04-09 2007-08-10 Федеральное государственное унитарное предприятие "Пензенское производственное объединение электронной вычислительной техники"(ФГУП "ППО ЭВТ") Водонагреватель аккумуляционный бытовой плоский

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037925A (en) * 1958-04-09 1962-06-05 Smith Corp A O Cathodically protected structure and method of making same
GB939355A (en) * 1961-03-15 1963-10-16 Radiation Ltd Improvements in or relating to electric water heaters
US3925638A (en) * 1973-06-20 1975-12-09 Guido J Scatoloni Electrode cleaning means in an electric water heater
DE2605089C3 (de) * 1976-02-10 1978-08-24 Vereinigte Elektrizitaetswerke Westfalen Ag, 4600 Dortmund Wasserbehälter mit elektrischem Heizelement und kathodischem Korrosionsschutz
US4136001A (en) * 1977-10-03 1979-01-23 Rheem Manufacturing Company Non-sacrificial anode and water heater construction
DE3105922A1 (de) * 1981-02-18 1982-09-09 Buderus Ag, 6330 Wetzlar Wassererhitzer mit einem an wechselstrom angeschlossenen elektro- heizeinsatz
DE3506215A1 (de) * 1984-03-09 1985-09-12 Erwin Dipl.-Ing. 6336 Solms Groß Wassererhitzer mit elektroheizeinsatz
US4786383A (en) * 1987-03-26 1988-11-22 A. O. Smith Corporation Cathodic protection system for a water heater tank
US4870252A (en) * 1987-09-21 1989-09-26 Charles Balmer Condensation controller
US5342493A (en) * 1989-03-21 1994-08-30 Boiko Robert S Corrosion control of dissimilar metals
DK167870B2 (da) * 1989-03-28 1996-05-20 Guldager Electrolyse Fremgangsmaade til korrosionsbeskyttelse af et vandsystem
US5045170A (en) * 1989-05-02 1991-09-03 Globe-Union, Inc. Electrodies containing a conductive metal oxide
US4972066A (en) * 1989-09-06 1990-11-20 A.O. Smith Corporation Method and apparatus for reducing the current drain on the sacrificial anode in a water heater
US4975560A (en) * 1989-09-06 1990-12-04 A.O. Smith Corporation Apparatus for powering the corrosion protection system in an electric water heater
DK169197B1 (da) * 1990-03-12 1994-09-05 Krueger As I Elektrolyseanlæg til korrosionsbeskyttelse af et ferskvandsrørsystem
CN1225441A (zh) * 1998-02-04 1999-08-11 郝武斌 陶瓷谐振式无水垢热水器
EP1174529A1 (en) * 2000-07-19 2002-01-23 MERLONI TERMOSANITARI S.p.A. Device for the protection from corrosion of metal tank
ITAN20010005A1 (it) 2001-01-26 2002-07-26 Thermowatt Spa Mezzi per la protezione anticorrosione di serbatoi metallici contenenti liquidi da riscaldare, in particolare di scaldabagni
JP2005046809A (ja) * 2003-07-31 2005-02-24 Kurita Water Ind Ltd スケール防止装置
JP3984992B2 (ja) 2004-12-22 2007-10-03 エア・ウォーター株式会社 溶液のpH制御方法および装置
JP5129442B2 (ja) * 2005-02-08 2013-01-30 エア・ウォーター株式会社 液体の帯電物質の濃度調節装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508942A2 (de) * 1991-04-12 1992-10-14 Condair AG Verfahren und Einrichtung zur Regelung eines Dampferzeugers
RU2043442C1 (ru) * 1993-04-02 1995-09-10 Акционерное общество "Привод" Электроутюг с электронным управлением
US20030202786A1 (en) * 2002-04-26 2003-10-30 Christian Pierre Water treatment system and water heater with cathodic protection and method
UA21230U (en) * 2006-02-08 2007-03-15 Polaris Internat Ltd Electric water heater
RU65625U1 (ru) * 2007-04-09 2007-08-10 Федеральное государственное унитарное предприятие "Пензенское производственное объединение электронной вычислительной техники"(ФГУП "ППО ЭВТ") Водонагреватель аккумуляционный бытовой плоский

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2724655C1 (ru) * 2018-10-31 2020-06-25 Магонтек Гмбх Электронагревательное устройство с нагревательным элементом с электрическим приводом и анодом для катодной защиты от коррозии

Also Published As

Publication number Publication date
JP2012520435A (ja) 2012-09-06
CN102483262B (zh) 2015-03-11
US20110299840A1 (en) 2011-12-08
WO2010100581A2 (en) 2010-09-10
KR20110134432A (ko) 2011-12-14
EP2404121A2 (en) 2012-01-11
CN102483262A (zh) 2012-05-30
RU2011139970A (ru) 2013-04-10
WO2010100581A3 (en) 2014-09-12
KR101743768B1 (ko) 2017-06-05
EP2226583A1 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
RU2520783C2 (ru) Электрическая водонагревательная система
RU2566846C2 (ru) Предотвращение или уменьшение образования накипи на нагревательном элементе водонагревателя
TW309507B (ru)
RU2565569C2 (ru) Предотвращение или уменьшение образования накипи на нагревательном элементе водонагревателя
KR101757486B1 (ko) 정수기
RU2453776C1 (ru) Способ нагрева жидкости (варианты) и устройство для нагрева жидкости (варианты)
EP3063477B1 (en) Electrochemical descaling by pulsed signal reversal
RU2658338C2 (ru) Электрохимическое удаление накипи инвертированием импульсного сигнала
JP2016083650A (ja) 電解水生成器と電解水生成方法
WO2018100356A1 (en) Electrochemical cell assembly and method for operation of the same
JP2012013360A (ja) 水還元機能付き給湯機
CN105330029B (zh) 供水装置及对供水装置进行除垢的方法
JPH03195A (ja) 飲料水殺菌装置の塩素発生電極
WO2018100355A1 (en) Toilet assembly and method for its operation
WO2018100361A1 (en) Electrochemical cell assembly and method for operation of the same
GB2556948A (en) Toilet assembly and method for its operation
JP2007205593A (ja) 給湯装置
JPH09248574A (ja) アルカリイオン水生成装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190224